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Abstract: Private Set Intersection (PSI), which is a hot topic in recent years, has been extensively
utilized in credit evaluation, medical system and so on. However, with the development of big data
era, the existing traditional PSI cannot meet the application requirements in terms of performance and
scalability. In this work, we proposed two secure and effective PSI (SE-PSI) protocols on scalable
datasets by leveraging deterministic encryption and Bloom Filter. Specially, our first protocol focuses
on high efficiency and is secure under a semi-honest server, while the second protocol achieves se-
curity on an economic-driven malicious server and hides the set/intersection size to the server. With
experimental evaluation, our two protocols need only around 15 and 24 seconds respectively over one
million-element datasets. Moreover, as a novelty, a multi-round mechanism is proposed for the two
protocols to improve the efficiency. The implementation demonstrates that our two-round mechanism
can enhance efficiency by almost twice than two basic protocols.
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1. Introduction

Private set intersection (PSI) is a cryptographic protocol that allows two parties to jointly calculate
set intersection over their datasets without leaking any additional information. Formally, a PSI protocol
is described as follows: Two clients, Alice and Bob, have different (or same) size of the datasets,
where Alice has a set X = {xy, x5, -+, x,,} and Bob has a set Y = {y,y2,---,y,}. At the conclusion
of the protocol, if the protocol is symmetric, it outputs (X N Y, X N Y) « PSI(X,Y) to Alice and Bob
simultaneously; If the protocol is asymmetric, it outputs (X N Y, A) « PSI(X, Y) to one client, where
A denotes the empty string.

PSTI has been applied in many scenarios. For instance, the department of homeland security (DHS),
who maintains a terror watch list (or ‘do-not-fly’ list), wants to check whether its terrorist suspects are
in the list of passengers from a flight. Obviously, DHS is not allowed to obtain the private information
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of the innocent passengers in the list. As another classic example, two real estate companies would
like to identity homeowners who have signed double contracts with both companies for profit purpose,
and both two are not willing to reveal any extra information of other homeowners. Furthermore, PSI
also has been utilized extensively in a wide range of emerging cloud computing paradigm setting such
as internet-based Personal Healthy Records (PHRs) systems [1], mobile social networks [2], human
genomic research [3], and online advertising [4].

With the rapid development of big data, traditional PSI protocols (e.g., [5—7]) are never well appli-
cable for large-scale dataset. How to design an efficient and scalable privacy-preserving PSI solution is
an open problem. Dong et al. [6] combined Garbled Bloom filter to propose a two-party PSI protocol
for million-element datasets, and hereafter several works focused on enhancing the efficiency of PSI.
Especially, Pinkas et al. [8] improved the efficiency with Oblivious Transfer extension technique, and
then proposed another new circuit-based protocols for computing variants of the intersection with an
almost linear number of comparisons based on new variants of Cuckoo hashing in two dimensions.
And recently, Chase et al. [9] presented an efficient PSI protocol with lightweight Oblivious Pseudo-
Random Functions in a two-party setting model. However, such two-party model introduces multiple
interactions and cannot be scalable to billion-scale datasets.

Kamara et al. [10] introduced an efficient PSI protocol for billion-element datasets using Pseudo-
random Permutation under a server-aided setting by parallel mode and hardware acceleration. Later,
Zhang et al. [11] proposed a two-server-aided PSI protocol with multiple keys with scarifying a lit-
tle efficiency compared with [10]. There are also amount of works focusing on server-aided privacy
preserving outsourced computations (e.g. [12—15]), and especially [16—19] realize outsourced private
set intersection with combing functional encryption algorithm. Regrettably, these solutions require
either multiple interactions or very complex operations over the outsourced ciphertexts. Moreover, in
the hidden size model, the clients have to undertake most of set intersection calculation. All of these
obstacles make them unscalable to a very large datasets (such as billion set size).

Our Contributions. Motivated by previous PSI works on massive datasets, we exploit the Bloom
Filter technique and lightweight deterministic encryption algorithm to design an efficient fog/cloud
server-aided PSI protocol in this paper. Our Protocol can output an approximate intersection due to the
false positive in Bloom Filter, while this approximate result is guaranteed to be almost the same with
the actual intersection through setting the suitable parameter of Bloom Filter. The main contributions
can be summarized as below:

e We present the first basic protocol with extremely high efficiency and it is secure against a semi-
honest server. Our first protocol is also regarded as a basic building block for the second protocol.

e For more security, we propose the second protocol with secure against a lazy or cheating ma-
licious server. Specifically, by adding dummy sets, our second protocol not only can preserve
the set/intersection size from being leaked to the server, and also can check whether the server
honestly returns the intersection result with a quite high probability.

e Experimental evaluation shows that our two basic protocols need only around 15 and 24 seconds
respectively over one million-element datasets. Furthermore, we propose a novel multi-round
mechanism to improve the efficiency and accuracy. Through the implementation, a two-round
mechanism can enhance efficiency by almost twice than two basic protocols in average with
maintaining certain accuracy.
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2. Related work

Private Set Intersection (PSI) proposed by Freedman et al. [20] is a representative cryptographic
computation protocol between two parties. Subsequent works focus on the study of PSI protocols with
more efficiency and security. We summarize them with two modes as follows: two-party PSI mode
and server-aided PSI mode.

Two-party PSI Mode. Freedman et al. [20] proposed two secure PSI protocols with Oblivious Poly-
nomial Evaluation, and lots of subsequent works focused on improving the computation efficiency or
obtaining more security (e.g., [21, 22]). There exist several solutions using Pseudo-Random Func-
tions (PRF) (e.g., [2,9, 23]), which are instantiated effectively since with symmetric-key technique.
What’s more, several other works combining different techniques focused on realizing high efficiency
and security over a large-scale dataset (e.g., Bloom Filter [6],cut-and-choose [24], Circuits-based tech-
niques [25, 26], and Oblivious Transfer (OT) [8,27-29]). Unfortunately, these two-party setting so-
lutions are seemingly infeasible with low capability clients since multiple interactions would incur an
extreme computation cost. So a large body of works under server-aided setting for PSI were introduced
(e.g.,[7,10,11,16-19,30,31]).

Server-aided PSI Mode. In the Server-aided mode, two parties with weak computation capability in
the protocols can outsource their storage and intersection computation to an aided server, and the server
returns the intersection results without learning any additional private information of each parties. A
branch of works (e.g., [7,31,32]) used homomorphic encryption to outsource the encrypted datasets
and delegate the intersection operations to the server. Woefully, the lower efficiency of homomorphic
encryption prevents these schemes from performing on a large scale dataset (e.g., billion set size). In
order to get a higher efficiency, [10, 16, 18] leveraged Pseudo-Random Functions with no public-key
operations. Moreover, an effective data structure, Bloom Filter, is also utilized to do set operations
in variety of work [16, 19, 33,34]. Unfortunately, as illustrated in Section 1, multiple interactions
with complex operations make these solutions infeasible for a very large-scale set. [30] proposed a
fine-grained access control private set intersection (PSI) scheme with non-interaction, while due to the
inefficiency of the attribute-based encryption, this scheme is unable to scale to the PSI computation
over billion size sets. In terms of efficiency, [10] is a quite feasible solution, but it cannot minimize
privacy disclosure because the set/intersection size will be leaked to the server. In this paper, we focus
on designing an efficient and secure protocol via leveraging Bloom Filter and lightweight symmetric
deterministic encryption, which can also preserve the set/intersection size from leaking to the aided
server.

3. Definitions

3.1. System definition

Three entities are consisted in our server-aided PSI system model: Alice, Bob, and an aided
server (the fog/cloud server), where two clients Alice and Bob can engage in a computation of set in-
tersection by the assistance of an un-fully trusted server without leaking any extra private information.
Specifically, each client, Alice and Bob, holds a secret set respectively, denoted as S 4 and S 3. Before
conducting the set intersection, two clients encrypt their original sets respectively and outsource them
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to the aided server. Then, the server is delegated to compute the intersection over two encrypted sets of
S 4 and S p without gaining any more private information, and finally outputs the private set intersection
of S4 N Sp to Alice and Bob. For that, we aim to build a more efficient solution with leaking minimal
privacy to the server and saving more computation cost of two clients, and we formalize our security
model as follows.

3.2. Security definition

Similar to the related works (e.g., [6, 10]), we also consider two different models of adversaries,
including the semi-honest and malicious adversaries, and only one of the parties can be corrupted with
an adversary at the same time. Specifically, a semi-honest adversary can execute the protocol with the
specified steps honestly, but it curiously records all intermediate computations to derive other parties’
private data; a malicious client would provide a false input to infer extra privacy of the other client,
and a malicious server would arbitrarily deviate from the specified executions in the protocol or temper
with the results of computation, such as deleting or modifying elements of the computed intersection
or even randomly outputting a false result without any calculations.

In addition, we suppose that no collusion is occurred in any two parties in our protocols under
the above two types of adversary model and this non-collusion setting is referred in most previous
protocols (e.g., [10,35]).

Ideal vs. Real. We introduce the general ideal vs. real model like [36] to illustrate the privacy of
our protocols in this paper, which is a common security model of secure multiple computation.

Generally speaking, we assume that there is a fully Trusted Third Party (TTP) and a probabilistic
polynomial-time independent simulator § in the ideal world, they evaluate two parties’ set intersec-
tion through simulating 7. S outputs Ideal§ as its view. While in a real world, the valid participants
and A execute 7 without TTP. In the end of the execution, A outputs Real?; as its view. The pro-
tocol & is secure only if the views for any adversary in the real and ideal world are computationally
indistinguishable.

Assuming there is no collusion occurred in our executions, for the security parameter 4, all feasible
inputs X, randomness Z, and each i € {1, 2, 3}

(ldeal?(1: )~ (Reall2(1: ) _

AeN <

where “ ~ ” indicates computational indistinguishability [36].

Table 1. Notations.

Notation Description

A, sk A represents security parameter and sk is the secret key for encryption
n,m n is number of elements in the set and m is length of Bloom Filter

k k 1s the number of hash functions in Bloom Filter

p p 1is false positive probability generated from Bloom Filter

n m is a pseudo-random permutation

DE DE is lightweight symmetric deterministic encryption algorithm

BF BFs represents the Bloom Filter of set S

SA4.Sa S 4 and S p represent the datasets of two clients Alice and Bob respectively
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4. Preliminaries

To achieve a better efficiency, we adopt an effective data structure in this paper, namely Bloom
Filter. In addition, we use a lightweight symmetric deterministic encryption to encrypt the original
datasets, and to preserve the position privacy, a pseudo-random permutation is also introduced in our
protocols. Moreover, for better readability, we first describes some main mathematical notations re-
ferred to in this paper in Table 1.

4.1. Bloom Filter

Bloom Filter, a simple space-efficient randomized data structure, supports fast membership testing
in a set. A Bloom Filter of set S is an array with certain length m, denoted as BF's, which is generated
as in Figure 1.

e Init(H, m, k): It initializes
BFs[0]=0,--- ,BFs[m—1] =0,

and chooses k hashes independently
ho,hi, -+ ey {0, 1} > {0, 1, -+ ym — 1}

e CreatBF(S): For inserting a value s € S into BFy, it computes k hash values for each 4; (0 < i < k) and then
sets
BFslho(s)] = 1,--- , BFs[h-1(s)] = 1.

If BF5[j] = 1 before, no operation is done. The above process is repeated until all elements in S are added into
BFg.
e Query(s, BFs): To test if the element s € S, s is hashed with k hash functions 4; (0 < i < k) respectively, and if

BFs[ho(s)] =0V ---V BFg[h_1(s)] =0,

sisnotin S. Else s € S.

Figure 1. Generation of Bloom Filter for a set.

Note that, it sometimes occurs false positive in Bloom Filter, meaning that it is possible that s is
not in S, while all BFs[h;(s)] =1 (0 <i < k). The probability of false positive p can be computed as:

p= (1= (= )~ (1=, @)

According to [6], given a particular false positive probability p, Bloom Filter length is at least
m > —nlog, e - log, p. It is obviously that the probability of false positive and Bloom Filter length are
negative correlation. Therefore, to maintain a better accuracy and efficiency, we set m = —nlog, e -
log, p in this paper.

4.2. Deterministic encryption

In a symmetric deterministic encryption (DE) cryptosystem [37], a same original plaintext would
be encrypted to a same ciphertext [37], and thus it can be used to do equality checking or membership
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testing over encrypted data [10]. We generally state DE = {KeyGen, Enc, Dec} as follows,

o sk «— KeyGen(1%): for security parameter A, return secret key sk € K.
o ¢ «— Enc(sk,d): for secret key sk and plaintext d € M, return ciphertext c.
o d «— Dec(sk,c): for secret key sk and ciphertext ¢ € C, return plaintext d.

Here, KeyGen is a probabilistic algorithm while Enc and Dec are deterministic for equality check-
ing in our protocols.

4.3. Pseudo-random permutation

Suppose that F is an efficient pseudo-random permutation, then for all probably distinguishers D
and a random S-bit permutation functions fz, there exists a negligible &(-) such that:

| Pr[DFa(-),F;'(-)(lﬁ) =1]- Pr[Dfﬁ(')’f,B_](')(lﬁ) = 1] I< &(B),

where o & {0, 1.

Especially, to preserve the element’s positions in the Bloom Filter, we introduce 7 : [|S|] — [|S]]
as a pseudo-random permutation in this paper. That is to say, 7(S) permutes the real positions in Bloom
Filter, which is denoted as

n(S) = {sxlsi € S}.

5. Our protocols

Here, two protocols are proposed to compute the private set intersection with the assistance of
an aided server. More specifically, each client firstly generates a Bloom Filter BF'; (j € {A, B}) of the
corresponding § ;, and then encrypts BF; with DE and sends it to the server. Finally, the aided server
performs equality test on the encrypted Bloom Filters. Since there exist only two different values (i.e,
0 or 1) in the Bloom Filters, to keep the computation correct, we encrypt BF[i] with different cases,

Clil :{ Enc(sk, i|BF[i]), if BF[i] =1, 5.1

Enc(sk, rj||BF[i]), otherwise,

where r; (i € {0, 1,--- ,m — 1}) is randomly chosen from message domain M, and denotes concate-
nation. Then we can obtain the ciphertext of Bloom Filter as C = {C[1], C[2],--- ,C[m — 1]} based on
Eq (5.1).

G‘”’,

5.1. Protocol I under semi-honest model

In Protocol I, the server is honest-but-curious about inferring the private information of other
parties with a record of the intermediate computations. More details are described in Figure 2.

Then we analyze the correctness and security of our Protocol I. The correctness is obvious, for
Vi, i€{0,1,--- ,k— 1}, Calhi(a)] = Cplhi(b)], a € S4, b € S p, since the encryption algorithm DE is
deterministic, we have BF4[h;(a)] = BFg[h;(b)], and then h;(a) = h;(b), thatis a = b.

In case of security, our Protocol I is secure under a semi-honest server or a malicious client without
distinguishing the views of ideal and real world. Then we formalize it as follows:
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Initialization: Given DE = (KeyGen, Enc, Dec), and Alice and Bob have their inputs sets S 4 and S p respectively.
1. Alice (Bob) initializes a blank bloom filter with Init(H, m, k) as shown in Fig 1 and runs
BF, < CreatBF(S,), BF g < CreatBF(S p),

to build m-bits BF 4 for S 4 and BF g for S p respectively. Here the hash functions H : hg, hy,- - , hi—; and the
parameters m, k for creating bloom filters are public.
2. Alice (Bob) encrypts BF4 and BFp as

C, < DE.Enc(sk, BF,),Cp < DE.Enc(sk, BFp),

based on Eq (5.1). Then, each client permutes C4 and Cp with T4 = n(C4) and T = n(Cp), and finally sends
T4 and T to Server.
3. Then Server conducts, for Vi € {0, 1,--- ,m — 1},

Tali] = Tylil,

then outputs the indexes I = {i|T4[i] = Tp[i]} to Alice and Bob respectively.
4. Alice (Bob) calculates the intersection for Bloom Filter

BFs,ns, = {BFs,ns,lil = 1li € n7 (D)}

Alice and Bob both get S4 N S p by running Query(S ;, BFs,ns,) for j € {A, B}.

Figure 2. Details for protocol I under semi-honest model.

Theorem 1. Since the pseudo-randomness for permutation function m and DE, our Protocol I is secure
if: 1) with a semi-honest server and two honest clients, no extra information is revealed to the server;
2) with a honest server and one of malicious clients, no extra private information is leaked to the other
client.

Proof. Recall that, in order to prove security against an adversary A corrupting the semi-honest server
and attempting to get more private information of the input sets, we need to construct a simulator S
in the ideal-world to simulate the server’s behavior in the real-world executions with the honest Alice
and Bob. Our Protocol I is secure if the joint distribution of the view generated by (A in the real-world
is distinguishable from the view of S in the ideal-world executions.

It is clear to see that the only information that the simulator S obtains in the ideal-world executions
is the encrypted Bloom filters C, = DE.Enc(sk, BF4) and Cy = DE.Enc(sk, BFg). Then, S computes
Cs N Cp and finally returns the computed result to the adversary ‘A. With the pseudo-randomness
of DE encryption, A cannot discriminate these ciphertexts from the real and ideal world. The only
difference between the view of S and the adversary (A is the length of the returned intersection result.
However, this length is randomly distributed in [0, m] (m is bloom filter length.), which guarantees
that A cannot distinguish it from the real world and the ideal world. Additionally, due to the private
permutation function &, A is unable to guess the real bit positions of the intersection in the Bloom
filter. Therefore, there is no way to obtain any elements in the intersection via brute-force attack based
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on the intersection Bloom filter C4 N Cp.

Note that, from the aspect of the clients, the only information obtained by both two is the last
intersection which is exactly what they should know. Therefore, each client obtains no extra private
information of the other one in the above protocol.

5.2. Protocol Il under malicious model

Our Protocol I shown in above is proven to be secure under a semi-honest model, where the server
always runs the protocol and outputs the result honestly. Unfortunately, such assumption can not satisfy
the actual requirements since the server sometimes could perform cheating in practice to make more
profits or save computational expands with economically-driven nature, such as returning a random
results with no computation or an incorrect intersection after computation to both clients without being
detected.

Moreover, the server somewhat may conjecture the intersection size via the intersection Bloom
Filter in our Protocol I, which is private information in some situations. To solve this problem, we
present our second protocol with adding a checking mechanism over our Protocol 1. Concretely, given
the original sets S 4 and S g, Alice negotiates S to S, with Bob privately, and they get D4y = S 4US (US|
and Dg = SgUS(US; respectively. Then, Alice, Bob and the server compute the dummied intersection
of D4 and Dg by running Protocol I, and finally Alice and Bob gain the original S 4 NS 5 via deducting
S from dummied intersection returned by the server. Here, with a short shared random seed, we can
leverage a pseudorandom generator to effectively generate three disjoint dummy sets mentioned above,
which can not only reduce time overhead compared to directly agreeing on these dummy sets and also
maintain the randomness of them. Our Protocol II is illustrated as shown in Figure 3.

Initialization: Given DE = (KeyGen, Enc, Dec), and Alice and Bob have their inputs sets S 4 and S p respectively,
and with out of generality we assume that |S 4| = |Sp| = n and S4, S5 € D CE, and E is data space. The secret key sk
used for encryption is generated via DE.KeyGen(14) and secretly shared with Alice and Bob. r is beforehand shared

between two clients as a secret random permutation.

1. Alice randomly selects S¢,S 1,82 € D’ C E as dummy sets, and secretly shares them with Bob, where |S | =
IS 1] = |S2| = ¢ (For simplicity, suppose three sets are with same length #.) and D’ N D = @.
2. Alice (Bob) respectively produces the dummied sets as

Dy=S,USyUS,, Dp=SpUSyUS,.

3. Alice, Bob and Server firstly run Protocol I to get DI = D4 N Dp.
4. Alice (Bob) verifies: if
SoSDHA(S;NDI=0),icl,2,

the intersection is S 4 NS5 = DI — S; Else, aborts.

Figure 3. Details of Protocol II under malicious model.

The correctness of Protocol II can be easily verified as the Protocol 1. Next, we define its security
as follows:
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Theorem 2. Our Protocol Il is secure under the following cases: 1) with a malicious server deceiving
the honest users during the protocol, which can be detected with a very high probability; 2) with a
malicious client, no extra private information can be inferred to this malicious client.

Proof. Firstly, similar to the proof of Theorem 1, suppose that there is a malicious adversary A cor-
rupting the server to execute the protocol and try to obtain as much as private information of both two
clients’ inputs. The view of A in the execution includes the ciphertexts of the bloom filters for two
dummied sets D4 and Djp, and the approximate size of D4 N Dg. As the pseudo-randomness of DE,
A cannot get any extra privacy belonging to the input sets. With the computed intersection result of
two dummied encrypted Bloom filters, the adversary would not infer any private information of the
real intersection S 4 N § 3. Specifically, A can approximate the size of D4 N Dy from its view in the
executions. However, the server is unable to obtain the size of S 4 NS g unless it can correctly guess the
size of dummy set S . Unfortunately, the size of S is randomly chosen from a large domain, and thus
the adversary has only a negligible probability to correctly guess it in polynomial time. Therefore, our
Protocol II can successfully preserve the intersection size from the malicious server.

Another advantage of Protocol II is that it can prevent a cheating server from removing or adding
element into the computed intersection or a lazy server from returning a random result without compu-
tation. Specifically, by adding the dummy sets, the intersection result DI = D4 N Dpg is impossible to
be empty due to the existence of S and also impossible to be an entire set of one of the sets D4 or Dy
since neither S nor S, should be contained in the intersection, so the server is not able to arbitrarily
return an empty intersection or a whole set from D4 and Dg without detection. Furthermore, it also can
guarantee that the server cannot remove or add some elements into the intersection, because it needs
to make sure that the intersection set includes all the elements in S while all the elements in S or
S» must be not in the intersection. Therefore, we can easily know that the probability of a lazy server
randomly returning a result without detection is (#ZI (1 - #ﬂ)z’(n is the size of original sets and ¢
is size of dummy sets), which would almost trend to zero with a large n and a suitable . What’s more,
for a cheating server, according to [10], the security can be significantly increased against a malicious

server by choosing suitable parameters.

For the case of one client being corrupted with a malicious adversary A (Without loss of gener-
ality, suppose Alice is corrupted with A, which is able to provide arbitrary inputs.), A is unable to
learn any extra private information of the other client Bob. Specifically, the most powerful malicious
behavior of A with arbitrary input is that it sets all bits of the Bloom filter to be 1, thus the result
returned from the server would contain all the elements provided by Bob, including the dummy set S ,.
However, even if Alice recovers all the elements based on the intersection Bloom filter, he/she is still
unable to decide which elements should be contained in Bob’s private set since S, is also included in
the recovery set, unless via two times executions of the protocol with the same S,. While Bob can
detect such malicious behavior with checking whether S, is contained in the intersection once receiv-
ing the intersection Bloom filter, and stops carrying out the private set intersection with Alice if so.
Therefore, A cannot gain extra private information of Bob with the above malicious case.

Note that, the intersection size is not leaked to the server since the size of dummy set S is secret
only known to both two clients. That is to say, our Protocol II achieves the intersection size-hiding
from the server.
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5.3. Enhanced Efficiency with Multi-Round Executions

Since there exits a false positive probability in the Bloom Filter used in our protocols, two clients
may recover a different intersection by running Query(BFs,ns,) at the end of two protocols. Based
on Eq (4.1), we observe that the accuracy of the intersection is higher with the increasing of Bloom
Filter length m, while it would lead to lower efficiency with more computation and storage overhead.
To leverage a better efficiency and accuracy, we present a multi-round mechanism to achieve a higher
efficiency with a desired accuracy, and our two basic protocols in this paper can be regarded as one-
round protocols. Intuitively, we assume that p; is the false positive probability and m; is the Bloom
Filter length of i-th round, then

m=my+m+---+mg,
(5.2)
p = pl . p2 ..... pT’
where 7 denotes total rounds in the multi-round algorithm, and m; = —nlog, e-log, p; i € {1,--- ,7}). m

is the total length of all the Bloom Filters used in the multi-round algorithm and p is the final achieved
false positive probability. As shown in Algorithm 1, we introduce that Optimal(p;) is the most optimal
false positive of i-th round, thoroughly guaranteeing a shortest Bloom Filter length m as illustrated in
Eq (5.2).

The security of Algorithm 1 follows the security of two basic protocols in this paper since the
main step of Algorithm 1 is step 5. With the following experimental implementations, the results show
that the multi-round executions significantly enhance the performance of our two basic protocols.

Algorithm 1 Multi-Round-PSI (A, B)
Require: Alice and Bob input private sets A and B respectively, and for simplify, suppose|A| = |B| = n. p is the desired

false positive probability in the protocol. Here we initialize p’ = 1 and j = 0.

Ensure: The output of the set intersection: (A N B, A N B).

I j++
pj = Optimal(p);
mj = -nlog,e-log, p;;
p=r-pp
call Protocol I or II stated above and obtain A; = {a|la€ ANa€ANB}L,Bj={b|be BAbeANBJ;
if (p’ <= p) then

return (A;, B));

else

Multi-Round-PSI (A, B));
end if

R AN i

—
=4

6. Performance evaluation

6.1. Efficiency of Protocol I and 11

To evaluate the performance of our protocols, we set the experimental environments as: two clients
run on Linux operating system, 12GB RAM and 8 vCPUs; and the server runs on Linux operating
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system, 8 vCPUs and 14GB RAM. We use Java language to implement our protocols, and leverage
Crypto++ library and AES-ECB mode with 128-bit security to realize our cryptographic operations

with Deterministic Encryption. Furthermore, to get more efficiency, we adopt MDS5 * to construct
Bloom Filters.

Table 2. Average execution for our two basic protocols, where set size is from 10 thousand to
100 million in pipeline and parallel modes. ms is milliseconds and s is seconds. We perform
10 times testing for average value for set sizes in the table.

Set Size Pipeline Time Parallel Time

Protocol I Protocol 11 Protocol I Protocol 11
10K 765(ms) 1.19(s) 175(ms) 268(ms)
100 K 7.9(s) 13.1(s) 1.61(s) 2.49(s)
1M 76(s) 119(s) 13(s) 22.3(s)
10M 789(s) 1,167(s) 129(s) 218(s)
100 M 7,984(s) 11,108(s) 1,326(s) 2,101(s)

In the following part, we evaluate the performance of our protocols in the pipeline mode and par-
allel mode as described in [6]. Specifically, all computation on each side is executed in a single thread
under the pipeline mode, while in the parallel mode, multiple threads are used to perform the protocols
simultaneously on multiple CPUs. The experimental results given below show that the performance can
be critically enhanced under the parallel mode with multi-core machines since all dominating compu-
tations in both two protocols, including constructing and encrypting the Bloom Filters, and performing
equality checking over the encrypted Bloom filter, can be executed simultaneously in parallel.

1300

T T
—6&— Protoocl |
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500 : :
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Figure 4. The performance for our protocols with the false positive probability p ranging

from 1077 to 107!, where the size of data set n = 1.0 x 10”.

Table 2 presents the average execution time of our two basic protocols for the set size varied from
10 thousand to 100 million. To guarantee the correctness and efficiency of our Protocol II, we set the
size of the dummy sets to be n/2 and a feasible false positive probability to be 1/n, where n is the

*MDS guarantees a sound accuracy in most situations, and it is enough in our works and can be replaced to SHA-1 if needed.
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size of original set. Experimental results show that our setting of false positive probability 1/n may
ensure a good accuracy, and the efficiency of both two protocols can be boosted via performing on the
parallel mode. For instance, when considering one million set size, our two protocols cost 79 seconds
and 123 seconds in the pipeline mode, while in parallel mode, both two can be respectively reduced to
15 seconds and 24.3 seconds in average.

To verify the relation of false positive probability p and performance for our protocols, we set
dataset size n = 1.0 x 107 and p varying from 1077 to 10~!. As shown in Figure 4, it is clear to see that
the execution time linearly decreases with the increase of the false positive probability which indicates
a lower accuracy. This is consistent with our theoretical analysis in Subsection 4.1.

6.2. Enhanced efficiency of multi-round algorithm

For simplify, we just verify a two-round mechanism over our two basic protocols since all multi-
round (more than two rounds) protocols can be easily realized with a two-round block. Suppose that
m; and m;, are the Bloom filters length in this two-round algorithm respectively, and p, and p, are the
corresponding false positive probability. Based on Eq (5.2), we can get

{m = my + my, (6 1)

P = P11 D2,

where m; = —nlog, e - log, p;, (i € {1,2}). Then, with a desirable p in Eq (6.1), the optimal p; can be
easily computed and can also get the minimum m:

m = —nlog, e(log, pi + (B + p1) log, f), (6.2)
1

where § = ‘SAnsBl ,and p < p; < 1.

Table 3. The optimal value of p; for the minimal m in our two-round algorithm, where the
size of datasetn = 1.0x 107, p = 1.0x 1077, and 8 = 'SAOSBl varying from 0.1 to 0.9 with step
0.2.

Intersection ratio 8 0.1 0.3 0.5 0.7 0.9
Optimal false positive probability p; 0.062 0.049 0.036 0.022 0.008
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Figure 5. Performance for two basic protocols and two-round protocols over 10 million set
size under pipeline mode, where the size of the data set n = 1.0 x 107, the false positive
probability p = 1.0 X 1077, and the intersection size ratio 3 varies from 0.1 to 0.9 with step
0.2. P-1-One and P-2-One represent our basic Protocol I in Figure 2 and Protocol II in
Figure 3 respectively, which are also regarded as one-round protocols. The basic Protocol 1
and Protocol II with two-round setting is represented as P-1-Two and P-2-Two respectively,
which are named as two-round protocols.

Table 3 lists the optimal false positive probability p; in the first round computed from Eq (6.2)
with 8 ranging from 0.1 to 0.9 with step 0.2, where n = 1.0 X 10" and p = 1.0 x 1077, Through our
implementation, the experimental results are almost consistent with the theoretical results in Table 3.
Next, we verify the efficiency of our two-round algorithm with these optimal parameters under the
pipeline mode.

We can observe that the two-round protocols execute almost twice more efficient than one-round
setting in average in Figure 5. Specifically, given a 10 million set size, our Protocol I under one-round
protocol requires at least 13 minutes, while it only needs less than 7 minutes in the two-round setting.
Note that, it is clear to see that the execution time in our two-round protocol linearly increases with 3,
which is the ratio of intersection size to the original set size; the output intersection of the first round in
our two-round protocol is the input of the second round execution, and thus the efficiency of the second
round is linear to 8. However, two-round setting still runs more efficient than one-round setting even
though in the worst case 8 = 0.9 (Actually, S would not be very high in most applications.), as shown
in Figure 5. Furthermore, we can also deeply optimize the performance for two-round setting with a
parallel mode, and make our protocols more scalable to large datasets.

Additionally, we compare the efficiency of our enhanced protocols with the server-aided PSI pro-
tocols in [10]. According to [10], we can observe that it costs around 7s for the basic protocol SHPSI
and 82 s for the enhanced protocol SizePSI over 10 million set size under a parallel mode with 100-
threads. For the efficient of our protocols, as stated above in Figure 5, our Protocol I and Protocol II run
around 400 and 600 s in average respectively under pipeline mode with one thread. It is obviously that
our Protocol II has significant efficiency improvements over SizePSI in [10] after the same acceleration
of parallel mode with 100-threads.
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7. Conclusions

In this paper, we present two enhanced secure and efficient PSI protocols with assistance of an
aided server (a fog/cloud server) by leveraging Bloom Filter technique and lightweight symmetric
deterministic encryption. Especially, our Protocol II is able to hide the size of the set/intersection from
leaking to the server via adding dummy sets, and also can improve security against a malicious server
with modifying the computed intersection or randomly returning a false result. Our novel multi-round
mechanism can significantly enhance efficiency of the basic protocols with maintaining a desirable
accuracy, and it is quite feasible to the practical application.
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