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Abstract: Federated learning is a novel framework that enables resource-constrained edge devices 

to jointly learn a model, which solves the problem of data protection and data islands. However, 

standard federated learning is vulnerable to Byzantine attacks, which will cause the global model 

to be manipulated by the attacker or fail to converge. On non-iid data, the current methods are not 

effective in defensing against Byzantine attacks. In this paper, we propose a Byzantine-robust 

framework for federated learning via credibility assessment on non-iid data (BRCA). Credibility 

assessment is designed to detect Byzantine attacks by combing adaptive anomaly detection model 

and data verification. Specially, an adaptive mechanism is incorporated into the anomaly detection 

model for the training and prediction of the model. Simultaneously, a unified update algorithm is 

given to guarantee that the global model has a consistent direction. On non-iid data, our 

experiments demonstrate that the BRCA is more robust to Byzantine attacks compared with 

conventional methods. 

Keywords: Byzantine robust; federated learning; adaptive anomaly detection; non-iid; computer vision 

 

1. Introduction 

In recent years, the abundance of data generated from many distributed devices with the 

popularity of smartphones, wearable devices, intelligent home appliances, and autonomous driving. 

These data are usually concentrated in the data center for effective use. However, a crucial issue 
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arises that the concentrated data store causes leakage of personal privacy [1]. Simultaneously, as 

the computing power of these mobile devices increases, it is attractive to store data locally while 

completing related computing tasks. Federated learning is a distributed machine learning 

framework that allows multiple parties to collaboratively train a model without sharing raw data [2,3], 

which has attracted significant attention from industry and academia recently.  [4] summarizes and 

discusses in the application of federated learning in big data and its future direction.  Although 

federated learning has essential significance and advantages in protecting user privacy, it also faces 

many challenges. 

First of all, due to the distributed nature of federated learning, it is vulnerable to Byzan- tine 

attacks. Notably, it has been shown that, with just one Byzantine client, the whole federated 

optimization algorithm can be compromised and fail to converge [5]. Especially when the training data 

is not independent and identically distributed (non-iid), the difficulty of defense against Byzantine 

attacks is increased and it is difficult to guarantee the convergence of the model [6]. 

Methods for defending against Byzantine attacks in federated learning have been exten- sively 

studied, including coordinate-wise trimmed mean [9], the coordinate- wise median [7,8], the geometric 

median [10,11], and distance-based methods Krum [12], BREA [6], Bulyan [5]. In addition to the 

above methods based on statistical knowledge, [14] proposes a new idea based on anomaly detection 

to complete the detection of Byzantine clients in the learning process. [13] discusses the challenges 

and future directions of federated learning in real-time scenarios in terms of cybersecurity. 

The above methods can effectively defend against Byzantine attacks to some extent, but there are 

also some limitations. First, the methods based on statistical knowledge have high computational 

complexity, and also their defense abilities are weakened due to the non-iid data in federated learning. 

Second, for the anomaly detection algorithm [14], there is a premise that the detection model should 

be trained on the test data set. Obviously, the premise hypothesis cannot be realized in practical 

applications because it is difficult for us to get such a data set, which can cover almost all data 

distributions. Therefore, it necessary for the anomaly detection model to get pre-training without 

relying on test dataset and update dynamically on non-iid data.  

In this paper, we propose a new method that each client needs to share some data with the server, 

which makes a trade-off between client privacy and model performance. Unlike FedAvg [2], we use 

credibility score as the weight of model aggregation, not the sample size. The credibility score of each 

client is obtained by integrating the verification score and the detection score. The former is calculated 

by sharing data.  

The main contributions of this paper are: 

▪We propose a new federated learning framework (BRCA) which combines credibility assessment 

and unified update. BRCA not only effectively defends against Byzantine attacks, but also reduces the 

impact of non-iid data on the aggregated global model. 

▪The credibility assessment combing anomaly detection and data verification effectively detects 

Byzantine attacks on non-iid data. 

▪By incorporating an adaptive mechanism and transfer learning into the anomaly detection model, 

the anomaly detection model can dynamically improve detection performance. Moreover, its pre-

training no longer relies on the test data set. 

▪We customize four different data distributions for each data set, and explore the influence of data 

distribution on defense methods against Byzantine attacks. 
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2. Related work 

FedAvg is firstly proposed in [2] as an aggregation algorithm for federated learning. The server 

updates the global model by a weighted average of the clients’ model updates, and the aggregation 

weight is determined based on its data sample size. Stich [15] and Woodworth et al. [16] analyze the 

convergence of FedAvg on strongly-convex smooth loss functions. However, they assume that the data 

is iid, which is not suitable for federated learning [17,18]. And Li et al. [19] makes the first convergence 

analysis of FedAvg when the data is non-iid. [20] uses clustering to improve federated learning in non-

iid data. Regrettably, the ability of naive FedAvg is very weak to resist Byzantine attacks.  

In the iterative process of federated aggregation, honest clients send the true model updates to the 

server, wishing to train a global model by consolidating their private data. However, Byzantine clients 

attempt to perturb the optimization process [21]. Byzantine attacks may be caused by some data 

corruption events in the computing or communication process such as software crashes, hardware 

failures and transmission errors. Simultaneously, they may also be caused by malicious clients through 

actively transmitting error information, in order to mislead the learning process [21]. 

Byzantine-robust federated learning has received increasing attention in recent years. Krum [12] 

is designed specially to defend Byzantine attacks in the federated learning. Krum generate the global 

model by a client’s model update whose distances to its neighbors is shortest. GeoMed [10] uses the 

geometric median which is a variant of the median from one dimension to multiple dimensions. Unlike 

the Krum, the GeoMed uses all client updates to generate a new global model, not just one client update. 

Trimmed Mean [9] proposes that each dimension of its global model is obtained by averaging the 

parameters of clients’ model updates in that dimension. But before calculating the average, the largest 

and smallest part of the parameters in that dimension are deleted, Xie et al. [22] and Mhamdi et al. [5] 

are all its variants. BREA [6] also considers the security of information transmission, but its defense 

method is still based on distance calculation. Zero [23] based on Watermark detection approach detect 

attacks such as malware and phishing attacks and cryptojacking. [24] surveys intrusion detection 

techniques in mobile cloud computing environment.  

Table 1. The summary of the contributions and limitations of the related papers. 

Reference Contributions Limitations 

[12] [10] [9] 

[5] [22] 

Krum, GeoMed and Trimmed Mean 

complete the Byzantine defense based on 

statistical knowledge. Easy to deploy 

applications.  

The assumption is that the data of the clients is iid. 

High computational complexity. 

[25] The auto-encoder anomaly detection model 

is firstly applied to detect Byzantine attacks.  

The pre-training of the anomaly detection model is 

completed on test dataset. The anomaly detection 

model is static.  

[6] Cryptography is used to protect the security 

of information transmitted between clients 

and server. 

Defense against Byzantine attacks is still based on 

distance to find outliers, and had limited defenses 

capabilities. 

All of the above defense methods based on statistical knowledge and distance are not effective in 

defending against Byzantine attacks in non-iid settings. Abnormal [25] uses an anomaly detection 

model to complete the detection of Byzantine attacks. 
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The concept of independent and identically distributed (iid) of data is clear, but there are many 

meanings of non-iid. In this work, we only consider label distribution skew [17]. The categories of 

samples may vary across clients. For example, in the face recognition task, each user generally has 

their face data; for mobile device, some users may use emojis that do not show up in others’ devices. 

We summarize the contributions and limitations of the existing works in Table 1. 

In this paper, we propose a method that combine credibility assessment and unified update to 

robust federated learning against Byzantine attacks on non-iid data. 

3. Byzantine-robust federated learning on non-iid data 

We utilize a federated setting that one server communicates with many clients. For the rest of the 

paper, we will use the following symbol definitions: 𝐴 is the total client set, |𝐴| = n; S is the selected 

client set in every iteration, |𝑆| = k; among them, B is Byzantine client set, |𝐵| = b, and H is honest client 

set, |𝐻| = ℎ. 𝑤𝑖
𝑡 is the model update sent by the client i to the server at round t, Byzantine attack rate ξ =

𝑏

𝑘
⋅ 𝑤𝑡 is the global model at round t, 𝐷𝑃 = {D , ..., 𝐷𝑛} is clients’ private data, Ds = {Ds, ..., Ds } is the 

clients’ shared data, and data-sharing rate γ = 
|𝐷𝑠|

|𝐷𝑃|+|𝐷𝑠|
 (|⋅| represents the sample size of the data set). 

3.1. BRCA: Byzantine-robust federated learning via credibility assessment 

In order to enhance the robustness of federated learning against Byzantines attacks on non-

iid data, BRCA combines credibility assessment and unified update, Figure 1 depicts the 

architecture of BRCA. 

 

Figure 1. The frame diagram of the BRCA. 

Before training, each client needs to share some private data to the server. In each iteration, the 

server randomly selects some clients and sends the latest global model to them. These clients use their 
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private data to train the model locally and send the model updates to the server. After receiving model 

updates, the server conducts a credibility assessment for each model update and calculates their 

credibility scores. Momentum is an effective measure to improve the ability of federated learning to 

resist Byzantine attacks [26]. So our aggregation Eq (1) is as follow: 

                         𝑤𝑡 + 1 = 𝛼𝑊𝑡 + (1 − 𝑎) ∑ 𝑟𝑖
𝑡𝑤𝑖

𝑡                                          
𝑖∈𝑠

(1) 

where 𝑟𝑖
𝑡is the credibility score of client i at round t and 𝛼 (0 < 𝛼 < 1) is a decay factor. Last, unified 

update uses shared data to update the primary global model to get the new global model for this round 

Algorithm 1 is the description of BRCA, which contains Credibility Assessment in line 22, and 

Unified Update in line 28. The crucial of BRCA to defend against Byzantine attacks is credibility 

assessment. On non-iid data, the data distributions of different clients are immense, and it is difficult 

to judge whether the difference is caused by Byzantine attacks or the non-iid data. However, the model 

update of the honest client should have a positive effect on its private data, which is not affected by 

other clients. Simultaneously, anomaly detection model can effectively detect Byzantine attacks [25]. Thus, 

we combine the above two ideas to detect Byzantine attacks. In order to solve the shortcomings of the 

existing anomaly detection models, we propose an adaptive anomaly detection model. In this paper, the 

shared data is randomly selected by each client based on the sample category. Of course, other sampling 

methods could also be used, such as clustering. In addition, it must be pointed out that the shared data will 

only be used on the server, not on the clients. That effectively protect the clients’ privacy. 

To summarize, BRCA has five steps. First: the server pre-train an anomaly detection model by 

source data and initialize a global model. Second: every client share little private data with the server. 

Three: every client download the newest global model from the server, and complete model updates 

by private data. Then, every client send the model update to the server. Four: the server update the 

global model and complete the adaptation of the anomaly detection model by model updates from 

clients. Five: the server update the primary global model with unified update, after that, the new global 

model is completed. Repeating steps three to five until the global model converges 

Our work is different from the recent state of the art. First, Krum, GeoMed and TrimmedMean are 

the representative methods based on geometric knowledge, but their premise is that the data of clients 

is dependent and identically distributed (iid). The hypothesis of our method is based on the actual 

application background of FL, aiming at non-iid data. Second, Abnormal is the first method to detect 

Byzantine attacks by auto-encoder anomaly detection model. However, the training of the anomaly 

detection model in the method is based on the test dataset and the abnormal detection model in the 

method is static. For both of the problems, our method has made improvement: 1) we pre-train the 

anomaly detection model with related but different source data without relying on the test dataset. 2) 

we introduce adaptive mechanism to the anomaly detection model, which help the detection model get 

update during federated iteration dynamically. 

3.2. Credibility assessment 

Algorithm 2(Credibility Assessment) is the key part of BRCA, which assigns a credibility score 

for each client model update. A Byzantine client would be given much lower credibility score than an 

honest client. To guarantee the accuracy of the credibility score, Credibility Assessment integrates 

adaptive anomaly detection model and data verification. 
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 Algorithm 1: BRCA 

Input: total clients A; total number of iterations 𝑇; learning rate 𝜂server, 𝜂client, 𝜂detection; 

Byzantine attack rate 𝜉 ; epoch 𝐸 server, 𝐸 client; initial global model   𝑤0 ; 

clients’ private data 𝐷𝑃 = {𝐷1
𝑃 , … , 𝐷𝑁

𝑃}; clients’ shared data 

𝐷𝑠 = {𝐷1
𝑠 , ...,𝐷𝑛

𝑆 }; initial anomaly detection model 𝜃0; 𝛽; 𝛼; 𝑑;𝑘 

Output: global model WT+1, anomaly detection model 𝜃𝑇+1 

1 𝑅 = ∅: the credibility score set. 

2 𝐻 = ∅: the honest client set. 

3 Function Add Attack(w): 

4 return 𝑤 attacked by Byzantine client. 

5  End Function 

6 for each round 𝑡=0 to 𝑇 do 

7 Clients: 

8 for client ⅈ ∈ 𝑆 parallel do 

9 for each epoch e = 0 to 𝐸client do 

10 𝑤𝑖
𝑡= 𝑤𝑡 − 𝜂client𝛻𝑙(𝐷𝑖

𝑃, 𝑊𝑡),where 𝑙 is the loss function. 

11 end 

12 if ⅈ 𝜖 top 𝜉 percent of S then 

13 𝑊𝑖
𝑡 = Add Attack (𝑊𝑖

𝑡) 

14 end 

15 send 𝑊𝑖
𝑡  back to the server 

16 end 

17 Server: 

18 sample 𝑆∈ 𝐴 randomly 

19 broadcast latest global model 𝑤𝑡 to each client 𝑗 ∈ S 

20 receive model updates from clients Q = {𝑊1
𝑡 , ..., 𝑊𝑗

𝑡..., 𝑊𝑘
𝑡 }, client 𝑗∈𝑆 

21 𝑅, 𝐻, 𝜃𝑇+1 = Credibility Assessment {Q, Ds, 𝜃𝑡, 𝛽, S, 𝜂detection, 𝑑, 𝑘} 

22 if 𝐻 >
1

2
𝑘 then 

23               𝒘
𝒕+𝟏 = 𝜶𝒘𝒕 + (𝟏 − 𝜶) ∑ 𝒓𝒋

𝒕

𝒄𝒍𝒊𝒆𝒏𝒕 𝒋∈𝑺
∗ 𝒘

𝒋   ，
𝒕 𝒓𝒋

𝒕 ∈ 𝑹 

24 else 

25   𝒘𝒕+𝟏 = 𝒘𝒕 

26 end 

27   𝒘𝒕+𝟏 = Unified Update (  𝒘𝒕+𝟏, 𝐷𝑠, 𝐸server, 𝜂server , 𝐻) 

28 end 

29 return global model 𝒘𝒕+𝟏, anomaly detection model 𝜃𝑇+1 
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In Algorithm 2, line 4 is the data verification, which calculates the verification score 𝑓𝑖 for the 

model update of client ⅈ. And line 5 is the get-anomaly-score() of the adaptive anomaly detection 

model, which calculates detection score 𝑒𝑖. Subsequently, the credibility 𝑟𝑖 of the model update is 

𝑟𝑖 =  𝛽𝑒𝑖  + (1 −  β)𝑓𝑖 , R = {𝑟1 , ... 𝑟𝑖 ..., 𝑟𝑘 }, client ⅈ ∈ S . The make-adaption () in line 24 

implements the adaption of the anomaly detection model. 

In this paper, we judge the model update with a credibility score lower than the mean of 𝑅 as a 

Byzantine attack, and set its credibility score as zero. Finally, normalizing the scores to get the final 

credibility scores. 

3.2.1 Adaptive anomaly detection model 

In the training process, we cannot predict the type of attacks, but we can estimate the model 

update of the honest client. Therefore, we can adopt a one-class classification algorithm to build the 

anomaly detection model with normal model updates. Such technique will learn the distribution 

boundary of the model updates to determine whether the new sample is abnormal. Auto-encoder is an 

effective one-class learning model for detecting anomalies, especially for high-dimensional data [27]. 

In practical applications, we cannot get the target data to complete the pre-training of our anomaly 

detection model. Therefore, the initialized anomaly detection model will be pre-trained on the source 

data with the idea of transfer learning.  

At round t, the detection score 𝑒𝑖
𝑡of client ⅈ: 

                                         𝑒𝑖
𝑡 =  exp (

𝑀𝑠ⅇ(𝐶𝑖
𝑡−𝜃𝑡(𝐶𝑖

𝑡))−𝜇(𝐸)

𝜎(𝐸)
))                                             (2) 

Our anomaly detection model is different from the one in Abnormal: 1) Abnormal uses the test 

set of the data set to train the anomaly detection model. Although the detection model obtained can 

complete the detection task very well, in most cases the test data set is not available. Therefore, based 

on the idea of transfer learning, we complete the pre-training of the anomaly detection model in the 

source domain. 2) Abnormal ’s anomaly detection model will not be updated after training on the test 

set. We think this is unreasonable, because the test set is only a tiny part of the overall data. Using a 

small part of the training data to detect most of the remaining data, and the result may not be accurate 

enough. Therefore, pre-training of the anomaly detection model is completed in the source domain. 

Then we use the data of the target domain to fine-tune it in the iterative process to update the anomaly 

detection model dynamically, as make-adaption shown in Algorithm 3. 
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     Algorithm 2: Credibility Assessment 

Input: local model updates 𝑄; clients’ shared data 𝐷𝑠 = {𝐷1
𝑠, … , 𝐷𝑛

𝑠}; anomaly 

 detection model 𝜃𝑡; 𝛽; selected clients 𝑆; 𝜂detection; 𝑑;𝑘 

Output: credibility score of clients R; honest client set 𝐻; anomaly detection model 𝜃𝑡+1
 

1 𝑅 = ∅: credibility score set; 𝐻 = ∅: the honest client set; 𝑠𝑢𝑚 = 0; 

𝑠𝑢𝑚ⅇ = 0; 𝑠𝑢𝑚𝑓 = 0 

2 𝐶 = {𝐶1
𝑡 , … , 𝐶𝑖

𝑡, … 𝐶𝑘
𝑡}, clientⅈ∈ 𝑆, 𝑐𝑖

𝑡is the weight of the last convolutional layer of 𝑊𝑖
𝑡 

3 for each client ⅈ ∈ 𝑆 do 

4 Data Verification: compute 𝑓𝑖
𝑡 with 𝑊𝑖

𝑡and 𝐷𝑡
𝑠, client ⅈ ∈𝑆 base on equation 3 

and equation 4 

5     𝑒𝑖
𝑡= AADM. get-anomaly-score (𝜃𝑡, 𝐶) 

6 end 

7 𝑠𝑢𝑚ⅇ=∑ 𝑒𝑖
𝑡

𝑐𝑙𝑖ⅇ𝑛𝑡 𝑖∈𝑆  ;   𝑠𝑢𝑚𝑓=∑ 𝑓𝑖
𝑡

𝑐𝑙𝑖ⅇ𝑛𝑡 𝑖∈𝑆  

8 for each client ⅈ ∈ 𝑆 do 

9 𝑒𝑖
𝑡 = 𝑒𝑖

𝑡 ∕ 𝑠𝑢𝑚ⅇ ; 𝑓𝑖
𝑡 = 𝑓𝑖

𝑡/ 𝑠𝑢𝑚𝑓 

10 𝑟𝑖
𝑡= 𝛽𝑒𝑖

𝑡 + (1 −𝛽) 𝑓𝑖
𝑡 ; 𝑅 = 𝑅 ∪ {𝑟𝑖

𝑡} 

11 end 

12 M (𝑅) is the mean of 𝑅 

13 for each 𝑟𝑖
𝑡 ∈ 𝑅 do 

14 if 𝑟𝑖
𝑡 < 𝑀 (𝑅) then 

15 𝒓𝒊
𝒕 = 0 

16 else 

17  𝑯 = 𝑯 ∪ {𝒊} 

18 end 

19 𝑠𝑢𝑚 + = 𝑟𝑖
𝑡 

20 end 

21 for each  𝒓𝒊
𝒕 ∈ 𝑅 do 

22 𝑟𝑖
𝑡 =  𝑟𝑖

𝑡/𝑠𝑢𝑚 

23 end 

24 𝜃𝑡+1 = AADM. make-adaption (𝐻, 𝜃𝑡 , 𝜂detection, 𝐶, 𝑑, 𝑘) 

25 return 𝑅, 𝐻, 𝜃𝑡+1. 

3.2.2 Data verification 

The non-iid of client data increases the difficulty of Byzantine defense. However, the performance 

of the updated model of each client on its shared data is not affected by other clients, which can be 

effectively solved this problem. Therefore, we use the clients’ shared data {𝐷𝑆 = 𝐷1
𝑠, … 𝐷𝑖

𝑠, … , 𝐷𝑘
𝑠} 
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 Algorithm 3: AADM adaptive anomaly detection model 

Input: anomaly detection model 𝜃𝑡; weights of the last convolutional layer of the local 

model 𝐶; 𝜂detection; credibility score 𝑅; honest client set 𝐻;𝑑;𝑘 

Output:  updated anomaly detection model 𝜃𝑡+1 

1 Function get-anomaly-score (𝜃𝑡 , 𝐶𝑖
𝑡): 

2 compute 𝑒𝑖
𝑡with 𝜃𝑡 and 𝑐𝑖

𝑡, client ⅈ ∈ 𝑆 based on Eq (2) 

3 return 𝑒𝑖
𝑡. 

4 End Function 

5  

6 Function make-adaption (𝐻, 𝜃𝑡, 𝜂detection,𝐶, 𝑑): 

7 if |𝑯| < 1/2 k then 

8  𝜃𝑡+1= 𝜃𝑡
 

9 else 

10  𝐻0 is a subset of 𝐻 obtained by removing the clients whose credibility score is in 

the largest and smallest 𝑑 fraction. 

11 for client ⅈ ∈ 𝐻0 do 

12 𝜽𝒕+𝟏 = 𝜃𝑡  − 𝜂detection∇𝑙(𝜃𝑡 , 𝑐𝑖
𝑡) 

13 end 

14 end 

15 return updated anomaly detection model 𝜽𝒕+𝟏 

16 End Function 

client ⅈ ∈ 𝑆 to calculate the verification score of their updated model: 

                                                    𝑓𝑖
𝑡 = (𝑒𝑥𝑝 (

𝑙𝑖
𝑡−𝜇(𝑙)

𝜎(𝐿)
))

−2

                                                        (3) 

where 𝑙𝑖
𝑡 is loss of client ⅈ calculated on model 𝑤𝑖

𝑡 using the shared data 𝐷𝑖
𝑠 at round 𝑡: 

                                                 𝑙𝑖
𝑡 =

1

|𝐷𝑖
𝑠|

∑ 𝑙 (𝐷𝑖
𝑠(𝑗)

, 𝑊𝑖
𝑡)

|𝐷𝑖
𝑠|

𝑗=0
                                                           (4) 

where 𝐷𝑖
𝑠(𝑗)

  is the 𝑗 − 𝑡ℎ  sample of 𝐷𝑖
𝑠  and 𝜇(𝐿) , 𝜎(𝐿)  are the mean and variance of set 𝐿 =

{𝑙1, … , 𝑙𝑘} respectively.  

3.3. Unified update 

After getting the credibility score 𝑟𝑡
𝑘  in Algrithm 2 with the anomaly score 𝑒𝑡

𝑘  and the 

verification score 𝑓𝑡
𝑘, we can complete the aggregation of the clients’ local model updates in Eq (1) 

and get a preliminary updated global model. However, due to the non-iid of client data, the knowledge 

learned by the local model of each client is limited, and the model differences between two clients are 

also significant. Therefore, to solve the problem that the preliminary aggregation model lacks a clear 
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and consistent goal, we introduce an additional unified update procedure with shared data on server, 

details can be seen in Algorithm 4. 

Because the data used for the unified update is composed of each client’s data, it can more 

comprehensively cover the distribution of the overall data. The goal and direction of the unified update 

are based on the overall situation and will not tend to individual data distribution. 

Algorithm 4: Unified update 

Input: global model   𝑤𝒕+𝟏; clients’ shared data 𝐷𝑠 = {𝐷1
𝑠, … , 𝐷𝑛

𝑠}; 𝐸server;𝜂server; 

honest client set 𝐻 

Output: global model   𝑤𝒕+𝟏. 

1 for each epoch 𝑒 = 0 to 𝐸server do 

2 for ⅈ ∈ 𝐻 do 

3   𝑤𝒕+𝟏=   𝑤𝒕+𝟏 −𝜂server∇ 𝑙(𝐷𝑖
𝑠,   𝑤𝒕+𝟏) 

4 end 

5 end 

6 return global model   𝑤𝒕+𝟏. 

4. Experiments 

To verify the effectiveness of BRCA, we structure the client’s data into varying degrees of non-

iid, and explore the impact of different amounts of shared data on the global model. At the same time, 

we also compare the performance of our anomaly detection model with the Abnormal ’s and explore 

the necessity of unified update. 

4.1. Experimental steup 

4.1.1. Datasets 

Mnist and Cifar10 are the two most commonly used public data sets in image classification, and 

most of the benchmark methods in our work also use these two data sets for experiments. Using these 

two data sets, it is easier to compare with other existing methods. 

We do the experiments on Mnist and Cifar10, and customize four different data distributions: (a) 

non-iid-1: each client only has one class of data. (b) non-iid-2: each client has 2 classes of data. (c) 

non-iid-3: each client has 5 classes of data. (d) iid: each client has 10 classes of data. 

For Mnist, using 100 clients and four data distributions: (a) non-iid-1: each class of data in the 

training dataset is divided into 10 pieces, and each client selects one piece as its private data. (b) non-

iid-2: each class of data in the training dataset is divided into 20 pieces, and each client selects 2 pieces 

of different classes of the data. (c) non-iid-3 each class of data in the training dataset is divided into 50 

pieces, and each client selects 5 pieces of different classes of the data. (d) iid: each class of data in the 

training dataset is divided into 100 pieces, and each client selects 10 pieces of different classes of the 

data. As for the source domains used for the pre-training of the anomaly detection model, we randomly 

select 20,000 lowercase letters in the Nist dataset. 

For Cifar10, there are 10 clients and the configuration of four data distributions is similar to that 

of the Mnist. We select some classes of data in Cifar100 as source domain, which are as follows: lamp 
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(number:40), lawn mower (41), lobster (45), man (46), forest (47), mountain (49), girl (35), Snake (78), 

Rose (70) and Tao (68), these samples do not exiting in Cifar10. 

4.1.2. Models 

We use logistic regression on Mnist dataset. 𝜂𝑠ⅇ𝑟𝑣ⅇ𝑟 = 0.1, 𝜂𝑐𝑙𝑖ⅇ𝑛𝑡  = 0.1, 𝜂𝑑ⅇ𝑡ⅇ𝑐𝑡𝑖𝑜𝑛 = 0.02, 

𝐸𝑐𝑙𝑖ⅇ𝑛𝑡= 5, 𝐸𝑠ⅇ𝑟𝑣ⅇ𝑟= 1, n = 100, k = 30, ξ = 20%. Two convolution layers and three fully connected 

layer on Cifar10, 𝜂𝑠ⅇ𝑟𝑣ⅇ𝑟 = 0.05, 𝜂𝑐𝑙𝑖ⅇ𝑛𝑡 = 0.05, 𝜂𝑑ⅇ𝑡ⅇ𝑐𝑡𝑖𝑜𝑛= 0.002, 𝐸𝑐𝑙𝑖ⅇ𝑛𝑡= 10, 𝐸𝑠ⅇ𝑟𝑣ⅇ𝑟 = 10, n = 

10, k = 10, ξ = 20%. The structure of models are the same as [10]. 

4.1.3. Benchmark byzantine attacks 

Same-value attacks: A Byzantine client i sends the model update 𝜔𝑖 = 𝑐1 to the server (1 is all-

ones vectors, 𝑐  is a constant), we set 𝑐  = 5. Sign-flipping attacks: In this scenario, each client ⅈ 

computes its true model update 𝜔𝑖, then Byzantine clients send 𝜔𝑖 = a𝜔𝑖 (a < 0) to the server, we 

set 𝑎 = −5. Gaussian attacks: Byzantine clients add Gaussian noise to all the dimensions of the model 

update 𝜔𝑖 = 𝜔𝑖 +𝜖, where s follows Gaussian distribution N (0, g2) where g is the variance, we set 

g = 0.3. 

4.1.4. Benchmark defense methods 

Defenses: Krum, GeoMed, Trimmed Mean, Abnormal and No Defense. No Defense does not use 

any defense methods. 

4.2. Result and discussion 

4.2.1. Impact of shared data rate 

In the first experiment, we test the influence of the shared data rate γ in our algorithm, and do the 

experiment with the data distribution of non-iid-2. We implement it on five different values [1, 3, 5, 7 

and 10%]. Figures 2 and 3 are the accuracy and loss for Cifar10. It is found that: 1) In all cases of 

Byzantine attacks, our algorithm is superior to the three benchmark methods. 2) Only 1% of the data 

shared by the client can significantly improve the performance of the global model. For three Byzantine 

attacks, Krum, GeoMed, Trimmed Mean, No Defense are all unable to converge. This also shows that 

when the model is complex, such methods would be less able to resist Byzantine attacks. 

With the increase in the client data sharing ratio, the performance of the global model   has 

become lower. When the client shares the data ratio from 1 to 10%, the average growth rate with the 

three Byzantine attacks are: 1.8→1.41→0.97→0.92%. The clients only share one percent of the data, 

and the performance of the global model can be greatly improved. 

Figure 4 clearly demonstrates the impact of different shared data rates on the loss value of the 

global model on Cifar10. 
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Figure 2. The Accuracy of Cifar10. Byzantine attack types from (a) to (c) are as follows: 

Same value, Sign flipping and Gaussian noisy. Six defense methods are adopted for each 

type of attack, in order: No defense, Krum, GeoMed, Trimmed Mean, Abnormal and BRCA. 

For Ours, there are five different shared data rate (1, 3, 5, 7 and 10%), which correspond 

accordingly: BRCA 1, BRCA 3, BRCA 5, BRCA 7, BRCA 10. 

 

Figure 3. The loss of Cifar10. The legends are the same as Figure 2. 

 

(a) Same value (b) Sign flipping (c) Gaussian noisy 

Figure 4. The loss of BRCA on Cifar10 with five different shared rate. 

(a)  (b) Sign flipping (c) Gaussian noisy 

(a) Same value (b) Sign flipping (c) Gaussian noisy 
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4.2.2. Performance of anomaly detection model 

In this part, the purposes of our experiment are: 1) Compare anomaly detection model between 

ours and Abnormal. 2) Explore the robustness of the anomaly detection model to data that are non-iid. 

The shared data rate γ is 5%, Sections 4.2.3 and 4.2.4 are the same. 

In order to compare the detection performance of the anomaly detection model against Byzantine 

attacks between BRCA and Abnormal, we use the cross-entropy loss as the evaluation metric which is 

calculated by the detection score. Firstly, we get detection scores E = {𝑒1, ..., 𝑒𝑖, ..., 𝑒𝑘} based on 

model update  𝜔𝑖  and θ, client ⅈ ∈ S.  Then, we set 𝑃 = 𝑆ⅈ𝑔𝑚𝑜ⅈ𝑑(𝐸 − 𝜇(𝐸))  represents the 

probability that the client is honest and 1 − P is the probability that the client is Byzantine. Lastly, we 

use 𝑃  and true label Y (𝑦𝑖  = 0, ⅈ∈ B and 𝑦𝑖  = 1, j∈ H) to calculate the cross-entropy loss 

𝑙 = 𝛴ⅈ=1
𝑘 𝑦ⅈ 𝑙𝑛(𝑃𝑖) 

 

Figure 5. the cross-entropy loss of our and Abnormal anomaly detection model, on Cifar10 

with non-iid-2. (a)–(c) are the performance for three Byzantine-attacks. 

 

(a) Same value (b) Sign flipping (c) Gaussian noisy     

Figure 6. (a)–(c) are our anomaly detection model’s performance on four different data 

distribution (iid, non-iid-1, non-iid-2, non-iid-3) against Byzantine attacks (Gaussian noisy, 

sign flipping, same value). 

Figure 5(a)–(c) compare the loss of the anomaly detection model between BRCA and the 

Abnormal. From the figures, we can see that our model has a greater loss than Abnormal in the initial 

stage, mainly due to the pre-training of the anomaly detection model using the transfer learning. The 

(a) Same value (b) Sign flipping (c) Gaussian noisy 
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initial pre-trained anomaly detection model cannot be used well in the target domain. As the adaptation 

progress, the loss of our model becomes decreases and gradually outperforms the Abnormal. Although 

Abnormal has a low loss in the initial stage, as the training progresses, the loss gradually increases, 

and the detection ability becomes degenerate. 

Figure 6(a)–(c) show the influence of different data distributions on our detection model. For 

different data distributions, the detection ability of the model is different, but it is worth pointing out 

that: as the degree of non-iid of the data increases, the detection ability of the model also increases. 

4.2.3. Impact of unified update 

In this part, we study the impact of the unified update on the global model. Figure 7 shows the 

accuracy of the global model with and without unified update on Cifar10. 

From non-iid-1 to iid, the improvement of the global model’s accuracy by unified update is as 

follows: 35.1→13.6→4.7→2.3% (Same value), 34.8→10.5→3.0→3.1% (Gaussian noisy), 

24.9→9.9→2.8→3.0% (Sign flipping). Combined with Figure 7, it can be clearly found that the 

more simple the client data is, the more obvious the unified update will be to the improvement of 

the global model. 

When the data is non-iid, the directions of the model updates between clients are different. 

The higher the degree of non-iid of data, the more significant the difference. The global model 

obtained by weighted aggregation does not fit well with the global data. Unified update on the 

shared data can effectively integrate the model updates of multiple clients, giving the global model 

a consistent direction. 

Therefore, it is necessary to implement a unified update to the primary aggregation model 

when data is non-iid. 

 

(a) Same value (b) Sign flipping (c) Gaussian noisy 

Figure 7. The accuracy of BRCA and BRCA No on Cifar10. BRAC No is based on BRCA 

with unified update removed. 

4.2.4. Impact of non-iid 

Tables 2 and 3 show the accuracy and loss of each defense method under different data 

distributions on Cifar10. It can be seen that our method is the best, and the performance is relatively 
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stable for different data distributions. The higher the degree of non-iid of data, the more single the data 

of each client, the lower the performance of the defense method. 

Table 2. The accuracy of the six defenses under four different data distributions on Cifar10, 

against three attacks. 

Attacks 
Defenses 

Distri 
No Krum GeoMed Abnormal TrimmedMean BRCA 

Same value 

Non-iid-1 0.1 0.1 0.1 0.178 0.1 0.529 

Non-iid-2 0.101 0.207 0.205 0.480 0.1 0.619 

Non-iid-3 0.1 0.398 0.398 0.634 0.1 0.691 

iid 0.098 0.696 0.705 0.698 0.101 0.713 

Gaussian noisy 

Non-iid-1 0.1 0.1 0.1 0.178 0.1 0.529 

Non-iid-2 0.191 0.204 0.205 0.513 0.059 0.623 

Non-iid-3 0.0409 0.398 0.394 0.660 0.171 0.692 

iid 0.1 0.697 0.694 0.710 0.120 0.715 

Sign flipping 

Non-iid-1 0.1 0.101 0.1 0.177 0.1 0.426 

Non-iid-2 0.1 0.192 0.214 0.5131 0.1 0.621 

Non-iid-3 0.1 0.397 0398 0.651 0.1 0.686 

iid 0.1 0.697 0.703 0.711 0.1 0.718 

Table 3. The loss of the six defenses under four different data distributions on Cifar10, 

against three attacks. 

Attacks 
Defenses 

Distri 
No Krum GeoMed Abnormal TrimmedMean BRCA 

Same value 

Non-iid-1 2.84e16 11.72 9.61 2.29 6.05e17 2.09 

Non-iid-2 6.99e16 7.29 8.01 2.06 3.63e16 2.09 

Non-iid-3 4.48e16 2.35 2.38 1.893 3.37e16 0.691 

iid 1.51e16 0.794 0.774 1.837 3.17e16 1.79 

Gaussian noisy 

Non-iid-1 8.635e4 8.41 9.37 2.29 936.17 1.54 

Non-iid-2 9.51 7.57 8.37 1.34 7.98 0.623 

Non-iid-3 8.22 2.01 2.31 0.94 6.07 0.692 

iid 8.09 0.81 0.79 0.82 3.12 0.76 

Sign flipping 

Non-iid-1 2.30 10.72 9.91 2.29 2.30 1.54 

Non-iid-2 2.31 7.77 7.10 1.34 2.30 0.621 

Non-iid-3 2.31 2.36 2.13 0.94 2.30 0.686 

iid 2.31 0.79 0.80 0.81 2.31 0.76 
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Our analysis is as follows: 1) The non-iid of data among clients causes large differences between 

clients’ models. And it is difficult for the defense method to judge whether the anomaly is caused by 

the non-iid of the data or by the Byzantine attacks, which increases the difficulty of defending the 

Byzantine attack. 2) Krum and GeoMed use statistical knowledge to select the median or individual 

client’s model to represent the global model. This type of method can effectively defend against 

Byzantine attacks when the data is iid. However when the data is non-iid, each client’s model only 

focuses on a smaller area, and its independence is high, cannot cover the domain of other clients, 

and obviously cannot represent the global model. 3) Trimmed Mean is based on the idea of 

averaging to defend against Byzantine attacks. When the parameter dimension of the model is low, 

it has a good performance. But as the complexity of the model increases, the method can not stably 

complete convergence. 

5. Conclusions 

In this work, we propose a robust federated learning framework against Byzantine attacks when 

the data is non-iid. BRCA detects Byzantine attacks by credibility assessment. Meanwhile, it makes 

the unified updating of the global model on the shared data, so that the global model has a consistent 

direction and its performance is improved. BRCA can make the global model converge very well when 

facing different data distributions. And for the pre-training of anomaly detection models, transfer 

learning can help the anomaly detection model get rid of its dependence on the test data set. 

Experiments have proved that BRCA performs well both on non-iid and iid data, especially on non-iid 

data. In the future, we will improve our methods by studying how to protect the privacy and security 

of shared data. 
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