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Abstract: In order to study the impact of limited medical resources and population heterogeneity on
disease transmission, a SEIR model based on a complex network with saturation processing function
is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which
means that R0 < 1 is not enough to eradicate this disease from the population. However, if the direction
is positive, we find that within a certain parameter range, there may be multiple equilibrium points
near R0 = 1. Secondly, the influence of population heterogeneity on virus transmission is analyzed,
and the optimal control theory is used to further study the time-varying control of the disease. Finally,
numerical simulations verify the stability of the system and the effectiveness of the optimal control
strategy.
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1. Introduction

Many practical problems in the real world can be abstracted into complex network models for
research. For example, the spread and control of epidemics, the spread of computer viruses in the
Internet, and the spread of rumors can all be regarded as spreading behaviors that obey a certain law
on a complex network. At present, there have been many research results on the spread and control of
epidemics on complex networks. For related research reports, see references [1–23].

In classical epidemic-disease dynamics models, it is generally assumed that the rate of treatment
for a disease is proportional to the number of infected persons. This means that medical resources
such as drugs, vaccines, hospital beds and isolation facilities are sufficient for the epidemic. In reality,
however, every community or country has adequate or limited capacity for treatment and vaccination.
If too much medical resources are invested, social resources will be wasted. If fewer resources are
put into care, the risk of disease outbreaks increases. Therefore, it is important to identify different
capacity for treatment depending on the community or country.
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In order to investigate the effect of the limited capacity for treatment on the spread of infectious
disease, references [24, 25] established an infectious disease model under a discontinuous treatment
strategy. Wang et al. considered the following segments of treatment functions in the literature [25]

h(I) =

 kI, 0 ≤ I ≤ I0

kI0, I > I0

where k is the cure rate and I0 is the maximum capacity of the medical system. In other words, when
the number of patients is small and does not exceed the maximum capacity of the medical system,
the treatment rate is proportional to the number of patients.When the number of patients exceeds the
maximum capacity of the medical system, the treatment rate of the disease is a constant constant.
reference [26], Zhang and Liu introduced the following saturation processing functions:

h(I) =
rI

1 + αI

where r is the cure rate, α is used to describe the impact of delayed treatment of a person with an illness
in a situation where medical care is limited. Related studies on the function of saturation therapy are
reported in references [27–30].

This paper proposes a SEIR model with a saturated processing function based on a complex
network. We will analyze the influence of the heterogeneity of the population on the spread of the
virus, and use the advancement of optimal control theory to study the time-varying control of
infectious diseases.

The organization structure of this article is as follows. In Section 2, we propose a network-based
SEIR model with saturation processing function. In Section 3, we analyzed the dynamics of the model.
In Section 4, we study the bifurcation behavior of the model. In Section 5, we study the optimal control
problem. Finally, in Section 6 and Section 7, we give the results of the numerical simulation and
summarize the paper.

2. The model

In this section, we propose a network-based SEIR epidemic model with saturation treatment
function. Then we use the SEIR epidemic model to prove the positivity and boundedness of
understanding.

In the classic compartmental model, each individual has the same probability of contact with an
infected individual. However, when the population is large, it is generally believed that factors such
as exposure heterogeneity should be considered. Therefore, a complicated network is added to the
infectious disease model to describe contact and so on. In a complex network work, each individual
corresponds to a node of the network, and the interaction between two individuals corresponds to a
link between two nodes.

On the basis of reference [31], we consider the following network-based SEIR epidemic model.
The flow diagram of the state transition is depicted in Figure 1.

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1677–1696.



1679

Figure 1. The flowchart of email virus spreading.

The dynamic equations can be written as

dS k(t)
dt

= π − βkS k(t)θ(t) − µS k(t),

dEk(t)
dt

= βkS k(t)θ(t) − pβkEk(t)θ(t) − (µ + δ)Ek(t),

dIk(t)
dt

= pβkEk(t)θ(t) + δEk(t) −
rIk(t)

1 + αθ(t)
− (µ + γ)Ik(t),

dRk(t)
dt

=
rIk(t)

1 + αθ(t)
+ γIk(t) − µRk(t)

(2.1)

The explanation of the parameters is the same as in reference [31]. θ(t) describes a link pointing
to an infected node, which satisfies the relation θ(t) = 1

〈k〉

∑
k

kp(k)Ik(t), p(k) is a degree distribution,

〈k〉 =
n∑

k=1
kp(k) describes the average degree. Here, we assume that the connectivities of nodes in

network at each time are uncorrelated.
rIk(t)

1+αθ(t) represents the recovery of the k-th infection group after treatment.

g(θ) = 1
〈k〉

n∑
h=1

hP(h) rIh(t)
1+αθ(t) =

rθ(t)
1+αθ(t) represents the probability that a given edge is connected to an

infected node that is recovering through treatment. Similar to the processing function given in reference
[26], g is a saturation processing function.

In the following cases, we make the following assumptions: (i) all new births are susceptible; (ii)
the total number of nodes is constant, and the number of deaths is equal to the number of births, so
π = µ; (iii) assume that the degree of each node is time-invariant.

Nk is a constant, stands for the number of nodes with degree k. Then Nk = S k + Ek + Ik + Rk, k =

1, 2,∆∆∆, n and
∑
k

Nk = N.

For the practice, the initial condition for model (2.1) satisfy:
0 ≤ S k(0), Ek(0), Ik(0),Rk(0),≤ Nk,

S k(0) + Ek(0) + Ik(0) + Rk(0) = Nk,

k = 1, 2, · · · , n
(2.2)

The probability 0 ≤ θ(t) ≤ 1 describes a link pointing to an infected host, which satisfies the relation

θ(t) =
1
〈k〉

∑
k

kP(k)Ik(t), (2.3)
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At t time, the global ensity is

S (t) =

n∑
k=1

P(k)S k(t), E(t) =

n∑
k=1

P(k)Ek(t), I(t) =

n∑
k=1

P(k)Ik(t), R(t) =

n∑
k=1

P(k)Rk(t)

Because
d(S k(t) + Ek(t) + Ik(t) + Rk(t))

dt
= 0

For the sake of convenience. it is assumed that the system has been normalized, so there are S k(t) +

Ek(t) + Ik(t) + Rk(t) = 1, So the positive invariant set of system (3.1) is

Ω = {(S k(t), Ek(t), Ik(t),Rk(t)) : S k(t) > 0, Ek(t) ≥ 0, Ik(t)) ≥ 0,

Rk(t) ≥ 0, S k(t) + Ek(t) + Ik(t) + Rk(t) = 1}

3. Global behavior of the model

3.1. Equilibria and basic reproduction number

Lemma 1. Suppose that S k(t), Ek(t), Ik(t),Rk(t) is a solution of model (2.1) satisfying initial conditions
of Eq.(2.2). Then Ω = {(S 1, E1, I1,R1 · · · , S n, En, In,Rn) : S k ≥ 0, Ek ≥ 0, Ik ≥ 0,Rk ≥ 0, S k + Ek + Ik +

Rk = 1, k = 1, 2, · · · , n} is a positively invariant for model (2.1).

Proof. First, we proved that Ek(t) ≥ 0 for any t > 0. If not, as Ek(0) > 0, there exist k0 ∈ {1, 2,∆∆∆, n}
and t∗ such that t∗ = inf{t|Ek0(t) = 0, Ėk0(t) < 0}. On the hand, according to the definition of t∗, we have
Ek0(t

∗) = 0, Ėk0(t
∗) < 0 and Ek0(t) > 0 for 0 ≤ t < t∗. From the second equation of model (2.1) , we

obtain Ėk0(t
∗) = βk0λS k0(t

∗)θ(t∗) < 0, which leads to S k0(t
∗) < 0. On the other hand, in the time interval

[0, t∗], from the first equation of model (3.1) , we have Ṡ k0(t) ≥ −βkS k0(t)θ(t) − µS k0(t), which implies
S k0(t) ≥ S k0(0)e−βkθ(t)−µ ≥ 0 for 0 ≤ t ≤ t∗. In particular, it follows S k0(t

∗) ≥ 0. It is a contradiction, so
Ek(t) ≥ 0 for any t > 0. Using the same method, we can verify S k(t) ≥ 0, Ik(t) ≥ 0 and Rk(t) ≥ 0 for
any t > 0.

The proof is complete. �

Theorem 1. Basic reproduction number of system (2.1) is R0 =
βδ

(µ+δ)(r+µ+γ)
〈k2〉

〈k〉 . If R0 < 1, the system
(2.1) has only virus-free quilibrium ; if R0 > 1, then system (2.1) has endemic equilibrium.

Proof. Assuming that E = (S 1, E1, I1,R1, · · · , S n, En, In,Rn) is the unique balance of system (2.1), then
E should satisfy

The equilibria of system (2.1) are determined by setting

βkS kθ − pβkEkθ − (µ + δ)Ek = 0,

pβkEkθ + δEk −
rIk

1 + αθ
− (µ + γ)Ik = 0,

rIk

1 + αθ
+ γIk − µRk = 0,

S k + Ek + Ik + Rk = 1, k = 1, 2, · · · , n

(3.1)
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After calculation, there is

S k =
1
βkθ

(pβkθ + µ + δ)
1

pβkθ + δ
(

r
1 + αθ

+ µ + γ)Ik,

Ek =
1

pβkθ + δ
(

r
1 + αθ

+ µ + γ)Ik,

Rk =
1
µ

(
r

1 + αθ
+ γ)Ik,

{
pβkθ + µ + δ

βkθ(pβkθ + δ)
(

r
1 + αθ

+ µ + γ) +
1

pβkθ + δ
(

r
1 + αθ

+ µ + γ)

+ 1 +
1
µ

(
r

1 + αθ
+ γ)}Ik = 1

(3.2)

This implies that

Ik =
βkθ

pβkθ+µ+δ

pβkθ+δ ( r
1+αθ

+ µ + γ) +
βkθ

pβkθ+δ (
r

1+αθ
+ µ + γ) + βkθ +

βkθ
µ

( r
1+αθ

+ γ)
(3.3)

Substituting Ik into system (2.3), we have

θ =
1
〈k〉

n∑
h=1

hP(h)Ih

=
1
〈k〉

n∑
h=1

hP(h)
βhθ

pβhθ+µ+δ

pβhθ+δ ( r
1+αθ

+ µ + γ) +
βhθ

pβhθ+δ (
r

1+αθ
+ µ + γ) + βhθ +

βhθ
µ

( r
1+αθ

+ γ)

(3.4)

θ[1 − 1
〈k〉

n∑
h=1

βh2P(h)
pβhθ+µ+δ

pβhθ+δ ( r
1+αθ+µ+γ)+ βhθ

pβhΘ+δ ( r
1+αθ+µ+γ)+βhθ+ βhθ

µ ( r
1+αθ+γ)

] = 0

Define
F(θ) = 1 − 1

〈k〉

n∑
h=1

βh2P(h)
pβhΘ+µ+δ

pβhθ+δ ( r
1+αθ+µ+γ)+ βhθ

pβhθ+δ ( r
1+αθ+µ+γ)+βhθ+ βhθ

µ ( r
1+αθ+γ)

Because

F(1) > 1 −
1
〈k〉

n∑
h=1

βh2P(h)
βh

= 0

and F is continuous on [0, 1]. According to the intermediate value theorem, if F(0) < 0, then F(θ) = 0
has a positive solution. While

F(0) = 1 −
1
〈k〉

n∑
h=1

βh2P(h)
µ+δ

δ
(r + µ + γ)

< 0

namely

βδ

(µ + δ)(r + µ + γ)
〈k2〉

〈k〉
> 1

Then let R0 =
βδ

(µ+δ)(r+µ+γ)
〈k2〉

〈k〉 . If R0 < 1, the system (2.1) has only disease-free quilibrium E0; if
R0 > 1, then system (1) has endemic equilibrium. �
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3.2. Stability of disease-free equilibrium

Remark 1. One can also obtain the same basic reproduction number by using the method of second
generation matrix [32], where indicates that if R0 < 1, then the disease-free equilibrium E0 of model
(2.1) is locally asymptotically stable; if R0 > 1, then E0 is unstable.

Theorem 2. For system (2.1), if R0 < 1, then the free quilibrium E0 is locally asymptotically stable.

Proof. 1. Since S k + Ek + Ik + Rk = 1 system (2.1) is converted into an equivalent system:

dS k(t)
dt

= π − βkS k(t)θ(t) − µS k(t),

dEk(t)
dt

= βkS k(t)θ(t) − pβkEk(t)θ(t) − (µ + δ)Ek(t),

dIk(t)
dt

= pβkEk(t)θ(t) + δEk(t) −
rIk(t)

1 + αθ(t)
− (µ + γ)Ik(t)

(3.5)

The Jacobian matrix of model (3.5) at disease-free equilibrium J2n×2n is given by:

JE0 =


J11 J12 J13

J21 J22 J23

J31 J31 J33


and

J11 =


−µ 0 · · · 0
0 −µ · · · 0
· · · · · · · · · · · ·

0 0 · · · −µ


J22 =


−(µ + δ) 0 · · · 0

0 −(µ + δ) · · · 0
· · · · · · · · · · · ·

0 0 · · · −(µ + δ)


J33 =


−r − (µ + γ) 0 · · · 0

0 −r − (µ + γ) · · · 0
· · · · · · · · · · · ·

0 0 · · · −r − (µ + γ)


J12 = J21 = J31 ==


0 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·

0 0 · · · 0



J13 =


−β · 11·p(1)

〈k〉 −β · 1 2·p(2)
〈k〉 · · · −β · 1n·p(n)

〈k〉

−β · 21·p(1)
〈k〉 −β · 2 2·p(2)

〈k〉 · · · −β · 2n·p(n)
〈k〉

· · · · · · · · · · · ·

−β · n1·p(1)
〈k〉 −β · n 2·p(2)

〈k〉 · · · −β · nn·p(n)
〈k〉


Mathematical Biosciences and Engineering Volume 19, Issue 2, 1677–1696.
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J23 =


β · 11·p(1)

〈k〉 β · 12·p(2)
〈k〉 · · · β · 1n·p(n)

〈k〉

β · 21·p(1)
〈k〉 β · 22·p(2)

〈k〉 · · · β · 2n·p(n)
〈k〉

· · · · · · · · · · · ·

β · n1·p(1)
〈k〉 β · n2·p(2)

〈k〉 · · · β · nn·p(n)
〈k〉


The characteristic equation of the disease-free equilibrium is

(λ + µ)n(λ + µ + δ)n−1(λ + r + µ + γ)n−1[(λ + µ + δ)(λ + r + µ + γ) − δβ
〈k2〉

〈k〉
] = 0

The eigenvalues of JE0 are all negative when R0 < 1, the disease-free equilibrium E0 of model (2.1) is
locally asymptotically stable when R0 < 1. �

Theorem 3. For system (2.1), Denote R̂0 =
β〈k2〉

( r
1+α+µ+γ)〈k〉 . If R̂0 < 1, then the free quilibrium E0 is globally

asymptotically stable.

Proof. Constructing a lyapunov function:

V =

n∑
k=1

kP(k)
〈k〉
{S k(t) − 1 − lnS k(t) + Ek(t) + Ik(t)}

Deriving the V function along system (2.1),

dV
dt

∣∣∣∣∣
(2.1)

=

n∑
k=1

kP(k)
〈k〉
{S ′k(t) −

S ′k(t)
S k(t)

+ E′k(t) + I′k(t)}

=

n∑
k=1

kP(k)
〈k〉
{(1 −

1
S k(t)

){π − βkS k(t)θ(t) − µS k(t)

+ βkS k(t)θ(t) − pβkEk(t)θ(t) − (µ + δ)Ek(t)

+ pβkEk(t)θ(t) + δEk(t) −
rIk(t)

1 + αθ(t)
− (µ + γ)Ik(t)}

=

n∑
k=1

kP(k)
〈k〉
{π − βkS k(t)θ(t) − µS k(t) −

π

S k(t)
+ βkθ(t) + µ

+ βkS k(t)θ(t) − pβkEk(t)θ(t) − (µ + δ)Ek(t)

+ pβkEk(t)θ(t) + δEk(t) −
rIk(t)

1 + αθ(t)
− (µ + γ)Ik(t)}

=

n∑
k=1

kP(k)
〈k〉

π{1 −
µS k(t)
π
−

1
S k(t)

+
µ

π
}

+

n∑
k=1

kP(k)
〈k〉
{βkθ(t) −

rIk(t)
1 + αθ(t)

− µEk(t) − (µ + γ)Ik(t)}

We now claim that if 0 < S k(t) < 1, the first term is negative. In fact, because of π = µ, we have

1 −
µS k(t)
π
−

1
S k(t)

+
µ

π
= [1 − S k(t)][1 −

1
S k(t)

] < 0

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1677–1696.
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This means
dV
dt

∣∣∣∣∣
(2.1)
≤

∑
k

kP(k)
〈k〉
{βkθ(t) −

rIk(t)
1 + αθ(t)

− (µ + γ)Ik(t)}

=
β〈k2〉

〈k〉
θ(t) −

rθ(t)
1 + αθ(t)

− (µ + γ)θ(t)

Because 0 < Ik(t) < 1 for all k, we know that 0 < θ(t) < 1. Therefore

dV
dt

∣∣∣∣∣
(2.1)
≤ [

β〈k2〉

〈k〉
−

r
1 + α

− (µ + γ)]θ(t)

= (
r

1 + α
+ µ + γ))(R̂0 − 1)θ(t)

If R̂0 < 1, dV
dt

∣∣∣
(2.1)
≤ 0. The equation holds if and only if Ik(t) = 0. For the limit system E′k(t) =

−(µ+ δ)Ek(t), it is easy to see that lim
t→+∞

Ek(t) = 0, For the limit system R′k(t) = −µRk(t), it is easy to see
that lim

t→+∞
Rk(t) = 0.Finally, from S k(t)+Ek(t)+ Ik(t)+Rk(t) = 1, we get lim

t→+∞
S k(t) = 1. According to the

LaSalle invariant principle, E0 is globally attractive. Combining the locally asymptotically stability,
we conclued that the free quilibrium E0 is globally asymptotically stable. �

We noticed that in Theorem 3, the disease-free equilibrium E0 is globally asymptotically stable only
when R̂0 < 1. In addition, you can see that R0 < R̂0. This prompts us to think about whether the disease
can persist even if R0 < 1.

4. Bifurcation analysis

In this section, we will determine whether there is a backward bifurcation at R0 = 1. More
accurately, we derive the condition for determining the bifurcation direction at R0 = 1. let us find
endemic equilibria. At an endemic equilibrium, we have Ik > 0 for all k = 1, 2, ..., n, which means
θ > 0. From F(θ) = 0, we can see that the unique equilibrium should satisfy the following equation :

1
〈k〉

n∑
h=1

βh2P(h)
pβhθ+µ+δ

pβhθ+δ ( r
1+αθ

+ µ + γ) +
βhθ

pβhθ+δ (
r

1+αθ
+ µ + γ) + βhθ +

βhθ
µ

( r
1+αθ

+ γ)
= 1 (4.1)

The denominator and numerator are multiplied by the quantity δ〈k2〉

(µ+δ)(r+µ+γ+µd)〈k〉 , which can be
expressed by R0 and θ as follows:

1
〈k〉

n∑
h=1

R0h2P(h)
δ〈k2〉

(µ+δ)(r+µ+γ)〈k〉
pβhθ+µ+δ

pβhθ+δ ( r
1+αθ+µ+γ)+ R0hθ

pβhθ+δ ( r
1+αθ+µ+γ+µd)+R0hθ+ R0hθ

µ ( r
1+αθ+γ)

= 1

If the local θ is a function of R0, the sign of the bifurcation direction is the slope at (R0, θ) = (1, 0)
(cf. Figure 2). More specifically, if the derivative is positive at the critical value (R0, θ) = (1, 0), that is

∂θ

∂R0

∣∣∣∣∣
(R0,θ)=(1,0)

> 0

the endemic equilibrium curve diverges forward. Conversely, if the derivative is negative at the critical
value (R0, θ) = (1, 0), that is

∂θ

∂R0

∣∣∣∣∣
(R0,θ)=(1,0)

< 0

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1677–1696.



1685

Figure 2. The left figure shows the forward bifurcation at R0 = 1, where the derivative at
(R0, θ) = (1, 0) is positive. The figure on the right shows the backward bifurcation at R0 = 1,
where the derivative at (R0, θ) = (1, 0) is negative.

the local equilibrium curve diverges backward.
1
〈k〉

n∑
h=1

I1−I2

{
δ〈k2〉

(µ+δ)(r+µ+γ)〈k〉
pβhθ+µ+δ

pβhθ+δ ( r
1+αθ+µ+γ)+ R0hθ

pβhθ+δ ( r
1+αθ+µ+γ)+R0hθ+ R0hθ

µ ( r
1+αθ+γ)}2

= 0

I1 = h2P(h){
δ〈k2〉

(µ + δ)(r + µ + γ)〈k〉
pβhθ + µ + δ

pβhθ + δ
(

r
1 + αθ

+ µ + γ)

+
R0hθ

pβhθ + δ
(

r
1 + αθ

+ µ + γ) + R0hθ +
R0hθ
µ

(
r

1 + αθ
+ γ)}

where

I1| R0=1
θ=0

= h2P(h)
〈k2〉

〈k〉
where

I2 = R0h2P(h){
δ〈k2〉

(µ + δ)(r + µ + γ)〈k〉
[
−µpβh

(pβhθ + δ)2 (
r

1 + αθ
+ µ + γ)

+
pβhθ + µ + δ

pβhθ + δ

−rα
(1 + αθ)2 ]

∂θ

∂R0
+

hθ
pβhθ + δ

(
r

1 + αθ
+ µ + γ)+

[
R0hδ

(pβhθ + δ)2 (
r

1 + αθ
+ µ + γ) +

R0hθ
pβhθ + δ

−rα
(1 + αθ)2 ]

∂θ

∂R0
+ hθ

+ R0h
∂θ

∂R0
+

hθ
µ

(
r

1 + αθ
+ γ) + [

R0h
µ

(
r

1 + αθ
+ γ) +

R0hθ
µ

−rα
(1 + αθ)2 ]

∂θ

∂R0
}

I2| R0=1
θ=0

= h2P(h){−
hpβµ〈k2〉

δ(µ + δ)〈k〉
−

rα〈k2〉

(r + µ + γ)〈k〉
+

h
δ

(r + µ + γ) + h +
h
µ

(r + γ)}
∂θ

∂R0

Substituting R0 = 1 amd θ = 0 into Eq (4.1), we have

1
〈k〉

n∑
h=1

h2P(h)
〈k2〉

〈k〉 − {−
hpβµ〈k2〉

δ(µ+δ)〈k〉 −
rα〈k2〉

(r+µ+γ)〈k〉 + h
δ
(r + µ + γ) + h + h

µ
(r + γ)} ∂θ

∂R0

( 〈k
2〉

〈k〉 )2
= 0
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This yields

1
〈k〉

n∑
h=1

h2P(h)
{−

hpβµ〈k2〉

δ(µ+δ)〈k〉 −
rα〈k2〉

(r+µ+γ)〈k〉 + h
δ
(r + µ + γ) + h + h

µ
(r + γ)} ∂θ

∂R0

( 〈k
2〉

〈k〉 )2
= 1

From this we have

{−
pβµ〈k3〉

δ(µ + δ)〈k2〉
−

rα
r + µ + γ

+
r + µ + γ

δ

〈k〉〈k3〉

〈k2〉2
+
〈k〉〈k3〉

〈k2〉2
+

r + γ

µ

〈k〉〈k3〉

〈k2〉
}
∂θ

∂R0

∣∣∣∣∣∣ R0=1
θ=0

= 1 (4.2)

We can from Eq (4.2) that

∂θ

∂R0

∣∣∣∣∣
(R0,θ)=(1,0)

< 0

⇔ α >
r + µ + γ

r
[
r + µ + γ

δ
+ 1 +

r + γ

µ
−

pβµ〈k2〉

δ(µ + δ)〈k〉
]
〈k〉〈k3〉

〈k2〉2

To conclude, we have the following theorem:

Theorem 4. System (2.1) has backward bifurcation at R0 = 1 if and only if

α >
r + µ + γ

r
[
r + µ + γ

δ
+ 1 +

r + γ

µ
−

pβµ〈k2〉

δ(µ + δ)〈k〉
]
〈k〉〈k3〉

〈k2〉2
(4.3)

where 〈k2〉 =
n∑

h=1
h2P(h), 〈k3〉 =

n∑
h=1

h3P(h).

It can be seen from Theorem 4 that the nonlinear processing function does play a key role in
causing backward bifurcation. More precisely, if α is large enough to satisfy condition (4.3),
backward bifurcation will occur. Otherwise, when this effect is weak, there is no backward
bifurcation.

5. Optimal quarantine control

In order to achieve the control goal and reduce the control cost, the optimal control theory is a
feasible method.

Due to practical needs, we define a limited terminal time. Then, model (2.1) is rewritten as

dS k(t)
dt

= π − βkS k(t)θ(t) − µS k(t),

dEk(t)
dt

= βkS k(t)θ(t) − pβkEk(t)θ(t) − (µ + δ)Ek(t),

dIk(t)
dt

= pβkEk(t)θ(t) + δEk(t) −
rk(t)Ik(t)
1 + αθ(t)

− (µ + γ)Ik(t),

dRk(t)
dt

=
rk(t)Ik(t)
1 + αθ(t)

+ γIk(t) − µRk(t)

(5.1)
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The objective function is set as

J(rk(t)) =

∫ T

0

n∑
k=1

[Ik(t) +
1
2

Akr2
k (t)]dt, (5.2)

with Lagrangian

L(X(t), rk(t)) =

n∑
k=1

[Ik(t) +
1
2

Akr2
k (t)] (5.3)

Our objective is to find a optimal control r∗k(t) such that

J(r∗k(t)) = min
U

∫ T

0
L(X(t), rk(t))dt (5.4)

where U = {rk, 0 ≤ rk(t) ≤ 1, t ∈ [0,T ]} is the control set. Next we will analyze the optimal control
problem.

5.1. The existence of optimal control solution

In order to obtain the analytic solution of the optimal control, we need to prove the existence of the
optimal control first. The following lemma comes from reference [33].

Lemma 2. If the following five conditions can be met simultaneously:
(C1) U is closed and convex.
(C2) There is r ∈ Usuch that the constraint dynamical system is solvable.
(C3) F(X(t), rk(t)) is bounded by a linear function in X.
(C4) L(X(t), rk(t)) is concave on U.
(C5) L(X(t), rk(t)) ≥ c1 ‖r‖

ϕ
2 + C2 for some ϕ > 1, c1 > 0 and c2.

Then the optimal control problem has an optimal solution.

Theorem 5. There exists an optimal solution r∗(t) stastify the control system.

Proof. Let us show that the five conditions in Lemma 3 hold true.

i) It is easy to prove the control set U is closed and convex. Suppose r is a limit point of U, there
exists a sequence of points {rn}

∞
n=1 , we have r ∈ (L2[0,T ])n. The closedness of U follows from

0 ≤ r = lim
n→∞

rn ≤ 1.

Let r1, r2 ∈ U, η ∈ (0, 1), we have 0 ≤ (1 − η)r1 + ηr2 ≤ 1 ∈ (L2[0,T ])n as (L2[0,T ])n is a real
vector space.

ii) For any control variable r ∈ U, the solution of system (12) obviously exists following from the
Continuation Theorm for Differential Systems [34].

iii) Let the function F(X(t), rk(t)) resprensts the right side of model (5.1), F is continuous, bounded
and can be written as a linear function of X in three state.

−βkS k(t) − µS k(t) ≤ −βkS k(t)θ(t) − µS k(t) ≤ Ṡ k(t) ≤ π,

−pβkEk(t) − (µ + δ)Ek(t) ≤ −pβkEk(t)θ(t) − (µ + δ)Ek(t) ≤ Ėk(t) ≤ βkS k(t),
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−rk(t)Ik(t) − (µ + γ)Ik(t) ≤ −
rk(t)Ik(t)
1 + αθ(t)

− (µ + γ)Ik(t) ≤ İk(t) ≤ pβkEk(t) + (µ + δ)Ek(t),

−µRk(t) ≤ Ṙk(t) ≤
rk(t)Ik(t)
1 + αθ(t)

+ γIk(t) ≤ rk(t)Ik(t).

iv) L(X(t), rk(t)) is concave on U. We calculate the function ∂2L
∂r2 = rk(t) ≥ 0, so the function L is

concave on U.
v) Since Ik(t) ≥ 0, L ≥

n∑
k=1

1
2 Akr2

k (t) ≥ 1
2min{Ak} ‖r‖22. There exsits ϕ = 2, C1 = 1

2min{Ak} and C2 = 0

such that L(X(t), rk(t)) ≥ c1 ‖r‖
ϕ
2 + C2.

�

5.2. Solution to the optimal control problem

In this section, we will deal with the OCP based on the Pontryagin Maximum Principle [35]. Define
the Hamiltonian H as

H =

n∑
k=1

[Ik(t) +
1
2

Akr2
k (t)] +

n∑
k=1

[λ1k(t)Ṡ k(t) + λ2k(t)Ėk(t) + λ3k(t)İk(t) + λ4k(t)Ṙk(t)]

where λ1k(t), λ2k(t), λ3k(t), λ4k(t) are the adjoint variables to be determined later.

Theorem 6. Let S ∗k(t), E∗k(t), I∗k (t), R∗k(t), k = 1, 2, · · · , n be the optimal state solutions of dynamic

model (5.1) related to the optimal control r∗(t) = (r∗1(t), r∗2(t), · · · , r∗n(t)). Let θ∗(t) =

n∑
k=1

kp(k)I∗k (t)

〈k〉 . And
there exist adjoint varibles λ1k(t), λ2k(t), λ3k(t), λ4k(t) that satisfy

λ̇1k(t) = βkθ∗(t)[λ1k(t) − λ2k(t)] + µλ1k(t),
λ̇2k(t) = pβkθ∗(t)[λ2k(t) − λ3k(t)] + δ[λ2k(t) − λ3k(t)] + µλ2k(t),

λ̇3k(t) = −1 +
1
〈k〉

βkP(k)
n∑

k=1

kS ∗k(t)(λ1k(t) − λ2k(t))

+
1
〈k〉

pβkP(k)
n∑

k=1

kE∗k(t)(λ2k(t) − λ3k(t)) +
r∗k(t)

1 + αθ∗(t)
(λ3k(t) − λ4k(t))

−
r∗k(t)αkP(k)

(1 + αθ∗(t))2〈k〉

n∑
k=1

I∗k (t)(λ3k(t) − λ4k(t)) + (µ + γ)λ3k(t) − γλ4k(t),

λ̇4k(t) = µλ4k(t)

with transversality condition

λ1k(T ) = λ2k(T ) = λ3k(T ) = λ4k(T ) = 0, k = 1, 2, · · · , n

In addition, the optimal control r∗k(t) is given by

r∗k(t) = min
{
max

(
0,

1
Bk
{

I∗k (t)
1 + αθ∗(t)

[λ3k(t) − λ4k(t)]}
)
, 1

}
.
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Proof. According to the Pontryagin Maximum Principle [cankaowenxian] with the
Hamiltonianfunction, the adjoint equations can be determined by the following equations

dλ1k(t)
dt

= −
∂H
∂S k

∣∣∣∣∣
S k(t)=S ∗k(t),Ek(t)=E∗k (t),Ik(t)=I∗k (t),Rk(t)=R∗k(t)

= βkθ∗(t)[λ1k(t) − λ2k(t)] + µλ1k(t),
dλ2k(t)

dt
= −

∂H
∂Ek

∣∣∣∣∣
S k(t)=S ∗k(t),Ek(t)=E∗k (t),Ik(t)=I∗k (t),Rk(t)=R∗k(t)

= pβkθ∗(t)[λ2k(t) − λ3k(t)] + δ[λ2k(t) − λ3k(t)] + µλ2k(t),
dλ3k(t)

dt
= −

∂H
∂Ik

∣∣∣∣∣
S k(t)=S ∗k(t),Ek(t)=E∗k (t),Ik(t)=I∗k (t),Rk(t)=R∗k(t)

= −1 +
1
〈k〉

βkP(k)
n∑

k=1

kS ∗k(t)(λ1k(t) − λ2k(t))

+
1
〈k〉

pβkP(k)
n∑

k=1

kE∗k(t)(λ2k(t) − λ3k(t)) +
r∗k(t)

1 + αθ∗(t)
(λ3k(t) − λ4k(t))

−
r∗k(t)αkP(k)

(1 + αθ∗(t))2〈k〉

n∑
k=1

I∗k (t)(λ3k(t) − λ4k(t)) + (µ + γ + µd)λ3k(t) − γλ4k(t),

dλ4k(t)
dt

= −
∂H
∂Rk

∣∣∣∣∣
S k(t)=S ∗k(t),Ek(t)=E∗k (t),Ik(t)=I∗k (t),Rk(t)=R∗k(t)

= µλ4k(t)

(5.5)

Furthermore, by the necessary condition, we have

∂H
∂rk

∣∣∣∣∣
S k(t)=S ∗k(t),Ek(t)=E∗k (t),Ik(t)=I∗k (t),Rk(t)=R∗k(t)

= 0 (5.6)

Bkr∗k(t) +
I∗k (t)

1 + αθ∗(t)
[λ4k(t) − λ3k(t)] = 0 (5.7)

r∗k(t) =
1
Bk
{

I∗k (t)
1 + αθ∗(t)

[λ3k(t) − λ4k(t)]}. (5.8)
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So the optimal control problem can be determined by the following system:

dS ∗k(t)
dt

= π − βkS ∗k(t)θ∗(t) − µS ∗k(t),

dE∗k(t)
dt

= βkS ∗k(t)θ∗(t) − pβkE∗k(t)θ∗(t) − (µ + δ)E∗k(t),

dI∗k (t)
dt

= pβkE∗k(t)θ∗(t) + δE∗k(t) −
r∗k(t)Ik(t)

1 + αθ∗(t)
− (µ + γ)I∗k (t),

dR∗k(t)
dt

=
r∗k(t)Ik(t)

1 + αθ∗(t)
+ γI∗k (t) − µR∗k(t)

λ̇1k(t) = βkθ∗(t)[λ1k(t) − λ2k(t)] + µλ1k(t),
λ̇2k(t) = pβkθ∗(t)[λ2k(t) − λ3k(t)] + δ[λ2k(t) − λ3k(t)] + µλ2k(t),

λ̇3k(t) = −1 +
1
〈k〉

βkP(k)
n∑

k=1

kS ∗k(t)(λ1k(t) − λ2k(t))

+
1
〈k〉

pβkP(k)
n∑

k=1

kE∗k(t)(λ2k(t) − λ3k(t)) +
r∗k(t)

1 + αθ∗(t)
(λ3k(t) − λ4k(t))

−
r∗k(t)αkP(k)

(1 + αθ∗(t))2〈k〉

n∑
k=1

I∗k (t)(λ3k(t) − λ4k(t)) + (µ + γ)λ3k(t) − γλ4k(t),

λ̇4k(t) = µλ4k(t),

r∗k(t) = min
{
max

(
0,

1
Bk
{

I∗k (t)
1 + αθ∗(t)

[λ3k(t) − λ4k(t)]}
)
, 1

}
.

(5.9)

with initial condition 

0 < S ∗k(0) < 1,
0 < I∗k (0) < 1,

E∗k(0) = 0,
R∗k(0) = 0,

S ∗k(0) + I∗k (0) = 1,

(5.10)

and transversality condition

λ1k(T ) = λ2k(T ) = λ3k(T ) = λ4k(T ) = 0, k = 1, 2, · · · , n (5.11)

�

6. Stochastic and numerical simulations

Owing to our models are network-based models, it is indispensable to carry out stochastic
simulations as well as numerical simulations. The validity of the model can be better verified by
means of combinating numerical simulations of differential system and node-based stochastic
simulations.
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Table 1. The parameter value.

Parameter Value
π 0.1
δ 0.8
µ 0.01
γ 0.001
p 0.15
β 0.08

6.1. Experimental setup

In the following examples, numerical simulations is implementedby using the classic BA scale-
free network model generation algorithm. We consider scale-free networks with degree distribution

P(k) = ηk−2.5 for h = 1, 2, ..., 100, where the constant η is chosen to maintain
100∑
k=1

p(k) = 1. Under the

aforementioned conditions, we can obtain 〈k〉 = 1.7995, 〈k2〉 = 13.8643, 〈k3〉 = 500.7832.
Optimality system (5.9) is solved by using the forward-backward Runge-Kutta fourth order

method [36].
he setting of the parameters of the models are summarized in Table 1. To note that the parameters

can be changed according to various application scenarios.

6.2. Experimental results

Example 1. The first example is used to verify the threshold and stability results of the model.
For the network, in the case of Figure 3 (a), (b), (c), we draw the trajectory of the average number of

infected
n∑

k=1
p(k)I∗k when R0 < 1, R0 = 1, and R0 > 1.

Figure 3. The average infected densities
n∑

k=1
p(k)I∗k with respect to (a) R0 < 1, (b) R0 = 1, (c)

R0 > 1.

Example 2. In the second example, we study the case of forward bifurcation. We choose parameter
α = 22, 25, 28, 31 to describe the bifurcation diagram in Figure 3, showing a positive bifurcation when
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R0 = 1. An interesting observation is that the local balance curve has an “S-shaped” α value. In this
case, there is backward bifurcation from an endemic equilibrium at a certain value of R0, which leads
to the existence of multiple characteristic balances.

Figure 4. Bifurcation diagrams in the (R0, θ)-plane with different values of α. Forward
bifurcation occurs at R0 = 1 for each panel.

Example 3. The third example shows the effectiveness of the optimal control strategy. We choose
parameter α = 31. The initial conditions are S k(0) = 0.9, Ek(0) = 0, Ik(0) = 0.1, Rk(0) = 0. For
the optimal control problems, the weights parameters are set as Ak = 0.8, T = 10. Through strategy
simulation, the mean value of optimal control is obtained 〈r〉 = 1

T

∫ T

0
r∗k(t)dt. The average value of

the control measures is shown in the middle column of Figure 4. The left column shows the average
number of infections for different control strategies, and the right column shows the cost. It can be seen
from Figure 3 that in each case, the optimal control effect has reached the maximum control effect, but
the cost is lower.

7. Conclusions

In order to understand the impact of limited medical resources and population heterogeneity on
disease transmission, this paper proposes a SEIR model with a saturated processing function based
on a complex network. The model proved that there is a threshold R0, which determines the stability
of the disease-free equilibrium point. In addition, we also proved that there is a backward branch at
R0 = 1. In this case, people cannot eradicate the disease unless the value of R0 decreases such that
R0 < R̂0 < 1. In summary, in order to control or prevent infectious diseases, our research results show
that if a backward bifurcation occurs at R0 = 1, then we need a stronger condition to eliminate the
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Figure 5. Infected number, control degree and cost.

disease. However, if a positive bifurcation occurs at R0 = 1, the initial infectious invasion may need to
be controlled at a low level, so that disease or death or close to a low endemic state of stability.

For the SEIR model with saturation processing function, in order to formulate effective
countermeasures, two methods of constant control and time-varying control are introduced to control
the model. For the optimal defense situation, the optimal control problem is discussed, including the
existence and uniqueness of the optimal control and its solution. Finally, we performed some
numerical simulations to illustrate the theoretical results. Optimal control does achieve a balance
between control objectives and control costs.
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