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Abstract: Accurate runoff forecasting plays a vital role in water resource management. Therefore, 

various forecasting models have been proposed in the literature. Among them, the 

decomposition-based models have proved their superiority in runoff series forecasting. However, 

most of the models simulate each decomposition sub-signals separately without considering the 

potential correlation information. A neoteric hybrid runoff forecasting model based on variational 

mode decomposition (VMD), convolution neural networks (CNN), and long short-term memory 

(LSTM) called VMD-CNN-LSTM, is proposed to improve the runoff forecasting performance 

further. The two-dimensional matrix containing both the time delay and correlation information 

among sub-signals decomposing by VMD is firstly applied to the CNN. The feature of the input 

matrix is then extracted by CNN and delivered to LSTM with more potential information. The 

experiment performed on monthly runoff data investigated from Huaxian and Xianyang hydrological 

stations at Wei River, China, demonstrates the VMD-superiority of CNN-LSTM to the baseline 

models, and robustness and stability of the forecasting of the VMD-CNN-LSTM for different leading 

times. 

Keywords: runoff forecasting; variational mode decomposition; convolution neural networks; long 

short-term memory 

 

1. Introduction  

Accurate runoff forecasting is an essential part of water resources management [1]. Traditional 

runoff forecasting is based on physical processes and is performed using some developed physical 
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models. However, substantial computational resources are necessary to describe hydrological 

processes with complex variabilities [2]. Furthermore, due to regional disparity, developing models 

in different places is a challenging task. Accordingly, it is not easy to apply the physical models in 

practical runoff forecasting [2,3]. 

The big data analysis method can solve the problems of the cumbersome data processing and 

basic parameter calibration in the traditional hydrology model, find a certain regularity through the 

relationship between the relevant factors, and provide great help to guide the practical work. 

Therefore, big data analysis-based data-driven models have been utilized in runoff forecasting. 

Data-driven models mainly include time series models and machine learning (ML) models [4]. 

However, since the time series models are mainly based on the linear assumption, these models 

cannot be employed for non-stationary and nonlinear runoff forecasting. Therefore, ML models with 

stable nonlinear fitting abilities have been introduced into runoff forecasting. Chu et al. [5] compared 

the monthly runoff forecasting performance of the support vector regression model (SVR) with other 

models based on the Tangnaihai station, The obtained results demonstrated the SVR’s reliable 

forecasting ability. Hu et al. [6] employed artificial neural network (ANN) and long short-term 

memory (LSTM) to simulate the rainfall-runoff process in the Fen River basin, and their result 

indicated that the latter outperforms the former due to its special units, while the two are superior to 

the physical model. 

However, traditional ML models cannot adequately learn the variation feature from the highly 

nonstationary and complex time series data. Thus, signal processing methods have been adopted for 

data preprocessing to convert nonstationary time series data into several relatively stable sub-signals 

with a recognizable variation feature and provide more information of the series for forecasting [7]. 

Neeraj et al. [8] employed the singular spectrum analysis (SSA) to eliminate the noisy components in 

electric load series and combined this method with LSTM to obtain superior forecasting results. He 

et al. [9] employed variational mode decomposition (VMD) and gradient boosting regression 

(GBRT), to establish a hybrid model, which is demonstrated to be an effective method for runoff 

series. Tan et al. [10] applied the ensemble empirical mode decomposition (EEMD) to attain cleaner 

signals of the monthly runoff data in the Yangtze River Basin and make a precise monthly prediction 

result by the proposed decomposition-ensemble framework.  

Some decomposition-based models first decompose the single runoff series into several 

sub-signals and employ the constructed models for each sub-signals to perform sub-signals 

predictions. Finally, the prediction results of all sub-signals are summed to obtain the runoff 

forecasting results [9–12]. However, only the time delay information is considered by this 

forecasting scheme while predicting each subsequence, and the correlation information between the 

decomposed sub-signals is ignored, which may also contribute to improving the runoff forecasting. 

Moreover, these decomposition-ensemble models should repeat and cumbersome training processes 

for all sub-signals, which is impracticable in runoff forecasting.  

This paper proposes a reliable runoff forecasting model based on VMD, convolution neural 

networks (CNN), and LSTM, namely, the VMD-CNN-LSTM model, to solve the inability of 

standard decomposition-based models to utilize the correlation information between each 

decomposition sub-signals and unnecessary work for sub-signals training. Firstly, the original runoff 

series is decomposed by VMD, and the partial autocorrelation function (PACF) is utilized to obtain a 

reasonable time delay and generate the input matrix. Then, the convolution neural networks (CNN) 

are introduced in the runoff series forecasting, which is proved to be effective in image feature 
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recognition [13]. The convolution and pooling layers of the CNN can convolute the width and height 

of the input matrix to extract the time delay and correlation information features from both 

dimensions. Finally, the features extracted by CNN are employed as the LSTM input for runoff 

forecasting. In order to verify the performance of the proposed VMD-CNN-LSTM, the monthly 

runoff data of the Huaxian and Xianyang hydrological stations in Wei River Basin, China, are 

investigated to evaluate the proposed and the baseline models. 

2. Study area and data 

2.1. Study area  

As shown in Figure 1, the Wei River basin lies between 33.68−37.39°N and 103.94−110.03°E, 

originates from Niaoshu Mountain in Gansu Province, China, and flows east into the Yellow River in 

Shaanxi Province, with a total length of 818 km and a drainage area of 135,000 km2, accounting for 

17.9% of the total area of the Yellow River basin, making it the largest tributary of the Yellow 

River [14]. Although the Wei River basin supports industrial, agricultural, and domestic water use of 

the Guanzhong Plain, the total water resources in the basin are rare, and resource-based water 

shortages lead to a significant contradiction between supply and demand of water resources. The 

accurate prediction of monthly runoff in this region provides a reference for water resources 

management in the basin. 

 

Figure 1. Location of the Huaxian and Xianyang Hydrological Stations in Jing River, 

China. 
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2.2. Data 

Historical monthly runoff series from January 1953 to December 2018 in Huaxian and 

Xianyang hydrology stations in the Wei River basin are selected to evaluate the proposed forecasting 

model. The monthly runoff series data acquired from the Shaanxi Hydrological Information Center 

and the Water Resources Investigation Bureau are calculated through the daily monitored flow data. 

About 70% (January 1953~December 1998) and 30% (January 1999~December 2018) of the whole 

monthly runoff series are chosen as the training and validation-testing sets, respectively. Besides, 

half of the validation-testing set (January 1999~December 2008) is employed as the validation set, 

while the remaining (January 2009~December 2018) is chosen as the testing set to validate the 

forecasting model and test the optimal model, respectively [7]. 

3. Methods 

3.1. Variational mode decomposition 

The main idea of VMD is to construct and solve the variational problem. The constructed 

variational problem is expressed as follows [15]: 

{
 

 𝑚𝑖𝑛{𝑢𝑘}{𝜔𝑘} {∑𝑘 ‖𝜕𝑡[(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑒

−𝑗𝜔𝑘𝑡‖
2

2

}

𝑠. 𝑡.∑𝑘𝑢𝑘(𝑡) = 𝑓(𝑡)

 (1) 

where 𝑘 is the number of intrinsic mode functions (IMFs), and 𝑓(𝑡) is the input original signal, 

{𝑢𝑘} and {𝜔𝑘} are shorthand notations and center frequencies for the set of modes, respectively, t is 

the time, 𝑗 is the imaginary unit, where 𝑗2 is −1, ∗ and 𝛿 are the convolution operator and 

Dirac delta function, respectively. 

A Lagrangian multiplier (𝜆) and a quadratic penalty term (𝛼) are utilized to convert the 

constrained optimization problem (1) into an unconstrained problem, where the augmented 

Lagrangian ℓ is expressed as follows [15]: 

ℓ({𝑢𝑘}, {𝜔𝑘}, 𝜆): 𝛼∑𝑘‖𝜕𝑡 [(𝛿(𝑡) +
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In order to minimize the Lagrangian (2), the alternate direction method of multipliers is utilized 

to iteratively update the frequency-domain modes 𝑢𝑘(𝜔), the center frequencies 𝜔𝑘 , and the 

Lagrangian multiplier 𝜆 as follows [16]: 
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𝜆̂𝑛+1(𝜔) = 𝜆̂𝑛(𝜔) + 𝜏 (𝑓(𝜔) −∑𝑢̂𝑘
𝑛+1(𝜔)

𝑘

) (5) 

where 𝑛  is the iteration counter, 𝜏  is the iterative factor, while  𝑢̂𝑘
𝑛+1(𝜔) , 𝑓(𝜔)  and 𝜆̂𝑛(𝜔) 

represent the Fourier transforms of 𝑢𝑘
𝑛+1(𝑡), 𝑓(𝑡) and 𝜆𝑛(𝑡), respectively. 

3.2. Convolutional neural networks 

Convolutional neural networks (CNN) can accelerate the training process, improve 

generalization performance, and extract the input feature with the identity of local connectivity by 

the weight sharing feature and convolutional computation [13]. As shown in Figure 2, a typical CNN 

mainly consists of a convolutional layer and a pooling layer.  

The convolutional layer is employed for feature extraction and can minimize the training 

parameters and improve feature recognition via local perception and parameter sharing [17]. Each set 

of identical connections between the layers is often called a filter, which corresponds to the feature 

extraction and generates a feature mapping. Multiple filters employed in the convolutional layer can 

be expressed as follows [17]: 

𝐶 = 𝜎(𝑋 ⊗𝑊 + 𝑏) (6) 

where 𝑋 is the input matrix, ⊗ is the convolution operation, 𝜎 is the activation function (this 

paper selects the Relu function), 𝑊 is the weight matrix, and 𝑏 is the bias. 

 

Figure 2. Diagram of a two-dimensional convolution neural network. 

The pooling layer is employed for pooling the data after the convolutional operation. In this 

layer, the feature mapping obtained from the convolutional layer is divided into several small 

adjacent regions and reduced to a single value based on the average or maximum value. The pooling 

Input

Convolution Pooling

output

Dense
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layer can compress the data, remove unnecessary information, effectively enhance the network’s 

generalization ability, and increase the computational speed. The maximum value pooling is chosen 

in this study. 

3.3 Long short-term memory network 

As a special kind of neural network, LSTM employs a gating mechanism for long-time series 

modeling and forecasting. The LSTM structure is shown in Figure 3 [18]. 

LSTM mainly controls the information sent to the cell state by the forget gate (𝑓𝑡), input gate 

(𝑖𝑡), and output gate (𝑜𝑡). It outputs a vector (𝑓𝑡) whose range is (0,1) to control the information 

from ℎ𝑡−1 and 𝑥𝑡 flow within the cell. The detailed calculation formula is as follows [19].  

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (8) 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶̃𝑥𝑡 + 𝑈𝐶̃ℎ𝑡−1 + 𝑏𝐶̃) (9) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (10) 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (11) 

ℎ𝑡 = 𝑜𝑡*tanh(𝐶𝑡) (12) 

where 𝑊𝑓, 𝑊𝑖, 𝑊𝐶̃  and 𝑊𝑜 are input weight matrices of 𝑓, 𝑖, 𝐶̃𝑡 and 𝑜, respectively. 𝑏𝑓, 𝑏𝑖, 
𝑏𝐶̃ and 𝑏𝑜 are recurrent weight matrices of 𝑓, 𝑖, 𝐶̃𝑡 and 𝑜, respectively. The last and the currently 

hidden cell states are indicated with the symbols ℎ𝑡−1 and ℎ𝑡, respectively. The symbols 𝐶𝑡−1 and 

𝐶𝑡 stand for the old and current cell information states, respectively. The symbol 𝐶̃𝑡 is the candidate 

cell information through the tanh layer. 𝜎 is the sigmoid function. 

 

Figure 3. The cell state structure of LSTM. 
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3.4. The VMD-CNN-LSTM model 

In order to solve the above problems, the VMD-CNN-LSTM model is established to predict the 

monthly runoff, and the design details can be summarized as follows (see Figure 4). 

 

Figure 4. VMD-CNN-LSTM realization flow chart (The original set length is N; training 

set length is n; Max (lags) in every PACF of subsequences is L; leading time is m; the 

original runoff is Q; len(Set) is the length of the validation-testing set). 

Step 1: Collect monthly runoff time series data then divide it into the training and 

validation-testing sets (including 70% and 30% of the total series data, respectively). 

Step 2: Extract k signal components of the intrinsic mode function from the training set to 

obtain the training sub-signals by VMD, where k is the decomposition number which depends on the 

phenomenon of the center frequency aliasing.  

Step 3: Set an index i with an initial value of 1, and take out the first i values in the 

validation-testing set to obtain an appended set. 

Step 4: Employ the VMD method to decompose the appended set to obtain and save the 

appended sub-signals. 

Step 5: Add one to the value of i, repeat Step 3 and Step 4 until the value of i exceeds the length 

of the validation-testing set. Now, a set of appended decomposition sub-signals can be obtained for 

each point of the validation-testing set.  

Step 6: Select the optimal time delay of all training sub-signals using the PACF method [20] to 
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obtain the maximum time delay L among the optimal time delays. 

Step 7: Get the maximum and minimum values of each training subsequence, and employ the 

maximum-minimum (max-min) normalization method to normalize each subsequence of the training 

and validation-testing sets, respectively. 

Step 8: Generate the input matrix (L ×  k) according to the maximum delay L and 

decomposition number k, take the matrix as the model input, set the model output according to the 

leading time, then take them as a sample. 

Step 9: Get a training sample through Step 8, and sequentially generate the sample for each set 

of the appended sub-signals, merge each of the last generated samples into the validation-testing 

sample.  

Step 10: Divide the validation-testing sample into validation and testing samples, Concatenate 

training and validation samples to train and validate the model using cross-validation strategy [21] 

and test the model using testing sample. 

3.5. Experiment setting 

This paper investigates the monthly runoff data of the Huaxian and Xianyang hydrological 

stations in the Wei River Basin for the experiment. Then, the no-decomposition autoregressive 

integrated moving average (ARIMA) and LSTM models are chosen as the baseline models to 

compare with the VMD-CNN-LSTM model in the 1-month leading time. Moreover, the performance 

of the VMD-CNN-LSTM in different leading times is also verified in this experiment. 

In these models, the optimal hyperparameters of the ARIMA, such as autoregressive and 

moving-average lags, are selected by grid search (GS) based on the Akaike Information Criterion, 

while the degree of difference is determined based on the augmented dickey-fuller (ADF) test [22]. 

The no-decomposition LSTM is trained by the monthly runoff series with the recent runoff data input 

determined by the PACF, while the Bayesian optimization (BO) algorithm [23] is employed to select 

the optimal hyperparameters, such as learning rate, the number of the hidden units, and the dropout 

rate. In the VMD-CNN-LSTM model, the BO algorithm is utilized to obtain the optimal values of 

the hyperparameters of the CNN and LSTM, such as the number of filters and the kernel size. The 

details of the mentioned hyperparameters of these models are shown in Table 1. 

In Table 1, the max trial represents the maximum tuning times of each strategy; the formulas 

like [1: 1: 20] mean the beginning of the search scope, search step, and the end of the search scope, 

respectively, while these sample strategies employ uniform sampling. Especially logarithmic 

sampling is chosen as the search strategy of the learning rate. Besides, the hyperparameters of the 

LSTM in the VMD-CNN-LSTM are compatible with the baseline LSTM. Taking the monthly runoff 

series of Xianyang station as an example, a VMD-CNN-LSTM forecasting model is established 

based on the BO algorithm with 50 optimization times, and the optimization process is presented in 

Table 2. 

As shown in Table 2, Index shows the order of each set of hyperparameters; while the Score is 

the mean square error (MSE), the smaller the score is, the better this set performs. The other columns 

describe the hyperparameters in the model. 1 hidden layer (NL) can get satisfactory predictions, and 

the number of layer units is a larger value, the pool size of Maxpooling2d_1 (KS_1) and the kernel 

size of the Cov2d_2 (KS_2) are consistent with the value of 4 and 2 in the top 10 sets of 

hyperparameters. However, other hyperparameters are not very sensitive to the model performance. 
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Table 1. The details of the hyperparameters mentioned in the forecasting models. 

Forecasting model Tuning strategy Hyperparameter Search scope 

ARIMA GS Degree of difference(d) 

Autoregressive lags(p) 

Moving-average lags(q) 

Based on ADF test 

[1: 1: 20] 

[1: 1: 20] 

LSTM BO 

(max trial = 50) 

Number of hidden layer(NL) 

Number of layer units(NU) 

Drop rate(DR) 

Batch size(BS) 

Optimizer 

Learning rate(LR) 

Activation 

1 or 2 

[16: 16: 64] 

[0: 0.05: 0.5] 

512 

Adam 

[10-4: 10-1] 

Relu 

VMD-CNN-LSTM BO 

(max trial = 50) 

Number of filters(NF) 

Kernel size(KS) 

Pool size(PS) 

Padding strategy 

LSTM hyperparameter 

[8: 8: 64] 

[2, 3, 4] 

[2, 3, 4] 

Same padding 

Consistent with LSTM  

Table 2. Top 10 best sets of hyperparameters during the BO process in the 

VMD-CNN-LSTM model. 

Index NL NU_0 DR_0 LR NF KS_1 KS_2 PS_1 PS_2 Score 

40 1 48 0.3 0.0011 32 3 4 2 3 0.0193 

23 1 64 0.45 0.0047 16 4 4 2 3 0.0195 

37 1 48 0.5 0.0009 40 4 4 2 2 0.0199 

9 1 48 0.45 0.0022 16 3 4 2 4 0.0203 

24 1 64 0.5 0.0003 40 4 4 2 4 0.0218 

46 1 64 0.2 0.0012 8 4 4 2 4 0.0235 

28 1 48 0.3 0.0187 16 2 4 2 4 0.0240 

27 1 32 0.5 0.0039 56 4 4 3 3 0.0247 

44 1 48 0.45 0.0015 48 4 3 3 2 0.0252 

29 1 48 0.15 0.0004 64 4 2 3 2 0.0295 

3.6. Evaluation criteria 

In this paper, four error analysis criteria are utilized to evaluate the forecasting capacity of the 

proposed model and the baseline models. These evaluation criteria are expressed in the following 

equations. The normalized root mean square error (NRMSE) [7] reflects the prediction error directly 

by calculating the normalized difference between the prediction and recorded values. Similar to 

mean absolute error (MAE), mean absolute percentage error (MAPE) [9] converts MAE into the 

percentage value to identify the model performance quickly. If the MAPE value is greater than 1, the 

model’s performance is not satisfactory. Nash-Sutcliffe efficiency (NSE) [7] is widely utilized in 

time series forecasting; the closer the NSE is to the 1, the more accurate the model prediction is. 

Peak percent threshold statistics (PPTS) [26] can evaluate the forecasting precision of the peak 
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runoff by comparing the prediction error of the peak value. 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑥(𝑡) − 𝑥̂(𝑡))2/𝑁𝑁

𝑡=1

∑ 𝑥(𝑡)/𝑁𝑁
𝑡=1

 (13) 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑|

𝑥(𝑡) − 𝑥̂(𝑡)

𝑥(𝑡)
|

𝑁

𝑡=1

 (14) 

𝑁𝑆𝐸 = 1 −
∑ (𝑥(𝑡) − 𝑥̂(𝑡))2𝑁
𝑡=1

∑ (𝑥(𝑡) − 𝑥̄(𝑡))2𝑁
𝑡=1

 (15) 

𝑃𝑃𝑇𝑆(𝛾) =
100

𝛾

1

𝑁
∑|

𝑥(𝑡) − 𝑥̂(𝑡)

𝑥(𝑡)
∙ 100|

𝐺

𝑡=1

 (16) 

where 𝑥(𝑡) and 𝑥̂(𝑡) are the original time series and the predicted time series, respectively; 𝑥̄(𝑡) 

is the average of the original time series; 𝑁 is the length of the time series; 𝛾 is the percentage of 

the data selected from the top of the arranged data sequence, namely the threshold level; 𝐺 is the 

number of the values higher the threshold level. 

4. Results and discussion 

4.1. Preparation of the VMD-CNN-LSTM input 

 

Figure 5. VMD mode components of monthly runoff with corresponding spectra in K = 8 

and K = 9 at the Huaxian station. 

K=8

K=9

Amplitude

Amplitude
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In order to improve the precision of the prediction, the VMD method is proposed to extract the 

sub-signals of the time series, and the suitable number of IMFs k is determined by finding the center 

frequency aliasing phenomenon in the last component [15]. In this experiment, the k values from 2 to 

12 are evaluated at the Huaxian station, and the center frequency aliasing phenomenon is found in 

the k value of 9, as shown in Figure 5. Thus, the 8 is selected as the suitable k. Now, the 

decomposition result of the time series is shown in Figure 6. Then, the max-min normalization [24] 

is employed to normalize the decomposition subsequences into [-1, 1]. Finally, the input matrix is 

constructed based on the maximum delay among the selected time delays. The input preparation of 

the Xianyang station is the same as the above. 

 

Figure 6. VMD decomposition result of the Huaxian station. 

 

Figure 7. The predicted results and the scatters of different models at the Huaxian station. 

4.2. Comparing the prediction results of different models 

The comparisons of the 1-month prediction between ARIMA, LSTM, and VMD-CNN-LSTM at 

Huaxian and Xianyang stations are presented in Figures 7 and 8 and Table 3. According to the line 

Records ARIMA LSTM VMD-CNN-LSTM

Ideal fit

Linear fit

Ideal fit

Linear fit

Ideal fit

Linear fit

Time(month)
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chart in Figures 7 and 8, the CNN-VMD-LSTM prediction is generally consistent with the change of 

the record runoff compared with the ARIMA and LSTM. However, the peak values predicted by 

ARIMA and LSTM models are generally lower than the record runoff, while there is a significant 

delay in these predictions, which means that these models cannot forecast the appearance time of the 

peak value. As shown in each scatter diagram of the models, the scatter of the VMD-CNN-LSTM 

predictions and records are mainly concentrated near the ideal fit, indicating a higher consistency 

compared with the ARIMA and LSTM models. Simultaneously, it can be concluded from each 

scatter diagram that the VMD-CNN-LSTM also has the smallest angle, reflecting the best prediction 

ability.  

 

Figure 8. The predicted results and the scatters of different models at the Xianyang station. 

Moreover, the quantitative evaluations of these models in Table 3 demonstrate that the 

VMD-CNN-LSTM model has a lower NRMSE, MAPE, and PPTS, while the NSE value is close to 1, 

which indicates that the model has a prediction ability superior to the other models. Besides, the 

PPTS of the VMD-CNN-LSTM model is far below the MAPE, which means the model can well fit 

the peak value in the runoff. However, due to the complexity of the model, it needs massive 

computing time and computing resources while selecting its hyperparameters. 

Table 3. Comparison of prediction performances using different models. 

Station models NRMSE MAPE NSE PPTS Time cost(s) 

Huaxian ARIMA 0.81 69.36 0.35 51.62 11.697 

LSTM 0.90 62.16 0.21 58.86 2632.43 

VMD-CNN-LSTM 0.20 24.69 0.96 3.78 6439.86 

Xianyang ARIMA 0.90 73.94 0.33 47.21 13.256 

LSTM 0.97 71.99 0.22 56.91 2872.16 

VMD-CNN-LSTM 0.24 25.04 0.95 6.04 7821.28 

In summary, the prediction ability can be ranked from high to low as VMD-CNN-LSTM > 

ARIMA ≈ LSTM. Since the no-decomposition model can only employ the original data, it is 

difficult to capture the nonlinear characteristics. Accordingly, the ARIMA and LSTM models cannot 

Records ARIMA LSTM VMD-CNN-LSTM

Ideal fit

Linear fit

Ideal fit

Linear fit

Ideal fit

Linear fit

Time(month)



1645 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 1633−1648. 

give good prediction results. The proposed VMD-CNN-LSTM model can extract the information in 

the original data via VMD and CNN and apply it into the LSTM to obtain a more precise prediction 

result for both the Huaxian and Xianyang stations compared with the no-decomposition model.  

4.3. Comparing the prediction results for different leading times 

 

Figure 9. The predicted results and scatters of different leading times. 

We set 1, 3, 5 and 7 month-ahead runoff forecastings at the Huaxian station to evaluate the 

prediction ability of the VMD-CNN-LSTM model in various leading times. Figure 9 shows the 

prediction line chart and scatter diagram in different leading times, and Table 4 shows the 

corresponding quantitative evaluations. As shown in the line chart in Figure 9, the predictions can 

vary consistently with the records in different leading times. However, in the 7-month-ahead runoff 

forecast, the model underestimates the record values in the peak runoff and overestimates them in the 

valley runoff. As shown in the scatter chart in Figure 9, the scatter of the predictions and records 

1-month-ahead

3-month-ahead

5-month-ahead

7-month-ahead
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gradually deviates from the ideal fit, while the linear fits in the 3 and 7 month-ahead predictions are 

above the ideal fit, indicating that the model generally underestimates the records in these leading 

times. In Table 4, the NSEs of 1, 3 and 5 month-ahead predictions are all over 0.9, demonstrating a 

good prediction ability. However, in the 7-month-ahead, the precision of the predictions is 

significantly decreased. According to the PPTS and MAPE, the PPTS and MAPE increase with the 

increase of the leading time, while the PPTS gradually approaches the MAPE, which indicates that 

the prediction error in the 7-month-ahead is mainly in the peak runoff value. 

Table 4. Comparison of prediction performances in different leading times. 

Leading time NRMSE MAPE NSE PPTS 

1-month-ahead 0.20 24.69 0.96 3.783 

3-month-ahead 0.22 27.75 0.95 6.262 

5-month-ahead 0.31 30.30 0.91 10.94 

7-month-ahead 0.41 32.91 0.83 22.91 

In conclusion, the VMD-CNN-LSTM model provides more accurate predictions in different 

leading times. However, the performance of the 7-month-ahead prediction has decreased, which is 

mainly reflected in the peak runoff value prediction. Moreover, it can be concluded that since the 

correlation between the predicted and target values is decreasing, the model cannot obtain enough 

information to give a precise prediction.  

5. Conclusions 

The VMD-CNN-LSTM model employs the correlation information among the decomposed 

sub-signals for forecasting to improve monthly runoff forecasting performance and accelerate the 

training process. In this model, VMD decomposes the single time series and provides more 

information for forecasting, which makes the model different from the baseline model. CNN 

accelerates the training process and utilizes the potential correlation information by extracting the 

features from the sub-signals, while LSTM is employed to attain precise forecasting with adequate 

input information by VMD and CNN. The monthly runoff data of the Huaxian and Xianyang 

hydrological stations in the Wei River Basin are employed to evaluate the proposed model.  

Compared with the ARIMA and LSTM in the 1-month leading time, the VMD-CNN-LSTM 

model provides the best prediction accuracy, which can reflect the general tendency and the peak 

value of the monthly runoff and help to support the flood emergency management. 

Comparing the VMD-CNN-LSTM model predictions in different leading times indicates that 

the VMD-CNN-LSTM model provides an acceptable prediction precision. However, due to the 

decreasing correlation between the predictors and targets, its performance decreases in the 

7-month-ahead, underestimating the peak runoff values. 

In summary, the VMD-CNN-LSTM model is superior to the baseline models in prediction tasks 

considering the feature boost by the VMD method and the feature extraction by CNN. However, 

increasing the leading time leads to inevitable missing information in the time series, which may 

degrade the prediction performance. Moreover, CNN increases the model's training time cost while 

the LSTM input features are significant. As future work, the attention layer can be located before the 

LSTM layer, which is widely utilized in image recognization and natural language processing. 
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Furthermore, the training time should be reduced. 
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