Mathematical Biosciences
and Engineering
http://www.aimspress.com/journal/MBE

Research article

Bifurcations in discontinuous mathematical models with control strategy for a species

Christian Cortés García ${ }^{1,2, *}$

${ }^{1}$ Department of Mathematics, Universidad Carlos III de Madird, 30 University Avenue, Madrid, Spain
${ }^{2}$ Department of Systems Biology, Centro Nacional de Biotecnologia, 3 Darwin Street, Madrid, Spain

* Correspondence: Email: chcortes@math.uc3m.es, cc.cortes@cnb.csic.es.

Abstract

In this paper a preliminary mathematical model is proposed, by means of a system of ordinary differential equations, for the growth of a species. In this case, the species does not interact with another species and is divided into two stages, those that have or have not reached reproductive maturity, with natural and control mortality for both stages. When performing a qualitative analysis to determine conditions in the parameters that allow the extinction or preservation of the species, a modification is made to the model when only control is assumed for each of the stages if the number of species in that stage is above a critical value. These studies are carried out by bifurcation analysis with respect to two parameters: control for each stage and their critical values. It is concluded that for certain conditions in their parameters, the dynamics in each of the controlled stages converge to their critical values.

Keywords: filippov systems; pseudo-equilibrium; growth threshold; stability; control parameter

1. Introduction

A great variety of phenomena in nature are modeled through differential equations systems of the form

$$
\begin{equation*}
\dot{w}=f(w, \alpha), \tag{1.1}
\end{equation*}
$$

where $f: \Omega \subset \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a continuous and differentiable vector field, $w \in \mathbb{R}^{n}$ is a vector of states and $\alpha \in \mathbb{R}^{m}$ is a vector of parameters. In particular, the systems (1.1) are used to explain the dynamics of species that inhabit the same environment to determine whether or not they become extinct over time [1-4].

For example, if we consider a species $v(t) \geq 0$ divided into two stages, those that have or have not reached reproductive maturity, in a controlled environment, with carrying capacity $K>0$, and which
does not interact with other species to subsist in an environment. As shown in Figure 1 , if $u_{1,2} \geq 0$ are mortality parameters due to control, chemical or biological, for both stages, a simple model describing the dynamics of the species is given by:

$$
\left\{\begin{array}{l}
\dot{x}=a y-\left(d_{1}+u_{1}\right) x \tag{1.2}\\
\dot{y}=\frac{b x}{c+x}\left(1-\frac{y}{K}\right)-\left(a+d_{2}+u_{2}\right) y
\end{array}\right.
$$

where $x(t) \geq 0$ describes the reproductive maturity stage of the species, $y(t) \geq 0$ the stage of those that have not yet reached maturity, $a>0$ the rate at which the species reaches reproductive maturity, $b>0$ the maximun birth rate for each adult in a unit of time, $c>0$ is an auxiliary (half-saturation) parameter that affects the hyperbolic function of the per capita adult birth rate curve, and $d_{1,2}>0$ the natural mortality rates.

Figure 1. Model construction (1.2).
The model (1.2) is used to analyze the dynamics of the states of a species and determine conditions in the parameters for the extinction of the species when the control strategy is activated at all times. For example, the model (1.2) has been used to describe the growth of the Aedes aegypti mosquito, divided into immature stages (egg, larva and pupae) $y(t)$ and adult mosquitoes $x(t)$, and determine the conditions in the control parameter in some of its stages that allow the extinction of the mosquito and thus prevent the spread of dengue to the population [5,6].

However, many ecological phenomena are modeled by discontinuous dynamical systems, called Filippov systems [7], whose movement is characterized by periods of smooth evolution that are interrupted by instantaneous events. For example, if a species is above a threshold value, then control measures need to be applied, biologically or chemically, in order to keep the number of the species below the threshold [8-12]. However, traditional analysis and bifurcations in dynamical systems has focused on continuous problems whose instantaneous events do not occur, leaving aside those systems that are discontinuous.

The planar Filippov systems are represented by the system of differential equations of the form

$$
\dot{w}= \begin{cases}f_{1}(w, \alpha), & w \in S_{1} \subset \mathbb{R}^{2}, \tag{1.3}\\ f_{2}(w, \alpha), & w \in S_{2} \subset \mathbb{R}^{2},\end{cases}
$$

where S_{1} and S_{2} are open sets, separated by a differentiable curve Σ, and $f_{1,2}: S_{1,2} \subset \mathbb{R}^{2} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{2}$ are continuous and differentiable functions.

In addition to generic bifurcations in continuous dynamical systems [1], the planar Filippov systems (1.3) could present bifurcations sliding, where variations in the bifurcation parameter cause alterations in Σ. All possible bifurcations in planar Filippov systems (1.3) were listed by Kuznetsov [13]. Similarly, for planar Filippov systems (1.3) whose bifurcation analysis is not immediately determined,
the software created by Dercole and Kuznetsov computationally determines the possible bifurcation cases [14, 15] .

In particular, if the control strategy cannot be maintained all times, due to economic or natural issues for example, if only the control parameter $u_{1}>0$, which represents the mortality rate of the species $x(t)$ when applying a chemical or biological control, is considered, if the amount of the species at stage $x(t)$ is above a critical value P_{x}, then the model (1.2) is modified by:

$$
\left\{\begin{align*}
\dot{x} & =a y-\left[d_{1}+g(x)\right] x \tag{1.4}\\
\dot{y} & =\frac{b x}{c+x}\left(1-\frac{y}{K}\right)-\left(a+d_{2}\right) y
\end{align*}\right.
$$

with

$$
g(x)=\left\{\begin{array}{lll}
u_{1}, & \text { if } \quad x>P_{x}, \\
0, & \text { if } \quad x<P_{x} .
\end{array}\right.
$$

On the other hand, if the objective is to control the species in the non-reproductive state $y(t)$ when it is above a value P_{y}, model (1.2) takes the following form,

$$
\left\{\begin{align*}
\dot{x} & =a y-d_{1} x \tag{1.5}\\
\dot{y} & =\frac{b x}{c+x}\left(1-\frac{y}{K}\right)-\left[a+d_{2}+h(y)\right] y
\end{align*}\right.
$$

with

$$
h(y)= \begin{cases}u_{2}, & \text { if } y>P_{y}, \\ 0, & \text { if } y<P_{y} .\end{cases}
$$

Therefore, the goal of this paper is to determine all possible dynamics for the discontinuous models (1.4) and (1.5). To provide the necessary background, some elements such as tangent points, pseudoequilibrium and sliding segment used in the Filippov systems are described in Section 2. In Section 3, a global qualitative analysis is performed to identify conditions in the parameters that allow the extinction or conservation of the species in the long term for the preliminary model (1.2) by adding the control parameters $u_{1}>0$ and $u_{2}>0$ for $x(t)>0$ and $y(t)>0$, respectively. In Sections 4 and 5 , a qualitative and bifurcation analysis is performed for the model (1.4) and (1.5), respectively, with respect to two parameters: control and critical value.

2. Basic notions of Filippov system

Let X and Y be vector fields of class C^{r}, with $r>1$, in an open set $\Omega \subset \mathbb{R}^{2}$ such that $(0,0) \in \Omega$. Let $f: \Omega \rightarrow \mathbb{R}$ be a function of class $C^{r}, r>1$, such that $\operatorname{grad} f(x, y) \neq 0$ for all $(x, y) \in \Omega$ and

$$
\Sigma=\{(x, y) \in \Omega: f(x, y)=0\}
$$

an open and differentiable dividing curve which divides U into two open regions

$$
\Sigma^{+}=\{(x, y) \in \Omega: f(x, y)>0\}, \quad \Sigma^{-}=\{(x, y) \in \Omega: f(x, y)<0\},
$$

with $\overline{\Sigma^{+}}$and $\overline{\Sigma^{-}}$their closures.

According to [12,16], a Filippov planar system $Z=(X, Y)$ is a vector field defined by

$$
Z(x, y)= \begin{cases}X(x, y), & (x, y) \in \Sigma^{+} \\ Y(x, y), & (x, y) \in \Sigma^{-}\end{cases}
$$

where X and Y are of class $C^{r}, r>1$, in $\overline{\Sigma^{+}}$and $\overline{\Sigma^{-}}$, respectively.
In order to establish the dynamics given by the Filippov planar system $Z=(X, Y)$ on U, we need to denote the local trajectory $\varphi_{Z}(t, p)$ for a initial point $p \in U$. For this purpose, it is important to determine whether point p belongs to Σ^{+}, Σ or Σ^{-}.

If $p \in \Sigma^{+}$or $p \in \Sigma^{-}$, the local trajectory in $Z=(X, Y)$, with initial point in p, is defined by trajectory in the vector fields X or Y, respectively. However, a trajectory must also be defined for the initial points $p \in \Sigma$. To do this, considering $X f(p)=\langle X(p), \operatorname{grad} f(p)\rangle$ and $Y f(p)=\langle Y(p), \operatorname{grad} f(p)\rangle, \Sigma$ is divided into three disjoint regions given by:

- Crossing region: $\Sigma^{c}=\{p \in \Sigma: X f(p) \cdot Y f(p)>0\}$ as seen in Figure 2,
- Sliding region: $\Sigma^{s}=\{p \in \Sigma: X f(p)<0, Y f(p)>0\}$ represented by Figure 3(a),
- Escaping region: $\Sigma^{e}=\{p \in \Sigma: X f(p)>0, Y f(p)<0\}$ represented by Figure 3(b),

Figure 2. Crossing region Σ^{c}.

Figure 3. Regions Σ^{s} and Σ^{e}.
If the boundary of the regions Σ^{c}, Σ^{s} or Σ^{e} are denoted by $\partial \Sigma c, \partial \Sigma s$ and $\partial \Sigma e$, respectively, the points $p \in \partial \Sigma^{c} \cup \partial \Sigma^{s} \cup \partial \Sigma^{e}$, that is, $p \in \Sigma$ such that $X f(p)=0$ or $Y f(p)=0$, is called tangency point, and it can be classified as:

- quadratic if $X f(p)=0$ and $X^{2} f(p)=\langle X(p), \operatorname{grad} X f(p)\rangle \neq 0$, or $Y f(p)=0$ and $Y^{2} f(p)=$ $\langle Y(p), \operatorname{grad} Y f(p)\rangle \neq 0$. A quadratic tangency $p \in \Sigma$ is regular if $X f(p)=0, X^{2} f(p) \neq 0$ and
$Y f(p) \neq 0$; or $Y f(p)=0, Y^{2} f(p) \neq 0$ and $X f(p) \neq 0$. For the first case, a regular quadratic tangency is visible if $X^{2} f(p)>0$ and invisible if $X^{2} f(p)<0$ as seen in Figure 4(a). For the second case, $p \in \Sigma$ is visible if $Y^{2} f(p)<0$ and invisible if $Y^{2} f(p)>0$ as seen in Figure 4(b).
- cubic if $X f(p)=X^{2} f(p)=0$ and $X^{3} f(p)=\left\langle X(p), \operatorname{grad} X^{2} f(p)\right\rangle \neq 0$ or $Y f(p)=Y^{2} f(p)=0$ and $Y^{3} f(p)=\left\langle Y(p), \operatorname{grad} Y^{2} f(p)\right\rangle \neq 0$, as seen in Figure 4(c).

Figure 4. Example of tangency points in $Z=(X, Y)$.
We will now define the trajectory for a initial point p in Σ^{c}, Σ^{s} or Σ^{e}. As observed in Figure 2, in Σ^{c}, since both vector fields point either towards Σ^{+}or Σ^{-}, it is enough to match the trajectories of X and Y through that point. According to Filippov's method [13, 16, 17], the trajectory in Σ^{s} or Σ^{e} is given by a convex combination of the vector fields X and Y tangent to Σ, that is,

$$
Z^{s}(p)=\lambda(p) X(p)+(1-\lambda(p)) Y(p) .
$$

Figure 5. Construction of trajectories $Z^{s}(p)$.
In view of the Figure 5, the sliding vector field Z^{s} is given by

$$
\begin{equation*}
Z^{s}(p)=\frac{1}{Y f(p)-X f(p)}(Y f(p) X(p)-X f(p) Y(p)) \tag{2.1}
\end{equation*}
$$

defined in $\Sigma^{e} \cup \Sigma^{s}$. For $p \in \Sigma^{e} \cup \Sigma^{s}$, the local trajectory of p is given by this vector field.
In $Z=(X, Y)$ the point $p \in \Sigma^{s} \cup \Sigma^{e}$ is called pseudo-equilibrium if $Z^{s}(p)=0$, which is further classified as: stable pseudo-node if $p \in \Sigma^{s}$ and $\left(Z^{s}\right)^{\prime}(p)<0$ as shown in Figure 6(a), unstable pseudonode $p \in \Sigma^{e}$ and $\left(Z^{s}\right)^{\prime}(p)>0$ as shown in Figure 6(b) and, pseudo-saddle if $p \in \Sigma^{s}$ and $\left(Z^{s}\right)^{\prime}(p)>0$ as shown in Figure 6(c), or $p \in \Sigma^{e}$ and $\left(Z^{s}\right)^{\prime}(p)<0$.

Figure 6. Examples of pseudo-equilibrium in $Z=(X, Y)$.

Keeping in mind this background, the trajectory over the vector field of $Z=(X, Y)$ is defined as follows.

Definition 1. Let φ_{X} and φ_{Y} the trajectories in the vector fields X and Y defined for for $t \subset I \in \mathbb{R}$, respectively. The local trajectory φ_{Z} in $Z=(X, Y)$ through a point p is defined as follows:

- For $p \in \Sigma^{+}$or $p \in \Sigma^{+}$such that $X(p) \neq 0$ or $Y(p) \neq 0$ respectively, the trajectory is given by $\varphi_{Z}(t, p)=\varphi_{X}(t, p)$ or $\varphi_{Z}(t, p)=\varphi_{X}(t, p)$ respectively, for $t \subset I \in \mathbb{R}$.
- For $p \in \Sigma^{c}$ such that $X f(p), Y f(p)>0$, as shown in Figure 2(a), and taking the origin of time at p, the trajectory is defined as $\varphi_{Z}(t, p)=\varphi_{Y}(t, p)$ for $t \subset I \cap\{t \leq 0\}$ and $\varphi_{Z}(t, p)=\varphi_{X}(t, p)$ for $t \subset I \cap\{t \geq 0\}$. For the case $X f(p), Y f(p)<0$, as shown in Figure 2(a), the trajectory is defined as $\varphi_{Z}(t, p)=\varphi_{Y}(t, p)$ for $t \subset I \cap\{t \geq 0\}$ and $\varphi_{Z}(t, p)=\varphi_{X}(t, p)$ for $t \subset I \cap\{t \leq 0\}$.
- For $p \in \Sigma^{e} \cup \Sigma^{s}$ such that $Z^{s}(p) \neq 0$, the trajectory is given by $\varphi_{Z}(t, p)=\varphi_{Z^{s}}(t, p)$ for $t \in I \subset \mathbb{R}$, where Z^{s} is the sliding vector field given in (2.1).
- For $p \in \partial \Sigma^{c} \cup \partial \Sigma^{s} \cup \partial \Sigma^{e}$ such that the definitions of trajectories for points in Σ in both sides of p can be extended to p and coincide, the trajectory through p is this trajectory. We will call these points regular tangency points.
- For any other point $\varphi_{Z}(t, p)=\{p\}$ for all $t \in I \subset \mathbb{R}$. This is the case of the tangency points in Σ which are not regular and which will be called singular tangency points and the critical points of X in Σ^{+}, Y in Σ^{-}and Z^{s} in $\Sigma^{e} \cup \Sigma^{s}$.

With the basic notions for Filippov systems, we can perform the qualitative analysis for the systems (1.4) and (1.5). However, a qualitative analysis will be performed on system (1.2), and its results will be used to describe the dynamics of systems (1.4) and (1.5).

3. Preliminary mathematical model

Asume that $v(t) \geq 0$ is a quantity of a species at time $t \geq 0$, from which it does not interact with any other species to subsist an environment, and divided into two stages: those that have reached reproductive maturity $x(t) \geq 0$ and those that have not $y(t) \geq 0$, whose dynamics is described by the system (1.2).

Before performing a qualitative analysis of the system (1.2) it must be verified that it is mathemati-
cally well-posed and its trajectories remain in the region of biological sense:

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq \frac{a K}{d_{1}+u_{1}}, 0 \leq y \leq K\right\} .
$$

Lemma 1. For an arbitrary initial condition $(x(0), y(0)) \in \Omega$, the system (1.2) has a unique solution. Moreover, the set Ω is invariant over the vector field of the system (1.2).

Proof. Since the vector field of the system (1.2) is continuously differentiable, by the Existence and Uniqueness Theorem [18], the uniqueness of the solution is guaranteed. On the other hand, it must be guaranteed that the change in the solutions of the model on the boundary of Ω remain in Ω. Indeed, if $x=0$ then $\dot{x}=a y \geq 0$ for all $0 \leq y \leq K$. Similarly, if $y=0$ then $\dot{y}=\frac{b x}{x+c} \geq 0$ for all $0 \leq x \leq \frac{a K}{d_{1}+u_{1}}$. If $y=K$, then $\dot{y}=-\left(a+d_{2}+u_{2}\right) y \leq 0$ for all $0 \leq y \leq K$. Analogously, if $x=\frac{a K}{d_{1}+u_{1}}$ then $\dot{x}=a(y-K) \leq 0$ for all $0 \leq y \leq K$. This shows that the trajectories over the vector field cannot cross the boundary of Ω. Then, Ω is invariant.

3.1. Qualitative analysis

Before calculating and determining the local and global stability of the possible equilibrium points of the system (1.2), the following result shows that the system (1.2) has no limit cycles in Ω.

Lemma 2. The system (1.2) has no limit cycles in Ω.
Proof. If

$$
\begin{align*}
& f\left(x, y, u_{1}\right)=a y-\left(d_{1}+u_{1}\right) x \\
& g\left(x, y, u_{2}\right)=\frac{b x}{x+c}\left(1-\frac{y}{K}\right)-\left(a+d_{2}+u_{2}\right) y, \tag{3.1}
\end{align*}
$$

then,

$$
\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}=-\left[a+d_{1}+d_{2}+u_{1}+u_{2}+\frac{x b}{K(x+c)}\right]<0
$$

for all $(x, y) \in \Omega$ and $u_{1,2} \geq 0$. By Poincaré-Bendixson's criterion [18], the system (1.2) has no limit cycles in Ω.

On the other hand, the equilibrium points of the system (1.2) are given by

$$
\begin{aligned}
& P_{0}=(0,0), \\
& P_{\left(u_{1}, u_{2}\right)}=\left(\frac{K\left[\phi\left(u_{1}, u_{2}\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}+u_{2}\right)\right]}, \frac{K\left[\phi\left(u_{1}, u_{2}\right)-1\right]}{a\left[b+K\left(a+d_{2}+u_{2}\right)\right]}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\phi\left(u_{1}, u_{2}\right)=\frac{a b}{c\left(d_{1}+u_{1}\right)\left(a+d_{2}+u_{2}\right)}, \tag{3.2}
\end{equation*}
$$

is the species growth threshold and indicates the average number of species that have reached reproductive maturity produced by a species. In this case, if $\phi\left(u_{1}, u_{2}\right)>1$ then $P_{\left(u_{1}, u_{2}\right)} \in \Omega$. If $\phi\left(u_{1}, u_{2}\right)=1$ then $P_{0}=P_{\left(u_{1}, u_{2}\right)} \in \Omega$. However, for $\phi\left(u_{1}, u_{2}\right)<1$ then $P_{\left(u_{1}, u_{2}\right)} \notin \Omega$.

The Jacobian matrix $J(x, y)$ of the system (1.2) evaluated at P_{0} is given by:

$$
J\left(P_{0}\right)=\left[\begin{array}{cc}
-\left(d_{1}+u_{1}\right) & a \\
\frac{b}{c} & -\left(a+d_{2}+u_{2}\right)
\end{array}\right],
$$

with

$$
\begin{aligned}
\operatorname{tr} J\left(P_{0}\right) & =-\left(a+d_{1}+d_{2}+u_{1}+u_{2}\right)<0 \\
\operatorname{det} J\left(P_{0}\right) & =\left(d_{1}+u_{1}\right)\left(a c+c d_{2}+c u_{2}\right)\left[1-\phi\left(u_{1}, u_{2}\right)\right] .
\end{aligned}
$$

If $\phi\left(u_{1}, u_{2}\right)>1$ then $\operatorname{det} J\left(P_{0}\right)<0$ and thus, by the Grobman-Hartman Theorem [18], P_{0} is locally unstable. However, if $\phi\left(u_{1}, u_{2}\right)<1$, that is, $P_{\left(u_{1}, u_{2}\right)} \notin \Omega$, the equilibrium P_{0} is locally stable, and corresponds to a node since

$$
\begin{equation*}
\Delta=\left[\operatorname{tra} J\left(P_{0}\right)\right]^{2}-4 \operatorname{det} J\left(P_{0}\right)=\frac{4 b}{c}+\left[a-\left(d_{1}-d_{2}+u_{1}-u_{2}\right)\right]^{2}>0 \tag{3.3}
\end{equation*}
$$

Moreover, if $\phi\left(u_{1}, u_{2}\right)<1$, and since Ω is invariant and has no limit cycles over the system (1.2), by the Poincaré-Bendixson Theorem [18], every trajectory in the system (1.2) converges to the equilibrium P_{0}, which guarantees its global stability.

On the other hand, if $\phi\left(u_{1}, u_{2}\right)>1$, when evaluating the Jacobian matrix $J(x, y)$ of the system (1.2) around the equilibrium $P_{\left(u_{1}, u_{2}\right)}$,

$$
J\left(P_{\left(u_{1}, u_{2}\right)}\right)=\left[\begin{array}{cc}
-\left(d_{1}+u_{1}\right) & a \\
\frac{c\left(a+d_{2}+u_{2}\right)\left(d_{1}+u_{1}\right)^{2}\left[a K+b+K\left(d_{2}+u_{2}\right)\right]}{a b\left(a K+c d_{1}+c u_{2}\right)} & -\frac{a\left[a K+b+K\left(d_{2}+u_{2}\right)\right]}{a K+c\left(d_{1}+u_{1}\right)}
\end{array}\right],
$$

we have to

$$
\begin{aligned}
& \operatorname{tr} J\left(P_{\left(u_{1}, u_{2}\right)}\right)=-\left\{d_{1}+u_{1}+\frac{a\left[a K+b+K\left(d_{2}+u_{2}\right)\right]}{a K+c\left(d_{1}+u_{1}\right)}\right\}<0, \\
& \operatorname{det} J\left(P_{\left(u_{1}, u_{2}\right)}\right)=\frac{\left(d_{1}+u_{1}\right)^{2}\left[b+K\left(a+d_{2}+u_{2}\right)\right]^{2}\left[\phi\left(u_{1}, u_{2}\right)-1\right]}{b\left[a K+c\left(d_{1}+u_{1}\right)\right]}>0,
\end{aligned}
$$

and

$$
\Delta=\left[\operatorname{tr} J\left(P_{\left(u_{1}, u_{2}\right)}\right)\right]^{2}-4 \operatorname{det} J\left(P_{\left(u_{1}, u_{2}\right)}\right)>0 .
$$

Therefore, $P_{\left(u_{1}, u_{2}\right)}$ is locally a stable node. Moreover, since Ω is invariant and has no limit cycles, by the Poincaré - Bendixson Theorem, the trajectories of the system (1.2), regardless of the initial condition $(x(0), y(0)) \in \Omega$, converge to the equilibrium $P_{\left(u_{1}, u_{2}\right)}$, so $P_{\left(u_{1}, u_{2}\right)}$ is globally asymptotically stable. Therefore the following result has been proved.

Theorem 1. If $\phi\left(u_{1}, u_{2}\right)<1$ then the equilibrium $P_{\left(u_{1}, u_{2}\right)} \notin \Omega$ and P_{0} is globally a stable node over the system (1.2). If $\phi\left(u_{1}, u_{2}\right)>1$, the equilibrium P_{0} is unstable and $P_{\left(u_{1}, u_{2}\right)}$ is a globally stable node over the system (1.2).

In Figure 7 we observe all possible dynamics of the system (1.2) with respect to the bifurcation curve $\phi\left(u_{1}, u_{2}\right)=1$. Region 1 shows the global stability of the equilibrium $P_{\left(u_{1}, u_{2}\right)}$. Region 2 shows that all solutions of the system (1.2) converge to the origin P_{0}.

(a) Bifurcation curves in the plane $\left(u_{1}, u_{2}\right)$

Figure 7. Bifurcation diagram of the system (1.2) and phase portraits characterizing each region, with fixed parameters $a=b=c=K=1, d_{1}=d_{2}=0.2$ and $u_{2}=2$. Region 1: $u_{1}=0.05$. Region 2: $u_{1}=2$.

4. Control at reproductive maturity stage $x(t)$

According to the hypothesis stated in Section 3, suppose that only the dynamics in $x(t)$ can be controlled when it is above a critical value $P_{x} \leq \frac{a K}{d_{1}+u_{1}}$. In this case, the dynamics of $x(t)$ and $y(t)$ is described by the system (1.4), equivalent to:

$$
Z_{1}(x, y)= \begin{cases}X_{1}(x, y)=\binom{a y-\left(d_{1}+u_{1}\right) x}{\frac{b x}{x+c}\left(1-\frac{y}{K}\right)-\left(a+d_{2}\right) y}, & x>P_{x} \tag{4.1}\\ X_{2}(x, y)=\binom{a y-d_{1} x}{\frac{b x}{x+c}\left(1-\frac{y}{K}\right)-\left(a+d_{2}\right) y}, & x<P_{x}\end{cases}
$$

where

$$
\begin{aligned}
& \Sigma_{1}^{+}=\left\{(x, y) \in \mathbb{R}^{2}: P_{x}<x \leq \frac{a K}{d_{1}+u_{1}}, 0 \leq y \leq K\right\}, \\
& \Sigma_{1}=\left\{\left(P_{x}, y\right) \in \mathbb{R}^{2}: 0 \leq y \leq K\right\}, \\
& \Sigma_{1}^{-}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x<P_{x}, 0 \leq y \leq K\right\} .
\end{aligned}
$$

4.1. Qualitative analysis

To perform a qualitative analysis of the Filippov system (4.1) we must calculate the equilibrium points for the X_{1} and X_{2} fields, the $\Sigma_{1}^{s}, \Sigma_{1}^{e}, \Sigma_{1}^{c}$ regions and the Z_{1}^{s} sliding segment. Indeed, as observed in Section 3, the equilibrium point over the vector field X_{1} are given by

$$
\begin{equation*}
P_{\left(u_{1}, 0\right)}=\left(\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}, \frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{a\left[b+K\left(a+d_{2}\right)\right]}\right), \tag{4.2}
\end{equation*}
$$

and the equilibrium points of the field X_{2} are

$$
\begin{align*}
& P_{0}=(0,0), \\
& P_{(0,0)}=\left(\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]}, \frac{K[\phi(0,0)-1]}{a\left[b+K\left(a+d_{2}\right)\right]}\right), \tag{4.3}
\end{align*}
$$

with $\phi\left(u_{1}, 0\right)$ and $\phi(0,0)$ as described in system (3.2), for $u_{2}=0$ and $u_{1}=u_{2}=0$, respectively.
Since $\left(d_{1}+u_{1}\right)\left(a+d_{2}\right)>d_{1}\left(a+d_{2}\right)$, if $\phi\left(u_{1}, 0\right)>1$, then $\phi(0,0)>1$, and so $P_{(0,0)}, P_{\left(u_{1}, 0\right)} \in \Omega$. However, if $\phi(0,0)<1$ it follows that $P_{(0,0)}, P_{\left(u_{1}, 0\right)} \notin \Omega$.

On the other hand, if we consider $f_{1}(x, y)=x-P_{x}$, then for all $p \in \Sigma_{1}$,

$$
\begin{aligned}
& X_{1} f_{1}(p)=\left\langle X_{1}(p), \operatorname{grad} f_{1}(p)\right\rangle=a y-\left(d_{1}+u_{1}\right) P_{x}, \\
& X_{2} f_{1}(p)=\left\langle X_{2}(p), \operatorname{grad} f_{1}(p)\right\rangle=a y-d_{2} P_{x},
\end{aligned}
$$

such that $X_{1} f_{1}(p) \cdot X_{2} f_{1}(p)<0$ it follows that:

- ay - $\left(d_{1}+u_{1}\right) P_{x}<0$ and $a y-d_{1} P_{x}>0$, that is,

$$
\frac{d_{1} P_{x}}{a}<y<\frac{\left(d_{1}+u_{1}\right) P_{x}}{a}
$$

or

- ay - $\left(d_{1}+u_{1}\right) P_{x}>0$ and $a y-d_{1} P_{x}<0$, equivalent to,

$$
\frac{\left(d_{1}+u_{1}\right) P_{x}}{a}<y<\frac{d_{1} P_{x}}{a} .
$$

Since $\frac{d_{1}}{a}<\frac{d_{1}+u_{1}}{a}$, and by considering $\frac{\left(d_{1}+u_{1}\right) P_{x}}{a}<K$, then:

$$
\begin{aligned}
\Sigma_{1}^{s} & =\left\{\left(P_{x}, y\right) \in \mathbb{R}^{2}: \frac{d_{1} P_{x}}{a}<y<\frac{\left(d_{1}+u_{1}\right) P_{x}}{a}\right\}, \\
\Sigma_{1}^{c} & =\left\{\left(P_{x}, y\right) \in \mathbb{R}^{2}: y<\frac{d_{1} P_{x}}{a} \mathrm{o} \frac{\left(d_{1}+u_{1}\right) P_{x}}{a}<y\right\}, \\
\Sigma_{1}^{e} & =\emptyset .
\end{aligned}
$$

The vector field of the sliding segment $Z_{1}^{s}(p)=\left(0, Z_{1 y}^{s}(p)\right)^{T}$, with $p \in \Sigma_{1}^{s}$, is given by

$$
Z_{1}^{s}(p)=\left(\frac{b K P_{x}-y\left[P_{x}\left(a K+b+d_{2} K\right)+c K\left(a+d_{2}\right)\right]}{K\left(P_{x}+c\right)}\right),
$$

with pseudo-equilibrium

$$
\begin{equation*}
P N_{1}=\left(P_{x}, \frac{b K P_{x}}{P_{x}\left(a K+b+d_{2} K\right)+c K\left(a+d_{2}\right)}\right) \in \Sigma_{1}^{s} . \tag{4.4}
\end{equation*}
$$

Note that $P N_{1}$ corresponds to a stable pseudo-node because $Z_{1 y}^{s}>0$ if $y<P N_{1}$ and $Z_{1 y}^{s}<0$ if $y>P N_{1}$.

The sliding segment Σ_{1}^{s} has two tangent points given by:

$$
\begin{equation*}
T_{1}^{1}=\left(P_{x}, \frac{d_{1} P_{x}}{a}\right) \text { and } T_{1}^{2}=\left(P_{x}, \frac{\left(d_{1}+u_{1}\right) P_{x}}{a}\right) . \tag{4.5}
\end{equation*}
$$

The tangent point T_{1}^{1} is visible if $X_{2}^{2} f_{1}\left(T_{1}^{1}\right)=\left\langle X_{2}\left(T_{1}^{1}\right), \operatorname{grad} X_{2} f_{1}\left(T_{1}^{1}\right)\right\rangle<0$, that is,

$$
P_{x}>\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]},
$$

and invisible if

$$
P_{x}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]} .
$$

Similarly, the tangent point T_{1}^{2} is visible if $X_{1}^{2} f_{1}\left(T_{1}^{2}\right)=\left\langle X_{1}\left(T_{1}^{2}\right), \operatorname{grad} X_{1} f_{1}\left(T_{1}^{2}\right)\right\rangle>0$, that is,

$$
P_{x}<\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]},
$$

and invisible if

$$
P_{x}>\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]} .
$$

On the other hand, if $\phi\left(u_{1}, 0\right)>1$ we have that the equilibrium $P_{\left(u_{1}, 0\right)}, P_{(0,0)}$ and the pseudoequilibrium $P N_{1}$ do not exist simultaneously in the phase portrait of the Filippov system (4.1) as shown in the following result:
Lemma 3. If $\phi\left(u_{1}, 0\right)>1$, the equilibrium $P_{\left(u_{1}, 0\right)}, P_{(0,0)}$ and the pseudo-equilibrium $P N_{1}$ do not coexist in the Filippov system (4.1).
Proof. If the pseudo-node $P N_{1}$ exists, that is $P N_{1} \in \overline{T_{1}^{1} T_{1}^{2}} \equiv \Sigma_{1}^{s}$, of systems (4.4) and (4.5) it follows that:

$$
\begin{equation*}
\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}<P_{x}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]} . \tag{4.6}
\end{equation*}
$$

Therefore, if $\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}<P_{x}$ then $P_{\left(u_{1}, 0\right)} \notin \Sigma_{1}^{+}$, that is, $P_{\left(u_{1}, 0\right)}$ is not defined in the Filippov system (4.1). Analogously, if $P_{x}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]}$ then $P_{(0,0)} \notin \Sigma_{1}^{-}$.

On the other hand, if the equilibrium $P_{(0,0)} \in \Sigma_{1}^{-}$, that is $\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]}<P_{x}$, from system (4.6) we have that $P N_{1} \notin \Sigma_{1}^{s}$. Analogously, if $P_{\left(u_{1}, 0\right)} \in \Sigma^{+}$, that is $P_{x}<\frac{K\left\lfloor\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2)}\right]\right.}$, then $P N_{1} \notin \Sigma_{1}^{s}$.

It remains to verify that $P_{\left(u_{1}, 0\right)}$ and $P_{(0,0)}$ do not coexist. Indeed, since

$$
\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]},
$$

if $P_{(0,0)} \in \Sigma_{1}^{-}$, that is, $\frac{K[\phi(0,0)-1]}{\left.d_{1} b+K\left(a+d_{2}\right)\right]}<P_{x}$, then $\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}<P_{x}$ and so $P_{\left(u_{1}, 0\right)} \notin \Sigma_{1}^{+}$. Similarly, if $P_{\left(u_{1}, 0\right)} \in \Sigma_{1}^{+}$then $P_{(0,0)} \notin \Sigma_{1}^{-}$.

If $\phi(0,0)<1$, then the pseudo-equilibrium $P N_{1} \notin \Sigma_{1}^{s}$. Consequently, and as stated in Theorem 1, the equilibrium P_{0} is locally asymptotically stable in the Filippov system (4.1) for all $u_{1}, P_{x}>0$.

Lemma 4. If $\phi(0,0)<1$, the pseudo-equilibrium $P N_{1}$ does not belong to the Filippov system (4.1). That is, the equilibrium P_{0} is locally a stable node.

Proof. If the pseudo-node $P N_{1}$ exists, then

$$
\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}<P_{x}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]} .
$$

Since $\phi(0,0)<1$ it follows that $P_{x}<0$ is contradictory.
Note that if $P N \in \Sigma_{1}^{s}$ then $\overrightarrow{T_{1}^{1} P N_{1}}$ and $\overrightarrow{T_{1}^{2} P N_{1}}$. However, if $P_{(0,0)} \in \Sigma_{1}^{-}$then $\overrightarrow{T_{1}^{2} T_{1}^{1}} \equiv \Sigma_{1}^{s}$ and $\overrightarrow{T_{1}^{1} T_{1}^{2}} \equiv \Sigma_{1}^{s}$ if $P_{\left(u_{1}, 0\right)} \in \Sigma^{+}$. In addition, and as observed in Figure 8, the intersection of the nullclines of the Filippov system (4.1) over each region $\Sigma_{1}^{ \pm}$with respect to Σ_{1} determines the formation of $P_{(0,0)}, P N_{1}$ or $P_{\left(u_{1}, 0\right)}$ in the Filippov system (4.1).

Figure 8. Nullclines $\dot{x}=0, \dot{y}=0$ and slidind segment Σ_{1}^{s} of the Filippov system (4.1).
In case the pseudo-equilibrium $P N_{1} \in \Sigma_{1}^{s}$, that is, if the parameters of the Filippov system (4.1) satisfies (4.6), it follows that the trajectories of the Filippov system converge to $P N_{1}$, and thus $P N_{1}$ is globally asymptotically stable shown in the following result, whose proof was inspired by $[19,20]$.

Theorem 2. If $P N_{1} \in \Sigma_{1}^{s}$, then $P N_{1}$ is globally asymptotically stable.
Proof. Since $P N_{1}$ is locally stable, P_{0} is unstable and the interior equilibriums $P_{(0,0)}, P_{\left(u_{1}, 0\right)} \notin \Sigma_{1}^{ \pm}$, to guarantee the global asymptotic stability of $P N_{1}$ three conditions must be proved:

1) There are no limit cycles in $\Sigma_{1}^{ \pm}$: By Lemma 2, with $u_{2}=0$, it guarantees the nonexistence of limit cycles in $\Sigma_{1}^{ \pm}$.
2) There is no closed orbit for system (4.1) which contains a part of Σ_{1}^{s} : Since the pseudo-equilibrium $P N$ is stable in Σ_{1}^{s}, there is not closed orbit for system (4.1) containing a part of Σ_{1}^{s}.
3) There is no closed trajectory which contains $\Sigma_{1}^{ \pm}$and Σ_{1}^{s} : Indeed, if it is assumed that there is a closed orbit Γ, with period T, of Filippov system (4.1), which passes through Σ_{1} and encloses Σ_{1}^{s}, let P and Q as the intersection points of Γ and Σ_{1}, respectively, as observed in Figure 9. Similarly,
let $P_{1}=P+a_{1}(\theta)$ and $Q_{1}=Q-a_{2}(\theta)$, with intersection points of Γ and the line $x=P_{x}-\theta$, respectively, and $P_{2}=P+b_{1}(\theta)$ and $Q_{2}=Q-b_{2}(\theta)$ as the intersection points of Γ and $x=P_{x}+\theta$, where $\theta>0$ is sufficiently small. Moreover, $a_{1,2}(\theta)$ and $b_{1,2}(\theta)$ are continuous with respect θ and $a_{1,2}(\theta), b_{1,2}(\theta) \rightarrow 0$ when $\theta \rightarrow 0$.

Figure 9. Limit cycle Γ in Filippov System (4.1).
As shown in Figure 9 , the Γ_{1} and $\overrightarrow{Q_{1} P_{1}}$ is locate in the region Σ_{1}^{-}. Similarly, the Γ_{2} and $\overrightarrow{P_{2} Q_{2}}$ is locate in the region Σ_{1}^{+}. Furthermore, the dynamics of the disease Filippov system in region Σ_{1}^{+}are represented by (3.1) with $u_{2}=0$. If $\partial \Sigma_{1}^{+}$denote the boundary of Σ_{1}^{+}, by using Green's Theorem [18], we have

$$
\begin{align*}
\iint_{\Sigma_{1}^{+}}\left(\frac{\partial f}{\partial x}\left(x, y, u_{1}\right)+\frac{\partial g}{\partial y}(x, y, 0)\right) \mathrm{d} \sigma & =\iint_{\Sigma_{1}^{+}} \frac{\partial f}{\partial x}\left(x, y, u_{1}\right) \mathrm{d} \sigma+\iint_{\Sigma_{1}^{+}} \frac{\partial g}{\partial y}(x, y, 0) \mathrm{d} \sigma \\
& =\oint_{\partial \Sigma_{1}^{+}} f\left(x, y, u_{1}\right) \mathrm{d} y-\oint_{\partial \Sigma_{1}^{+}} g(x, y, 0) \mathrm{d} x \\
& =\left(\int_{\Gamma_{2}} f\left(x, y, u_{1}\right) \mathrm{d} y+\int_{\overrightarrow{P_{2} Q_{2}}} f\left(x, y, u_{1}\right) \mathrm{d} y\right) \tag{4.7}\\
& -\left(\int_{\Gamma_{2}} g(x, y, 0) \mathrm{d} x+\int_{\overrightarrow{P_{2} Q_{2}}} g(x, y, 0) \mathrm{d} x\right) \\
& =\int_{\overrightarrow{P_{2} Q_{2}}} f\left(x, y, u_{1}\right) \mathrm{d} y
\end{align*}
$$

where $\mathrm{d} x=f\left(x, y, u_{1}\right) \mathrm{d} t, \mathrm{~d} y=g(x, y, 0) \mathrm{d} t$, and there is no change of x in $\overrightarrow{P_{2} Q_{2}}$, then

$$
\int_{\overrightarrow{P_{2} Q_{2}}} g(x, y, 0) \mathrm{d} x=\int_{P_{x}+\theta}^{P_{x}+\theta} g(x, y, 0) \mathrm{d} x=0 .
$$

Similarly, the dynamics in Σ_{1}^{-}is represented by (3.1) with $u_{1}=u_{2}=0$. By Green's Theorem,

$$
\begin{equation*}
\iint_{\Sigma_{1}^{-}}\left(\frac{\partial f}{\partial x}(x, y, 0)+\frac{\partial g}{\partial y}(x, y, 0)\right) \mathrm{d} \sigma=\int_{\overrightarrow{Q_{1} P_{1}}} f(x, y, 0) \mathrm{d} y \tag{4.8}
\end{equation*}
$$

Suppose that $\Sigma_{10}^{-} \subset \Sigma_{1}^{-}$and

$$
\begin{equation*}
\epsilon=\iint_{\Sigma_{10}^{-}}\left(\frac{\partial f}{\partial x}(x, y, 0)+\frac{\partial g}{\partial y}(x, y, 0)\right) \mathrm{d} \sigma=\oint_{\partial \Sigma_{10}^{+}}(f(x, y, 0) \mathrm{d} y-g(x, y, 0) \mathrm{d} y)>0 \tag{4.9}
\end{equation*}
$$

From Lemma 2, and based on (4.9), we have

$$
\begin{equation*}
0<\epsilon<\int_{\overrightarrow{P_{2} Q_{2}}} f\left(x, y, u_{1}\right) \mathrm{d} y+\int_{\overrightarrow{Q_{1} P_{1}}} f(x, y, 0) \mathrm{d} y . \tag{4.10}
\end{equation*}
$$

As observed in Figure 9, if $\theta \rightarrow 0$ in the sum of (4.7) and (4.8) we have that

$$
\begin{align*}
& \lim _{\theta \rightarrow 0}\left(\int_{\overrightarrow{P_{2} Q_{2}}} f\left(x, y, u_{1}\right) \mathrm{d} y+\int_{\overrightarrow{Q_{1} P_{1}}} f(x, y, 0) \mathrm{d} y\right) \\
= & \lim _{\theta \rightarrow 0}\left\{\int_{Q-b_{2}(\theta)}^{P+b_{1}(\theta)}\left[a y-\left(d_{1}+u_{1}\right) P_{x}\right] \mathrm{d} y-\int_{Q-a_{2}(\theta)}^{P+a_{1}(\theta)}\left(a y-d_{1} P_{x}\right) \mathrm{d} y\right\}=u_{1}(Q-P)<0 . \tag{4.11}
\end{align*}
$$

Then (4.10) holds, which contradicts to (4.11). Thus there is no closed orbit containing Σ_{1}^{s} and $P N_{1}$. Therefore, $P N_{1}$ is globally asymptotically stable.

Similarly, if the equilibrium $P_{\left(u_{1}, 0\right)} \in \Sigma_{1}^{+}$, by Theorem (4.4) and Lemma 3 it follows that the trajectories of the Filippov system (4.1) converge to $P_{\left(u_{1}, 0\right)}$. Therefore, the following result shows that the equilibrium $P_{\left(u_{1}, 0\right)}$ is globally asymptotically stable.

Theorem 3. If $P_{\left(u_{1}, 0\right)} \in \Sigma_{1}^{+}$, then $P_{\left(u_{1}, 0\right)}$ is globally asymptotically stable.
Proof. Since $P N_{1} \notin \Sigma_{1}^{s}, P_{(0,0)} \notin \Sigma_{1}^{-}, P_{0}$ is unstable and $P_{\left(u_{1}, 0\right)} \in \Sigma_{1}^{+}$is a locally stable node, to determine that $P_{\left(u_{1}, 0\right)}$ is globally asymptotically stable three conditions must be proved:

1) There are no limit cycles in $\Sigma_{1}^{ \pm}$: By Lemma 2, with $u_{2}=0$, it guarantees the nonexistence of limit cycles in $\Sigma_{1}^{ \pm}$.
2) There is no closed orbit for system (4.1) which contains a part of Σ_{1}^{s} : As observed in Figure 8(c), any trajectory with initial condition on Σ_{1}^{s} must slide on Σ_{1}^{s}, reach T_{1}^{2} and escape to Σ_{1}^{+}. Therefore, we will prove that the solution of system (4.1) starting from the tangent point T_{1}^{2} cannot enter the Σ_{1}^{s} again. Indeed, if the trajectory starting at T_{1}^{2}, encircles $P_{\left(u_{1}, 0\right)}$ and intercepts with T_{1}^{2} forming a periodical orbit Γ, then any trajectory with initial condition outside Γ will not be able to cross Γ, and certainly cannot tend to the endemic equilibrium $P_{\left(u_{1}, 0\right)}$, which contradicts the stability of $P_{\left(u_{1}, 0\right)}$. Similarly, if the trajectory starting at T_{1}^{2} and encircling the equilibrium $P_{\left(u_{1}, 0\right)}$, intercepts Σ_{1}^{s} at some point other than T_{1}^{2}, then $P_{\left(u_{1}, 0\right)}$ must be unstable, which also contradicts to the statement that $P_{(u, 0)}$ is a stable equilibrium. Therefore, there is no closed orbit of Filippov system (4.1) containing part of Σ_{1}^{s}.
3) There is no closed trajectory which contains $\Sigma_{1}^{ \pm}$and Σ_{1}^{s} : This step is similar to that of Theorem 2, and we omit it here for brevity.

If $\phi\left(u_{1}, 0\right)>1$ and the equilibrium $P_{(0,0)} \in \Sigma_{1}^{-}$, by Theorem 1 and Lemma 3, the trajectories of the Filippov system (4.1) converge to $P_{(0,0)}$. Similarly, if the condition shown in Lemma 4 is satisfied, then the equilibrium P_{0} is globally asymptotically stable, shown in the following result.

Theorem 4. If $\phi\left(u_{1}, 0\right)>1$ and $P_{(0,0)} \in \Sigma_{1}^{-}$, then $P_{(0,0)}$ is globally asymptotically stable. If $\phi(0,0)<1$, then P_{0} is globally asymptotically stable.

Proof. A similar procedure to that of Theorem 3 can be used to prove this theorem, and we omit it here for brevity.

4.2. Bifurcation diagram

Finally, we analyze the cases in which the parameters u_{1} and P_{x} can modify the phase diagrams of the Filippov system (4.1) using the results found by the qualitative analysis presented in Section 4.1.

For the case where $\phi(0,0)<1$, and according to Lemma 4, the Filippov system (4.1) has a globally asymptotically stable equilibrium P_{0} for all $u_{1}>0$ and $0<P_{x} \leq \frac{a K}{d_{1}+u_{1}}$ as observed in Figure 10.

Figure 10. Nullclines $\dot{x}=0$ and $\dot{y}=0$, slidind segment Σ_{1}^{s} and phase portrait of the Filippov system (4.1) with parameters: $a=c=d_{1}=d_{2}=1, K=3.5, b=2, u_{1}=0.5$ and $P_{x}=1$.

For the case where $\phi\left(u_{1}, 0\right)>1$, the collision of $P N_{1}$ with T_{1}^{1} or with T_{1}^{2} are represented, respectively, by the curves

$$
\begin{equation*}
P_{x}=\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]} \quad \text { and } \quad P_{x}=\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}, \tag{4.12}
\end{equation*}
$$

which generates three bifurcation regions as seen in Figure 11(a). The curves (4.12) intersect at the point $\left(0, \frac{K[\phi(0,0)-1]}{\left.d_{1} b+K\left(a+d_{2}\right)\right]}\right)$ and form a collision between T_{1}^{1} and T_{1}^{2} with $P N_{1}$ for which the sliding segment does not exist.

In this case, the pseudo-node $P N_{1}$ exists only in Region 2, as shown in Figure 11(c). Analogously, the point T_{1}^{1} is visible in Region 3, as shown in Figure 11(d), and invisible in Regions 1 and 2, as shown in Figure 11(b),(c). T_{1}^{2} is visible in Region 1 and invisible in Regions 2 and 3.

On the other hand, $P_{(0,0)}$ exists in the Filippov system (4.1) if $\frac{K[\phi(0,0)-1]}{\left.d_{1} b+K\left(a+d_{2}\right)\right]}<P_{x}$. Therefore, $P_{(0,0)}$ exists in Region 3 and does not exist in Regions 1 and 2. Analogously, $P_{(u, 0)}$ exists only in Region 1 since $P_{x}<\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]}$. The phase portraits for Regions 1-4 of the Filippov system (4.1) are observed in Figure 11.

Figure 11. Bifurcation diagram of the Filippov system (4.1) in the plane (u_{1}, P_{x}), and phase portraits characterizing each region, with fixed parameters: $a=b=c=K=1$ and $d_{1}=$ $d_{2}=u_{1}=0.2$. Black point: $P_{(0,0)}$ or $P_{\left(u_{1}, 0\right)}$. Red point: $P N_{1}$. Blue line: sliding segment.

5. Control in the non-reproductive stage $y(t)$

If the stage $y(t)$ is controlled when it is above a critical value $P_{y} \leq K$, then the change in $x(t)$ and $y(t)$ with respect to time $t \geq 0$ is given by the system (1.5), equivalent to:

$$
Z_{2}(x, y)=\left\{\begin{array}{ll}
X_{3}(x, y)=\left(\frac{b x}{x+c}\left(1-\frac{y}{K}\right)-\left(a+d_{1} x\right.\right. \tag{5.1}\\
\left.a y-u_{2}\right) y
\end{array}\right), \quad y>P_{y} x\left(\begin{array}{ll}
\left.\frac{b x}{x+c}\left(1-\frac{y}{K}\right)-\left(a+d_{2}\right) y\right), & y<P_{y} \\
X_{2}(x, y)=\left(\begin{array}{cl}
\left.\frac{b}{x}\right)
\end{array}\right.
\end{array}\right.
$$

where

$$
\begin{aligned}
& \Sigma_{2}^{+}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq \frac{a K}{d_{1}}, P_{y}<y \leq K\right\}, \\
& \Sigma_{2}=\left\{\left(x, P_{y}\right) \in \mathbb{R}^{2}: 0 \leq x \leq \frac{a K}{d_{1}}\right\}, \\
& \Sigma_{2}^{-}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq \frac{a K}{d_{1}}, 0 \leq y<P_{y}\right\} .
\end{aligned}
$$

5.1. Qualitative analysis

To perform a qualitative analysis of the Filippov system (5.1) we must calculate the equilibrium points for the X_{2} and X_{3} fields, the $\Sigma_{2}^{s}, \Sigma_{2}^{e}, \Sigma_{2}^{c}$ regions and the Z_{2}^{s} sliding segment. Indeed, the equilibrium point over the vector field X_{3} is

$$
P_{\left(0, u_{2}\right)}=\left(\frac{K\left[\phi\left(0, u_{2}\right)-1\right]}{d_{1}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}, \frac{K\left[\phi\left(0, u_{2}\right)-1\right]}{a\left[b+K\left(a+d_{2}+u_{2}\right)\right]}\right),
$$

with $\phi\left(0, u_{2}\right)$ as described in (3.2). The equilibrium points of the X_{2} field are given by (4.3).
Note that for $\phi\left(0, u_{2}\right)>1$, and given that $\left(d_{1}+u_{2}\right)\left(a c+c d_{2}\right)>d_{1}\left(a c+c d_{2}\right)$, we have that $\phi(0,0)>1$ and so $P_{(0,0)}, P_{\left(0, u_{2}\right)} \in \Omega$. However, if $\phi(0,0)<1$ it follows that $P_{(0,0)}, P_{\left(0, u_{2}\right)} \notin \Omega$.

On the other hand, since $f_{2}(x, y)=y-P_{y}$, then for all $p \in \Sigma_{2}$ we have that:

$$
\begin{aligned}
X_{3} f_{2}(p) & =\left\langle X_{3}(p), \operatorname{grad} f_{2}(p)\right\rangle \\
& =-\frac{x\left\{P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]-b K\right\}+c K P_{y}\left(a+d_{2}+u_{2}\right)}{K(x+c)}, \\
X_{2} f_{2}(p) & =\left\langle X_{2}(p), \operatorname{grad} f_{2}(p)\right\rangle \\
& =-\frac{x\left\{P_{y}\left[b+K\left(a+d_{2}\right)\right]-b K\right\}+c K P_{y}\left(a+d_{2}\right)}{K(x+c)} .
\end{aligned}
$$

Therefore, the tangent points of the Filippov system (5.1) are given by:

$$
\begin{equation*}
T_{2}^{1}=\left(\frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]}, P_{y}\right) \text { and } T_{2}^{2}=\left(\frac{c K P_{y}\left(a+d_{2}+u_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}, P_{y}\right) . \tag{5.2}
\end{equation*}
$$

Since $b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]<b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]$, if $0<b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]<$ $b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]$ then T_{1}^{2} and T_{2}^{2} exist, with $T_{2}^{1}<T_{2}^{2}$. However, if $b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]<0<$ $b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]$ then T_{2}^{2} does not exist, if $b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]<b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]<0$ there are no tangent points in the Filippov system (5.1).

Therefore, if T_{2}^{1}, T_{2}^{2} exist, and by supposing that $\frac{c K P_{y}\left(a+d_{2}+u_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}<\frac{a K}{d_{1}}$, then

$$
\begin{aligned}
& \Sigma_{2}^{s}=\left\{\left(x, P_{y}\right) \in \mathbb{R}^{2}: \frac{c K P_{y}\left(a+d_{2}+u_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}<x<\frac{c K P_{y}\left(a+d_{2}+u_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}\right\}, \\
& \Sigma_{2}^{c}=\left\{\left(x, P_{y}\right) \in \mathbb{R}^{2}: x<\frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]} \mathrm{o} \frac{c K P_{y}\left(a+d_{2}+u_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}<x\right\}, \\
& \Sigma_{2}^{e}=\emptyset .
\end{aligned}
$$

If T_{2}^{2} does not exist, and by assuming that $\frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]}<\frac{a K}{d_{1}}$, then:

$$
\begin{aligned}
& \Sigma_{2}^{s}=\left\{\left(x, P_{y}\right) \in \mathbb{R}^{2}: \frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]}<x\right\}, \\
& \Sigma_{2}^{c}=\left\{\left(x, P_{y}\right) \in \mathbb{R}^{2}: x<\frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]}\right\}, \\
& \Sigma_{2}^{e}=\emptyset .
\end{aligned}
$$

For the case where there are no tangent points, then:

$$
\Sigma_{2}^{c}=\Sigma_{2} \text { and } \Sigma_{2}^{s}=\Sigma_{2}^{e}=\emptyset
$$

The tangent point T_{1}^{2} is visible if $X_{2}^{2} f_{2}\left(T_{1}^{2}\right)=\left\langle X_{2}^{2}\left(T_{1}^{2}\right), \operatorname{grad} X_{2}^{2} f\left(T_{1}^{2}\right)\right\rangle<0$, that is,

$$
\begin{equation*}
P_{y}>\frac{K[\phi(0,0)-1]}{a\left[b+K\left(a+d_{2}\right)\right]}, \tag{5.3}
\end{equation*}
$$

and invisible if,

$$
\begin{equation*}
P_{y}<\frac{K[\phi(0,0)-1]}{a\left[b+K\left(a+d_{2}\right)\right]}, \tag{5.4}
\end{equation*}
$$

Equivalently, the tangent point T_{2}^{2} is visible if $X_{3}^{2} f_{2}\left(T_{2}^{2}\right)=\left\langle X_{3}^{2}\left(T_{2}^{2}\right), \operatorname{grad} X_{3} f_{2}\left(T_{2}^{2}\right)\right\rangle>0$, that is,

$$
P_{y}<\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]},
$$

and invisible if,

$$
P_{y}>\frac{K\left[\phi\left(u_{1}, 0\right)-1\right]}{\left(d_{1}+u_{1}\right)\left[b+K\left(a+d_{2}\right)\right]} .
$$

The vector field of the sliding segment $Z_{2}^{s}(p)$, with $p \in \Sigma_{2}^{s}$, is given by

$$
Z_{2}^{s}(p)=\binom{0}{a P_{y}-d_{1} x},
$$

with pseudo-equilibrium

$$
\begin{equation*}
P N_{2}=\left(\frac{a P_{y}}{d_{1}}, P_{y}\right) \in \Sigma_{2}^{s} . \tag{5.5}
\end{equation*}
$$

which corresponds locally to a stable pseudo-node.
On the other hand, if $\phi(0,0)<1$ then the pseudo-equilibrium $P N_{2} \notin \Sigma_{2}^{s}$. Consequently, and as stated in Theorem 1, the equilibrium P_{0} is globally asymptotically stable in the Filippov system (5.1) for all $u_{2}, P_{y}>0$.

Theorem 5. If $\phi(0,0)<1$, the pseudo-equilibrium $P N_{2}$ does not belong to the Filippov system (5.1). Therefore, the equilibrium P_{0} is globally asymptotically stable.
Proof. Suppose $P N_{2}$ exists when $P N_{2} \in \overline{T_{2}^{1} T_{2}^{2}}$. From (5.2) and (5.5) it follows that:

$$
\begin{equation*}
\frac{K\left[\phi\left(0, u_{2}\right)-1\right]}{d_{1}\left[b+K\left(a+d_{2}+u_{2}\right)\right]}<P_{y}<\frac{K[\phi(0,0)-1]}{d_{1}\left[b+K\left(a+d_{2}\right)\right]} . \tag{5.6}
\end{equation*}
$$

Since $\phi(0,0)<1$ it follows that $P_{x}<0$ is contradictory. Analogous case for $P N_{2} \in \overline{T_{2}^{1 a K}}$. Similar to what was shown in Theorem 4, can be used to prove the global stability of P_{0}.

However, if $\phi\left(0, u_{2}\right)>1$ then the equilibrium $P_{\left(0, u_{2}\right)}, P_{(0,0)}$ and the pseudo-equilibrium $P N_{2}$ do not coexist in the Filippov system (4.1), whose proof is similar to the one presented in Theorems 2 and 3, therefore the following result follows.

Theorem 6. If $\phi\left(0, u_{2}\right)>1$ then the equilibrium $P_{\left(0, u_{2}\right)}, P_{(0,0)}$ and the pseudo-equilibrium $P N_{2}$ do not coexist in the Filippov system (4.1). Therefore, $P N_{2}, P_{\left(0, u_{2}\right)}$ or $P_{(0,0)}$ are globally asymptotically stable nodes.

5.2. Bifurcation diagram

The cases in which the parameters u_{2} and P_{y} significantly alter the phase diagrams of the Filippov system (5.1) are analyzed using the results found by the qualitative analysis presented in Section 5.1.

For the case where $\phi(0,0)<1$, the Filippov system (4.1) possesses a globally asymptotically stable P_{0} equilibrium for all $u_{2}>0$ and $0<P_{y} \leq K$. However, the existence and shape of the sliding segment Σ_{2}^{s} depends on the existence of the tangent points T_{2}^{1} and T_{2}^{2}. From (5.2), we have two bifurcation curves given by:

$$
\begin{align*}
P_{y} & =\frac{b K}{b+K\left(a+d_{2}\right)}, \tag{5.7}\\
P_{y} & =\frac{b K}{b+K\left(a+d_{2}+u_{2}\right)},
\end{align*}
$$

which generates three regions as observed in Figure 12(a). In Region 1, as shown in Figure 12(b), shows the presence of two tangent points and $\Sigma_{2}^{s}=\overline{T_{2}^{1} T_{2}^{2}}$. In region two, as see in Figure 12(c), shows the existence of only one tangent point T_{2}^{1}, and in the case that $\frac{c K P_{y}\left(a+d_{2}\right)}{b K-P_{y}\left[b+K\left(a+d_{2}\right)\right]}<\frac{a K}{d_{1}}$, we have that $\Sigma_{2}^{s}=\overline{T_{2}^{1} \frac{a K}{d_{1}}}$. In region 3, as shown in Figure 12(d), we have that $\Sigma_{2}^{s}=\emptyset$.

For the case where $\phi\left(0, u_{2}\right)>1$, the collision of $P N_{2}$ with T_{2}^{1} or with T_{2}^{2} are represented, respectively, by the curves:

$$
\begin{align*}
P_{y} & =\frac{K[\phi(0,0)-1]}{a\left[b+K\left(a+d_{2}\right)\right]}, \\
P_{y} & =\frac{K\left[\phi\left(0, u_{2}\right)-1\right]}{a\left[b+K\left(a+d_{2}+u_{2}\right)\right]}, \tag{5.8}
\end{align*}
$$

which, together with the curves (5.7), generates six bifurcation regions as shown in Figure 13(a).
In this case, the equilibrium $P_{\left(0, u_{2}\right)}$ exists in region 1, as shown in Figure 13(b), with a sliding segment $\Sigma_{2}^{s}=\overline{T_{2}^{1} T_{2}^{2}}$. The pseudo-equilibrium exists in regions 2 and 3, as shown in Figures 12(c,d), respectively, where the sliding segment $\Sigma_{2}^{s}=\overline{T_{2}^{1} T_{2}^{2}}$ exists in region 2 and $\Sigma_{2}^{s}=\overline{T_{2}^{1} \frac{a K}{d_{1}}}$ exists in region 3 . Equilibrium $P_{(0,0)}$ exists in regions 4-6, as shown in Figures 12(e)-(g), respectively, where there is no presence of the sliding segment in region 6. Figure 12 shows the phase portraits for regions 1 to 6 of the Filippov system (4.1).

6. Conclusions

In this work, a global qualitative analysis of the preliminary model and the modified Filippov systems model was carried out to analyze the behavior of a species without interaction with other species and subject to control parameters with critical values. Unlike the continuous model that controls the stages of the species all times, the discontinuous models are used to control the dynamics of the species

Figure 12. Bifurcation diagram of the Filippov system (5.1) in the plane (u_{2}, P_{y}), and phase portraits characterizing each region, with fixed parameters: $a=0.8, b=c=d_{1}=1, K=3$, $d_{2}=0.2$. Black point: $P_{(0,0)}$. Red point: $P N_{2}$. Blue line: sliding segment.
only when the quantity in one of its stages is above a critical value. This type of models are used, for example, when it is desired to apply a control strategy, chemical or biological, of a species until it converges to a desired value, as in the case of timber production in exploited forests, the growth of the Aedes aegypty mosquito, fishing activities or species to be used as anti-pests without undesired growth in the same species.

Regarding the global analysis of the models, whether continuous or not, we conclude that there are no limit cycles, so that their solutions do not oscillate over time but converge to an equilibrium. In the case of the continuous model, the dynamics of the species converges either to an internal equilibrium or disappears over time as long as the growth threshold is greater or less than one, respectively, so that the alteration of the control parameters influences the extinction or conservation of the species.

However, for discontinuous models, the species tends to disappear when the growth threshold, with zero control parameters, is less than one, otherwise the species converges to an equilibrium point. For the stage of which it has the control parameter, its dynamics converges to the value coinciding with the discontinuity of the model provided that the pseudo-equilibrium exists. Otherwise, the dynamics

Figure 13. Bifurcation diagram of the Filippov system (5.1) in the plane (u_{2}, P_{y}), and phase portraits characterizing each region with fixed parameters: $a=b=c=1, K=1, d_{1}=0.1$ and $d_{2}=0.2$. Black point: $P_{(0,0)}$ or $P_{\left(0, u_{2}\right)}$. Red point: $P N_{2}$. Blue line: sliding segment.
converges to one of the equilibria over the vector fields of the Filippov system.
From the biological point of view, the bifurcation regions for each discontinuous model is a useful tool to show conditions in the control parameters which allow the inner equilibrium point not to be located above the threshold value. Thus, it is not necessary to consider an all-weather control strategy,
chemical or biological, when one does not have sufficient resources, economic or social, to maintain such an activated control. On the contrary, a continuous model is useful to describe the dynamics of the species and to establish conditions in the control parameters to reach the desired objective for the species.

Acknowledgments

The author would like to thank PhD Saúl Ares and CNB-CSIC for financial support through the predoctoral grant PRE2019-088899.

Conflict of interest

The author declare there is no conflict of interest.

References

1. Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer Science and Business Media, (2013).
2. J. D. Murray, Mathematical biology: I. an introduction, Springer, (2002).
3. L. Edelstein-Keshet, Mathematical models in biology, Society for Industrial and Applied Mathematics, (2005).
4. S. Y. Tang, Y. N. Xiao, Biological dynamics of single species, Science Press, (2008).
5. C. V. Marín, A. M. Loaiza, H. Zapata, L. Alape, Modelado de estrategias para el control químico y biológico del Aedes aegypti (Diptera: Culicidae), Math. Educ. Univer., 19 (2011), 63-78. doi: 10.1590/S1413-73722008000300013.
6. J. García, A. M. Loaiza, Un modelo de crecimiento poblacional De ædes ægypti con capacidad de carga Logística, J. Math. Theory Appl., 25 (2018), 79-113. doi: 10.15517/RMTA.V1I25.32233.
7. A. F. Filippov, Diferential equations with discontinuous righthand sides, Mathematics and its Applications, Kluwer Academic Publishers Group, (1988).
8. F. Dercole, A. Gragnani, S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theor. Popul. Biol., 72 (2007), 197-213. doi: 10.1016/j.tpb.2007.06.003.
9. T. Zhao, Y. Xiao, Non-smooth plant disease models with economic thresholds, Math. Biosci., 241 (2013), 34-48. doi: 10.1016/j.mbs.2012.09.005.
10. A. L. Wang, Y. N. Xiao, R. Smith, Using non-smooth models to determine thresholds for microbial pest management, J. Math. Biol., 78 (2019), 1389-1424. doi: 10.1007/s00285-018-1313-z.
11. H. Zhou, X. Wang, S. Tang, Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate, Math. Biosci. Eng., 16 (2019), 7327-7361. doi: 0.3934/mbe. 2019366.
12. C. Cortés, Bifurcaciones en modelo gause depredador-presa con discontinuidad, J. Math. Theory Appl., 28 (2021), 183-208. doi: 10.15517/rmta.v28i2.36084.
13. Y. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar filippov systems, Int. J. Bifurcation Chaos, 13 (2003), 2157-2188. doi: 10.1142/S0218127403007874.
14. F. Dercole, A. Gragnani, Y. Kuznetsov, S. Rinaldi, Numerical sliding bifurcation analysis: an application to a relay control system, IEEE Trans. Circuits Systems I Fund. Theory Appl., $\mathbf{5 0}$ (2003), 1058-1063. doi: 110.1109/TCSI.2003.815214.
15. F. Dercole, Y. Kuznetsov, SlideCont: An auto97 driver for bifurcation analysis of filippov systems, ACM Trans. Math. Soft, 31 (2005), 95-119. doi: 10.1145/1055531.1055536.
16. M. Guardia, T. M. Seara, M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equ., 250 (2010), 1967-2023. doi: 10.1016/j.jde.2010.11.016.
17. M. Antali, G. Stepan, Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823-858. doi: 10.1137/17M1110328.
18. J. Sotomayor, Lições de equações diferenciais ordinárias, Instituto de Matemática Pura e Aplicada, (1980).
19. W. Li, J. Ji, L. Huang, J. Wang, Bifurcations and dynamics of a plant disease system under nonsmooth control strategy, Nonlinear Dyn., 2020 (2020), 1-21. doi: 10.1007/s11071-020-05464-2.
20. W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Am. Math. Soc., 148 (2020), 4389-4403. doi: 10.1090/proc/15095.
(C) 2022 author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
