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Abstract: Delineation of the boundaries of the Left Ventricle (LV) in cardiac Magnetic Resonance 
Images (MRI) is a hot topic due to its important diagnostic power. In this paper, an approach is 
proposed to extract the LV in a sequence of MR images. In the proposed paper, all images in the 
sequence are segmented simultaneously and the shape of the LV in each image is supposed to be 
similar to that of the LV in nearby images in the sequence. We coined the novel shape similarity 
constraint, and it is called sequential shape similarity (SSS in short). The proposed segmentation 
method takes the Active Contour Model as the base model and our previously proposed Gradient 
Vector Convolution (GVC) external force is also adopted. With the SSS constraint, the snake contour 
can accurately delineate the LV boundaries. We evaluate our method on two cardiac MRI datasets 
and the Mean Absolute Distance (MAD) metric and the Hausdorff Distance (HD) metric demonstrate 
that the proposed approach has good performance on segmenting the boundaries of the LV. 
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1. Introduction  

Cardiac Magnetic Resonance (MR) Imaging provides high spatial and temporal resolution 
images and has been proven to be a powerful imaging modality [1,2]. It can capture the anatomical 
and functional information of a heart within a cycle [3], and thus, be well suited for the clinical 
diagnosis and research of cardiovascular diseases (CVDs) for radiologists and physicians. 
Quantification of the Left Ventricle (LV) of the heart usually acts as index of cardiac health [4]. 
Therefore, segmentation of the LV from cardiac MR images is an essential prerequisite for the 
diagnosis. From accurate segmentation results, many clinical diagnosis indices such as wall thickness, 
myocardial strain, ejection fraction, and circumferential shortening of myocardial fibers can be 
evaluated [5]. 

Clinically, delineating the boundaries of the LV is often performed manually. However, manual 
segmentation often takes a long time, and is tedious, and subject to high inter-observer variability. 
Thus, there is a flurry of works devoted to segmenting the LV from MRI in the past decades, such as 
classification [6–8], watershed [9], graph cuts [10], active contour models [11–16], level set [16–31], 
active shape models [32–36], and other methods [37,38]. Petitjean [39] and Peng [40] presented a 
comprehensive review respectively on this topic, interested readers can refer to [39,40] for details 
and references, and we merely present a brief survey here. 

Active contour models, or the snake models, were one of the most popular tools for 
segmentation of the region of interesting (ROI), and found successful applications in extracting the 
LV from MRI. The basic principle remains the same as those presented in the seminal work on the 
snake model proposed by Kass et al. [41]. Wu et al. coined the circle shape energy to aid the snake 
model, which considered the LV as a circle, and extracted the endo- and epicardium of the LV by 
coining the shape similarity constraint [11]. However, the delineation merely relying on the shape 
constraint still results in mistakes when the discontinuities are found in the object boundaries. The 
discontinuities may be caused by the papillary muscle or the organs nearby such as the liver. 
Santarelli also used the snake model for this task [13], in which the Gradient Vector Flow [42] acts as 
an external force. However, there is no solution for artifacts and weak edges. Ranganath [14] 
modified the internal energy of the snake by taking into account the curvature of the snake contour to 
smooth the boundary of the LV. McInerney et al. coined an active surface model to extract the 
surface of the LV by representing the surface using finite element [15]. 

Geometric active contour, or level set, has been proven to be very powerful in a variety of 
segmentation tasks including the LV extraction. Li et al. coined a bi-layer level set [17] to extract the 
inner and outer boundaries of the LV, then the bi-ventricle [18]. Ismail et al. manually extract the LV 
in the first frame in a sequence of images, and supposed the intensity distribution of the myocardium 
in the first image is similar to the rest of the ones in the sequence [25]. Pluempitiwiriyawej 
introduced the ellipse-fitting scheme into the level set model and proposed an integrated model for 
cardiac MR image segmentation [28]. 

With the development of deep learning, deep learning-based methods have shown impressive 
performance in medical image processing tasks. For example, Zhang et al. proposed the BLU-Net [43] 
to segment LV, Wang et al. combined the DenseNet segmentation and convolution neural 
network(CNN) regression to quantify full LV metrics [44], Shen et al. proposed a pure dilated 
residual U-Net [45] to segment the femur and tibia bones. Besides, deep learning combined with 
traditional methods has also been proved to be useful. Ngo combined deep learning and level set [46] 
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to segment the left ventricle of the heart from cardiac cine MR data automatically, in which the deep 
learning method is responsible for locating the LV, and the level set is responsible for refining the 
boundary of the LV. Avendi et al. combined deep learning algorithms with deformable models [47] to 
evaluate automatically the LV function from short-axis cardiac MRI datasets. 

In this study, we propose an extension of our previous work in [11] based on the snake model. 
For a MR image sequence, it is often sampled from a cardiac cycle, and it is noticed that the shape of 
the LV in one image is similar to that of the LV in nearby ones in the sequence. In the 
aforementioned works, segmentation is carried out in an image-by-image manner, while in this work, 
we propose to segment all images in the sequence simultaneously and the shape of the LV in each 
image is supposed to be similar to that of the LV in nearby images in the sequence. We coined the 
novel shape similarity constraint, and it is called sequential shape similarity (SSS in short). Our 
approach integrates the prior knowledge from the image sequence into the snake model. 

The organization of this paper is as follows. Section II presents a brief introduction of our 
previous work in [11]. In Section III, the proposed sequential shape similarity (SSS) is detailed. In 
Section IV, the experimental results are reported, and the conclusion marks are presented in the 
final Section. 

2. Background 

We first made a brief review of our previous work [11], which include the snake model, GVC 
external force, Circle Shape Constraint (CSC) for endocardium segmentation, shape similarity 
constraint (SSC), and novel edge map for epicardium.  

2.1. GVC snakes 

Active contour models or snakes, coined by Kass et al. in 1988 [41], are dynamic curves 
𝑐 𝑠 𝑥 𝑠 , 𝑦 𝑠 , 𝑠 ∈ 0,1   that evolve by minimizing the following energy functional, 

𝐸 𝛼|𝑐 𝑠 | 𝛽|𝑐 𝑠 | 𝐸 𝑑𝑠  (1)

where 𝑐 𝑠  and 𝑐 𝑠  are the first and second derivatives of 𝑐 𝑠  with respect to arc length s. 𝛼 
and 𝛽 are the weights controlling the smoothness and rigidity of the curve, respectively. 𝐸  is 
derived from the image data and takes the smallest values at boundaries. The snake models gained 
great success in image processing. 

However, the traditional snakes are limited by the external force based on image gradient. 
Therefore, the gradient vector flow (GVF) for snakes is proposed by Xu and Prince [42]. The GVF is 
effective, yet, with high computation costs. To overcome this shortcoming, we previously proposed a 
new external force called Gradient Vector Convolution(GVC) [48] based on convolution and fast 
Fourier transform (FFT). The GVC can be calculated as follows: 

𝑢 𝑥, 𝑦 𝐾 ⊗ 𝑓
𝑣 𝑥, 𝑦 𝐾 ⊗ 𝑓  (2)

where 𝐾  is the convolution kernel, ⊗ is the convolution operator. The GVC model behaves 
similarly to the well-known GVF model on enlarging capture range and robustness to initialization. 
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Moreover, using the FFT, the GVC can be implemented in real-time since it is expressed in 
convolution, and thus, the snake model can also benefit from this fact. In practice, we take 𝐾
1 𝑟⁄ , where 𝑟 𝑥 𝑦 ℎ  ℎ ∈ 𝑅 , 𝑛 ∈ 𝑅 . 𝐾  always shows high performance in 
terms of extending and smoothing gradient vectors. Thereby, the GVC snake can preserve edges and 
dive into deep concavities. 

2.2. Circle shape and shape similarity constraints 

For the segmentation of the endo- and epicardium of the LV, the difficulties originate primarily 
from the gaps or the weak boundaries caused by the artifacts and papillary muscles. In the seminal 
work in Eq (1), the internal energy, which consists of first and second derivatives, controls the 
continuity and smoothness of the contour, respectively. However, the first and second derivatives are 
merely local geometrical properties of the contour and if there were weak edges or gaps, the snake 
contour would fail to bridge the gaps and leak out. Moreover, if there is a local minimum caused by 
the external force, the snake contour would be trapped. To address these issues, the information 
about the overall shape of the endo- and epicardium should be incorporated into the snake energies. 
The shape information will guide the snake contour to delineate the target object correctly. The circle 
shape constraint (CSC), which roughly regards the shape of the endocardium as a circle, is adopted 
for the segmentation. This shape constraint tries to keep the contour being a circle during the 
movement. The circle shape constraint can be represented as follows, 

𝐸𝑪𝑺𝑪 𝑅 𝑠 𝑅 𝑑𝑠  (3) 

where 𝑅 𝑠 𝑥 𝑠 𝑥 𝑦 𝑠 𝑦 , 𝑅 𝑅 𝑠 𝑑𝑠 , 𝑥 𝑥 𝑠 𝑑𝑠 , 𝑦 𝑦 𝑠 𝑑𝑠 . 

𝑥 , 𝑦  is the center of the snake contour. The energy function in Eq (3) characterizes the deviation 
of the snake contour from a circle of radius 𝑅 located at 𝑥 , 𝑦 . Both radius 𝑅 and 𝑥 , 𝑦  
change along with the motion of the snake contour. If the snake contour is attracted by some 
nuisances such as the or papillary muscle, tit is still approximately a circle under this constraint, 
which is the global shape of the LV. 

For segmentation of the epicardium, we proposed the Shape Similarity Constraint (SSC) that is 
based on the observation of shape similarity between the endocardium and the epicardium. The 
segmented endocardium is referred to as a prior shape constraint to extract the epicardium. The SSC 
constraint is formulated as, 

𝐸𝑺𝑺𝑪 𝑅 𝑠 𝑅 𝑟 𝑠 �̅� 𝑑𝑠  (4)

The parameters in Eq (4) are meaningly similar to those in Eq (3), but 𝑅 and 𝑅 are for epicardium 
and 𝑟 and �̅� are for segmented endocardium. 

2.3. Modified edge map for epicardium segmentation 

After the endocardium is segmented, the result is employed as the initial contour to segment the 
epicardium contour. However, the endocardium is merely a local minimum of the external energy 
derived from GVC (the red circle approximates the endocardium in the upper-right of Figure 1), and it 
would prevent the contour from converging towards the epicardium (the yellow circle approximates the 
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epicardium in the upper-right of Figure 1. To address the issue, the original edge map is corrected by 
setting to zero the original edge map around and within the endocardium. This new edge map is used to 
calculate a new external force by GVC, and the endocardium is no longer the local minimum, and the 
new external force can directly put the snake contour forward to the epicardium. 

 

 

Figure 1. Comparison of external forces for epicardium segmentation. The upper row: the 
original edge map and force field. The lower row: the modified edge map and force field. 

 

(a)           (b)           (c) 

Figure 2. Three samples in an image sequence.  

3. Proposed method: sequential shape similarity 

Let 𝐼 be an MR image sequence containing 𝐾 images. Suppose that there are 20 samples in a 
cardiac cycle, and the number K is equal to 20. Generally speaking, the purpose of the LV 
segmentation is to track the endocardium 𝑅 and epicardium 𝑅 in each image 𝐼 , 𝑘 1, … , 𝐾. 

The aforementioned SSC can be described as follows, 𝑅 and 𝑅  in image 𝐼  are generally 

similar in shape and when segmenting 𝑅 , the segmented 𝑅  is referred to as the prior shape 
constraint. For SSC, only the similarity in a single image is integrated into the snake model and some 
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useful information among the images in a sequence is discarded. For example in Figure 2, there are 
gaps in the myocardium in Figure 2(b), see the location in the red circle, and it is hard to extract the 
myocardium in an image-by-image manner. However, in Figure 2(a),(c), the myocardium is intact, 
therefore, the shape of the myocardium in Figure 2(a),(c) can be employed to construct the constraint 
to segment the endo- and epicardium in Figure 2(b). 

Based on the observation in Figure 2, we propose the sequential shape similarity (SSS in short). 
For an image 𝐼  (say the one in Figure 2(b)) and its neighbors 𝐼  (the one in Figure 2(a)) and 
𝐼  (the one in Figure 2(c)) in sequence 𝐼, the shape of the endocardium 𝑅  is similar to 
𝑅  and 𝑅 . Thus when segmenting 𝑅 , besides the CSC in Eq (3), 𝑅 and 𝑅  can 
be also referred to as the prior shape constraint. Furthermore, the similarity range can be extended 
from 𝑅  to 𝑅 , 𝑚 ∈ 1, ⋯ 𝐾 2⁄ . For 𝑅 , there are 2 m endocardium in the sequence to 

construct a more effective similarity constraint. For 𝑅 , besides the SSC in Eq (4), 𝑅  and 

𝑅  can be also referred to as the prior shape constraint. The proposed constraint is called 
sequential shape similarity (SSS). For clarification, we neglect the upper indices (epi, endo) in the 
derivation of the SSS, and the SSS can be represented as follow 

𝐸𝑺𝑺𝑺 ∑ 𝑅 𝑠 𝑅 𝑅 𝑠 𝑅 𝑑𝑠  (5)

where 𝑚 ∈ 1, ⋯ 𝐾 2⁄ . The parameters in Eq (5) are meaningly similar to those in Eq (4), but 
𝑅 𝑠  and 𝑅  are for image 𝐼  and 𝑅 𝑠  and 𝑅  are for image 𝐼 . In Eq (5), it is clear 
that 𝑅 𝑠 𝑅  characterize the deviation of the snake contour from a circle of radius 𝑅  in 𝐼  
and 𝑅 𝑠 𝑅  measures the deviation of the snake contour from a circle with a radius 𝑅  
in  𝐼 . Minimizing 𝐸  makes the snake contour resembling the shape of LV in all the images in 
sequence 𝐼.  

Suppose there are n discrete points on the snake contour, 𝑅 and 𝑅   in Eq (5) can be estimated 

by 𝑅 ∑ 𝑅 , 𝑅 𝑥 𝑥 𝑦 𝑦 , and 𝑥 ∑ 𝑥 ,  𝑦 ∑ 𝑦 , 𝑖

1,2, ⋯ , 𝑛, 𝑥 , 𝑦  is the centroid of the contour in 𝐼 . By calculus of variation, the discretized 
equation of Eq (5) reads,  

∑ 𝜌 𝑥 𝑥 𝑥 𝑥 𝑅 𝑅 ∗ 𝑐𝑜𝑠 2𝜋𝑖 𝑛⁄ 0

∑ 𝜌 𝑦 𝑦 𝑦 𝑦 𝑅 𝑅 ∗ 𝑠𝑖𝑛 2𝜋𝑖 𝑛⁄ 0
  (6) 

here, the following function is employed to determine the weight 𝜌 ,  

𝜌 𝑎 ∙ 𝑒 ⁄ , 𝑗 ∈ 𝑚, 𝑚  (7)

𝜌  is to weigh the degree of similarity of 𝑅  and 𝑅 . For the image 𝐼 , it is obvious that 
when 𝑗 1, 𝐼  is the neighbor of 𝐼 , and there should be a larger 𝜌  to weigh the similarity; 
when 𝑗 increases or decreases, the 𝐼  is far from 𝐼  and the weight 𝜌  should be decreased 
accordingly. Figure 3 illustrates the weight for the image 𝐼  with varying 𝑗, where 𝑎 1, 𝑏 2. 

The solution of Eq (5) is based on the shape similarity of the LV in the sequence, and the 
contours are changing during the snake deforming process. Thus, the deforming process of all of the 
contours should be carried on simultaneously, and all the images in the sequence are supposed to be 
segmented simultaneously. With the SSS and the strategies in Section II, we summary the 
segmentation algorithm in Algorithm 1. 
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Figure 3. Weights corresponding to Eq (7), a=1, b=2. 

(a)  

(b)  

(c)  

Figure 4. Demonstration of segmentation of synthetic images, (a) an image sequence, (b) 
segmentation results of GVC snake without SSS, (c) segmentation results of GVC snake 
with SSS. 

4. Experimental results 

In order to verify the performance of the proposed strategy, the parameters of our model are 
𝛼 0.5, 𝛽 0.5, 𝜆 0.4, 𝜂 0.6, 𝑛 2.6, ℎ 1, 𝑎 1, 𝑏 2, 𝑚 1 . In our experiments, two 
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datasets are employed for evaluation: MICCAI 2009 [43] and the dataset published by Shuo Li 
(Shuo Dataset in short) [43,44,49]. Cardiac cine MRI data of MICCAI 2009 is provided by the 
MICCAI 2009 cardiac MR LV segmentation challenge organizers [43], and there are 2900 2D 
short-axis cine MR images of 145 subjects in the Shuo Dataset, and interested readers can find a 
detailed description in [49]. 

Algorithm 1. Segmentation of the cardiac MR image sequence  

Input Data: a sequence of the cardiac MR images, suppose K images 
Parameters: α, β, λ, η, n, h, a, b, m 
// First, segment the endocardium of the LV in each image 
1). Calculate the edge map of each image; 
2). Calculate the GVC external force for each image as in Eq (2); 
3). Initialize the snake contour in the 𝑘  image 𝑐 , 𝑆 , 𝑘 1, ⋯ , 𝐾; 
4). The Number of converged snakes, 𝑖𝑡𝑒𝑟 0; 
While 𝑖𝑡𝑒𝑟 𝐾 do 
  for 𝑘 1, ⋯ , 𝐾 do 

if 𝑐 , 𝑆  is not converged, //For the 𝑘  image, 
Calculate the CSC in Eq (3); 

      Calculate the SSS in Eq (5); 
Deform the snake contour 𝑐 , 𝑆 ; 
if 𝑐 , 𝑆  is converged, 𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟 1; end 

end 
  end 
end 
Return: the converged contour 𝑐 , 𝑆 , 𝑘 1, ⋯ , 𝐾. 

// Then, segment the epicardium of the LV in each image 
1). Modify the edge map of each image as described in Section II.C; 
2). Calculate the GVC external force for each image as in Eq (2); 
3). Initialize the snake in the 𝑘  image 𝑐 , 𝑆  using 𝑐 , 𝑆 , 𝑘 1, ⋯ , 𝐾; 
4). The Number of converged snakes, 𝑖𝑡𝑒𝑟 0; 
While 𝑖𝑡𝑒𝑟 𝐾 do 
    for 𝑘 1, ⋯ , 𝐾 do 
       if 𝑐 , 𝑆  is not converged, //For the 𝑘   image, 
          Calculate the internal force in Eq (1); 
          Calculate the SSC in Eq (4); 
          Calculate the SSS in Eq (5); 

   Deform the snake contour 𝑐 , 𝑆 ; 
   if 𝑐 , 𝑆  is converged, 𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟 1; end 
end 

   end 
end 
Return: the converged contour 𝑐 , 𝑆 , 𝑘 1, ⋯ , 𝐾. 
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Two metrics are employed to evaluate the segmentation performance, i.e., the Mean Absolute 
Distance (MAD) and the Hausdorff Distance (HD). Suppose the snake contour 𝑆 𝑠 , 𝑠 , ⋯ , 𝑠  
has p points, and the ground truth 𝑀 𝑚 , 𝑚, ⋯ , 𝑚  has q points, the MAD and HD are 
respectively defined as 

𝑀𝐴𝐷 𝑆, 𝑀 ∑ 𝑑 𝑠 , 𝑀 ∑ 𝑑 𝑚 , 𝑆   (8) 

𝐻𝐷 𝑚𝑎𝑥 𝑚𝑎𝑥
∈

𝑑 𝑠 , 𝑀 , 𝑚𝑎𝑥
∈

𝑑 𝑚 , 𝑆  (9) 

where 𝑑 𝑠 , 𝑀 𝑚𝑖𝑛
∈ , ∈

𝑠 𝑚  is the distance from point 𝑠  to the closet point on contour 

𝑀 and 𝑑 𝑚 , 𝑆 𝑚𝑖𝑛
∈ , ∈

𝑚 𝑠  is that from point 𝑚  to the closet point on contour 𝑆. 

The MICCAI 2009 dataset is first employed for comparison, and the radial GVF method 
(RGVF) [16], level set method [23], the max-flow method (MFM) [25], and our previous work [11] 
are applied for comparison on this dataset, the detailed description of this dataset has been presented 
in [43]. The endocardia in Figure 5, especially in images #6–#10, are challenging for the snake 
model. However, the work in [11] regards the shape of the endocardium as a circle and employs the 
CSC as constraint, while the proposed strategy supposes that the shape of the endocardia in the 
consecutive image is similar and employs the SSS and CSC as constraints. The two methods both get 
pleasant results. But for epicardium segmentation, the artifacts and noise make some of the 
boundaries ‘missing’, and the snake moves to a false contour shown just with SSC in Figure 5(a), the 
results are a little far from pleasant. Figure 5(b) shows that the extra SSS effectively pushes the snake 
contour to the expected solution. Figure 6 shows the MAD errors corresponding to Figure 5. Overall, 
Integrating SSS to the GVC snake model can effectively reduce the effect of artifacts, and prevent 
the snake from weak edge leakage. One can learn from [11] the average MAD of RGVF, LSM, and 
MFM and our previous method for the endocardium segmentation are 9.06 pixels, 7.21 pixels, 4.79 
pixels and 5.06 pixels, respectively, and those of the epicardium are 7.85 pixels, 5.70 pixels, 5.23 
pixels and 5.18 pixels, respectively. Comparing them with the results shown in Figure 6, we can see 
the proposed strategy is able to achieve much better results. More representative segmentation results 
on MICCAI 2009 dataset are presented in Figure 7. 

 

 
Continued on next page 
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(a) 

 

 

 

  

(b) 

Figure 5. Experiments one subject in MICCAI 2009 dataset, (a) segmentation results 
using the strategies in [11], (b) segmentation results using the proposed strategies. 
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Endocardium                    Epicardium 

 

Figure 6. The MAD errors corresponding to Figure 5 using CSC, SSC and SSS. 

 

 

 

 

Figure 7. Segmentation results on MICCAI 2009 dataset. 

To further demonstrate the effectiveness of SSS, the Shuo dataset is also employed for test [49]. 
Besides, in this experiment, we adopt the method of component edge map [48] after extracting the 
endocardium. First, with the endocardial center as a reference, we coin two edge maps by selectively 
opting the gradient in direction of x and y according to the grey level characteristics of images. In the 
left half part, the septum links the blood pools of RV and LV while the right ventricle is brighter. 
Thus, 𝑓 |𝑚𝑖𝑛 𝐼 , 0 | is utilized as an x-direction gradient to neglect the edge between the 
septum and the LV blood. For the right half, the lateral is surrounded by fat so we adopt 𝑓
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𝑚𝑎𝑥 𝐼 , 0  to erase the edge between the fat and the lung as well as that between lateral and the LV 
pool. Similarly, we construct the y-direction gradient as follows: 𝑓 𝑚𝑖𝑛 𝐼 , 0 , 𝑓
𝑚𝑎𝑥 𝐼 , 0  where u, d represent the upper and lower half of the center respectively. The new edge 
map can be obtained by setting the 𝑓 , 𝑓  to zero around and within the endocardium. Then, this new 
edge map is employed to calculate a new external force by GVC. Figure 8 shows our results on a 
representative sequence of Shuo dataset, it can be seen that SSS combined with this new external 
force can get satisfactory results. The corresponding MAD indexes of endocardium and epicardium 
in this sequence were 1.15 pixels and 1.35 pixels respectively. We also calculated that the HD 
metrics of endocardium and epicardium in this sequence were 2.8210 mm and 3.5118 mm separately, 
while according to [43], the same indexes obtained from Graph cuts and Level set on some images in 
this dataset were 9.290 mm, 5.739 mm on endocardium and 4.200 mm, 5.484 mm on the epicardium. 
We can see that our method performs more excellently. Another set of experimental results of this 
dataset are shown in Figure 9. 

 

 

 

 

Figure 8. Segmentation results of on a representative sequence of Shuo dataset. 
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Figure 9. Segmentation results on another sequence in Shuo dataset. 

5. Conclusions 

In this work, we proposed a new strategy for left ventricle segmentation in cardiac cine MRI 
based on GVC snake. In the proposed strategy, all the images in a sequence are segmented 
simultaneously and the shape of the LV in each image is supposed to be similar to that of the LV in 
nearby images in the sequence. We coined the novel shape similarity constraint, and it is called 
sequential shape similarity (SSS). For the endocardium, the SSS is combined with the GVC snake 
with a circle constraint. With the SSC and SSS, the epicardia are segmented successively. 
Experimental results on the MICCAI 2009 dataset and Shuo dataset shown that the proposed 
segmentation approach performs well on conquering papillary muscles, weak edges, artifacts, and 
noise in the LV segmentation. 
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