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Abstract: In this paper, a mathematical model describing the dynamical of the spread of hepatitis C
virus (HCV) at a cellular level with a stochastic noise in the transmission rate is developed from the
deterministic model. The unique time-global solution for any positive initial value is served. The Ito’s
Formula, the suitable Lyapunov function, and other stochastic analysis techniques are used to analyze
the model dynamics. The numerical simulations are carried out to describe the analytical results. These
results highlight the impact of the noise intensity accelerating the extinction of the disease.
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1. Introduction

Hepatitis C is a liver inflammatory disease caused by a viral infection. Hepatitis C virus (HCV)
is an RNA-type virus from the Flaviviridae family (genus Hepacivirus) which has a high replication
rate. Hepatitis can develop into liver cancer [1] and can cause serious complications even death [2, 3].
Around 60 – 85% of acute hepatitis C may develop into a chronic condition, 10–15% may develop
cirrhosis, and 25% may develop liver cancer [1, 2, 4]. It is estimated that 58 million people have a
chronic hepatitis C, with 1.5 million new infections occurring per year over the world [5]. There is no
vaccine available for HCV [3, 4, 6, 7], thus it is important to gain a better insight into the nature of this
disease.

One of the accurate tools to understand the dynamics of hepatitis C is using a mathematical model.
There are several mathematical models developed for HCV for example in [8, 9] studying the HCV
model in population level. The HCV model incorporating treatment, therapy, or isolation were investi-
gated in [10–14] . In reference [15], the optimal control strategies for HCV epidemics considering the
uncertainty of the model was discussed.
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The spread of HCV at the cellular level was also investigated by several researchers e.g., [16–20].
In 1998, Neumann et al. studied the dynamic of HCV and the effect of antiviral. They have found
that HCV is highly dynamic. An existing deterministic model cannot be applied to describe random-
ness in many biological factors, for instance, the random occurrence of cell infection, mutation, and
apoptosis [21,22]. Furthermore, during the spread of HCV, different cells and infectious virus particles
reacting in the same environment can give different effects. In other words, some uncertain factors
influence the spread of HCV in body cells such as lifestyle (alcohol consumption or smoking), pa-
tient compliance level, lipid metabolism, metabolic syndrome, and body weight [23]. Motivated by
this phenomenon, we are interested in extending the mathematical model given in [24] by considering
uncertainty factors. A stochastic model will be derived from the deterministic model. This model
provides better insight into the uncertainty and variability of the disease dynamic. Moreover, the solu-
tion of the stochastic model is in the form of distribution [25], while the solution of the deterministic
model only produces one predictive value [26]. Several papers also discussed the stochastic HCV
model, e.g., [27–32]. In contrast, in this paper, the noise parameter is added in the transmission rate
representing the characteristic of variability and the treatment in the model is considered.

The outline of this paper is organized as follows. In Section 2, the HCV model involving stochastic
disturbances in the transmission rate are developed. In addition, the existence, uniqueness, and bound-
edness of the solution are established. In Section 3, we derive the extinction and persistence in mean
condition. In Section 4, the numerical simulations are carried out to illustrate the analytical results.
The conclusions are presented in the last section.

2. Materials and methods

2.1. Mathematical model

Recall a deterministic mathematical model of HCV given in [24] as

dT
dt
= Λ − δ1T − (1 − η)βVT

dI
dt
= (1 − η)βVT − δ2I

dV
dt
= (1 − ϵ)kI − cV. (2.1)

where T is the number of uninfected cells, I is the number of infected cells, and V is the number of
free viruses. The uninfected cells are produced at rate Λ and die naturally at a constant rate δ1. Cells
become infected when they are interacting with a virus with a constant rate β, and once infected, they
will die at a constant rate δ2. HCV is produced by infected cells at a constant rate k and cleared at a
constant rate c.

For the deterministic model (2.1), the disease-free equilibrium point is E0 =
(
Λ
δ1
, 0, 0

)
and the en-

demic equilibrium point is E1 =
(

δ2c
(1−η)(1−ϵ)kβ ,

Λ
δ2
−

δ1c
(1−η)(1−ϵ)kβ ,

(1−ϵ)kΛ
δ2c −

δ1
(1−η)β

)
. Using the next-generation

matrix method [33], the basic reproduction number of the system (2.1) is Rd
0 =

(1−ϵ)(1−η)βkΛ
cδ1δ2

.
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Table 1. Variables and parameters of the model.

Variable/Parameter Description Unit Range
T (t) concentration of uninfected liver cells cell/mL ≥ 0
I(t) concentration of infected liver cells cell/mL ≥ 0
V(t) concentration of free viruses virion/mL ≥ 0
Λ rate of production cell/day×mL ≥ 0
η the effectiveness of drug in stopping infection – [0,1]
k rate of free virus production virion/cell×day ≥ 0
ϵ the effectiveness of drug in blocking virus – [0,1]
β transmission rate mL/virion × day ≥ 0
δ1 death rate of uninfected liver cells 1/day ≥ 0
δ2 death rate of infected liver cells 1/day ≥ 0
c virion clearance 1/day ≥ 0

In this paper, we generalize system (2.1) by incorporating a stochastic noise parameter in the trans-
mission rate as 

dT = (Λ − δ1T − (1 − η)βVT ) dt − σ(1 − η)VTdB(t)

dI = ((1 − η)βVT − δ2I) dt + σ(1 − η)VTdB(t)

dV = ((1 − ϵ)kI − cV) dt

(2.2)

where B(t) is a standard Brownian motion and σ is a real constant which is known as the intensity of
noise. The value σ is the standard deviation of transmission rate data that represents the variability of
the transmission rate. The other description of parameters model (2.2) is given in Table 1. Clearly, the
system (2.1) is the special case of the system (2.2), where σ = 0.

2.2. Existence and uniqueness of the solution

In this section, the theorem of the existence, uniqueness, and boundedness of the solution system
(2.2) are established. Let (Ω,F , P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the conditions that it is right continuous and F0 contains all P-null sets.

Definition 2.1. [34]
Let T > 0, F(., .) : [0,T ] × Rn → Rn,G(., .) : [0,T ] × Rn → Rn×m be measurable function, and X(t)
satisfy

dX(t) = F(X(t))dt +G(X(t))dB(t), (2.3)

where F(.,.) and G(.,.) are the coefficients of (2.3). Then the coefficients (2.3) are locally Lipschitz, if

|F(t, X) − F(t, X̄)| + |G(t, X) −G(t, X̄)| ≤ C1|X − X̄|; X, X̄ ∈ Rn, t ∈ [0,T ], (2.4)

for some constant C1 ≥ 0.

Definition 2.2. [34]
The coefficients of (2.3) satisfy linear growth condition, if

|F(t, X)| + |G(t, X)| ≤ C2(1 + |X|); X ∈ Rn, t ∈ [0,T ], (2.5)
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for some constant C2.

Lemma 2.3. The system (2.2) with the initial condition in R3
+ is uniformly ultimately bounded and

belongs to the following closed and bounded positively invariant set

Γ =

{
(T, I,V) ∈ R3

+

∣∣∣∣∣∣0 < T + I ≤
Λ

µ
, 0 < V ≤ (1 − ϵ)

(
kΛ
cµ

)}
⊂ R3

+, (2.6)

for every t ≥ 0.

Proof. Let a(t) be a function such that a(t) ≤ Λ. We know that N(t) = T (t) + I(t) is the concentration
of uninfected and infected cells at time t. Take µ = min{δ1, δ2}, then

dN = dT + dI,

= (Λ − δ1T − δ2I)dt,

dN ≤ (Λ − µN)dt. (2.7)

Let dN = (a(t) − µN)dt, it follows that

dN = (a(t) − µN)dt,
dN
dt
+ µN = a(t),

thus,

N(t) = e−µt
(∫ t

0
eµτa(τ)dτ + N0

)
. (2.8)

Since a(t) ≤ Λ, we obtain

N ≤ e−µt
(∫ t

0
eµτΛdτ + N0

)
,

=
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt. (2.9)

By taking a limit t → ∞ of Eq (2.9), we get

N(t) ≤
Λ

µ
.

Analog with the technique for solving Eq (2.7), for V(0) = V0 and I(t) < N(t) ≤ Λ
µ

, we get

dV(t) = [(1 − ϵ)kI − cV]dt,

≤ [(1 − ϵ)
(
kΛ
µ

)
− cV]dt,

then

V(t) ≤ (1 − ϵ)
(
kΛ
cµ

)
+

(
V0 − (1 − ϵ)

(
kΛ
µ

))
e−ct. (2.10)
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If we take lim
t→∞

V(t), then

V(t) ≤ (1 − ϵ)
(
kΛ
cµ

)
.

Since the right-hand side of Eq (2.2) satisfies the Lipschitz condition, the solution exists and unique on
[0, b) for some b > 0. Assume that there exists t1 ∈ (0, b) such that V(t1) = 0 and all other variables are
positive on t1 ∈ (0, b). Therefore, for all t ∈ [0, t1]

dV = ((1 − ϵ)kI − cV)dt,

≥ −cVdt,

thus

V(t1) ≥ C3e−ct1 > 0, where C3 positive constant. (2.11)

This is contradiction with V(t1) = 0. Then V(t) > 0. Analoguely, we get I(t) > 0 and T (t) > 0.
Therefore, we obtain that (T (t), I(t) ∈

(
0, Λ
µ

)
for all t ∈ [0,T ] and 0 < V(t) ≤ (1 − ε)

(
kΛ
cµ

)
. □

Next, we define the necessary condition that guarantees the existence and uniqueness of time-global
solution of Eq (2.2).

Theorem 2.4. Let the coefficients of the system (2.2) satisfy the Lipschitz condition. Then for any initial
value (T (0), I(0),V(0)) ∈ Γ, there exists a unique time-global solution (T (t), I(t),V(t)) ∈ Γ ⊂ R3

+, t ≥ 0
with probability 1.

Proof. According to Definition 2.1, Definition 2.2, and Theorem 5.2.1 in [34], there exists a unique
global solution. However, we have that the coefficients of the system (2.2) only satisfy the Lipschitz
condition [35], thus system (2.2) has a unique local solution on t ∈ [0, τe) for any initial value
(T (0), I(0),V(0)) ∈ Γ where τe is the explosion time (i.e. the time when the solution tends to infinity).
To guarantee the solution of system (2.2) is a unique global solution, it is necessary to show that
τe = ∞ [36, 37].

Let k0 > 0 be sufficiently large such that every component of (T (0), I(0),V(0)) is in the interval[
1
k0
, k0

]
. For every k ≥ k0, we define the stopping time or the first passage time (i.e. first period when

the stochastic process penetrates the barrier) as

τk = inf
{

t ∈ [0, τe)

∣∣∣∣∣∣T (t) <
(
1
k
, k

)
, I(t) <

(
1
k
, k

)
or V(t) <

(
1
k
, k

)}
.

Throughout this paper, we set inf ∅ = ∞. It is known that the lower bound of R is an empty set and the
largest infimum of the empty set is infinity. Since τk is increasing as k → ∞, and

τ0 ≤ τ1 ≤ τ2 ≤ ... ≤ τk ≤ τk+1 ≤ ...,

then it follows that

τ∞ = lim
k→∞
τk,
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thus τ∞ ≤ τe almost sure. Next, it is necessary to show

lim
k→∞
τk = ∞.

We will prove by contradiction. Suppose that P(τ∞ < ∞) < 1. If τ∞ < ∞, then there exist T ∗ > 0 and
ε ∈ (0, 1) such that P {τk ≤ T ∗} > ε,∀k ≥ k0. In this case, the proof technique analogue is to [37–39].
Define a function C2,1,Q : [0,∞) × R3

+ → R+ where

Q(T, I,V) = (T − 1 − ln T ) + (I − 1 − ln I) + (V − 1 − ln V).

Since
y − 1 − ln y ≥ 0,∀y > 0,

then Q is a non-negative function. By using Itô’s formula, we get

dQ =
∂Q
∂t

dt +
∂Q
∂T

dT +
∂Q
∂I

dI +
∂Q
∂V

dV +
(
1
2

) (
∂2Q
∂T 2 (dT )2

)
+

(
1
2

) (
∂2Q
∂I2 (dI)2

)
+

(
1
2

) (
∂2

∂V2 (dV)2
)
+
∂2Q
∂T∂I

dTdI +
∂2Q
∂T∂V

dTdV +
∂2Q
∂I∂V

dIdV,

=

(
1 −

1
T

)
{[Λ − δ1T − (1 − η)βVT ]dt − σ(1 − η)VTdB(t)}

+

(
1 −

1
I

)
{[(1 − η)βVT − δ2I]dt + σ(1 − η)VTdB(t)}

+

(
1 −

1
V

)
{[(1 − ϵ)kI − cV]dt} +

1
2

(σVT )2(1 − η)2
(

1
T 2 +

1
I2

)
(dB(t))2,

≤

{
Λ + δ1 + δ2 + (1 − ϵ)kI + (1 − η)βV + c +

1
2

(σVT )2(1 − η)2(
1

T 2 +
1
I2

)}
dt +

{
σ(1 − η)VT

(
1
T
−

1
I

)}
dB(t),

≤ Mdt + σ(1 − η)VT
(

1
T
−

1
I

)
dB(t), (2.12)

where M is a positive constant. Integrating Eq (2.12) from 0 to τk ∧ T ∗ yields

Q (T (τk ∧ T ∗), I(τk ∧ T ∗),V(τk ∧ T ∗)) − Q(T (0), I(0),V(0))

≤ Mt +

τk∧T ∗∫
0

σ(1 − η)VT
(

1
T
−

1
I

)
dB(t). (2.13)

Taking the expectation of both sides in Eq (2.13) leads to

E (Q (T (τk ∧ T ∗), I(τk ∧ T ∗),V(τk ∧ T ∗))) ≤ E (Q(T (0), I(0),V(0))) + E(Mt)

+ E


τk∧T ∗∫
0

σ(1 − η)VT
(

1
T
−

1
I

)
dB(t)

 ,
Mathematical Biosciences and Engineering Volume 19, Issue 2, 1515–1535.
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≤ Q(T (0), I(0),V(0)) + Mt. (2.14)

Define Ωk = {τk ≤ T ∗} for any k ≥ k0. Then for every w ∈ Ωk there are components of
Q (T (τk ∧ T ∗), I(τk ∧ T ∗),V(τk ∧ T ∗)) which are equal to either k or 1

k , thus

Q (T (τk ∧ T ∗), I(τk ∧ T ∗),V(τk ∧ T ∗)) ≥ min
{

k − 1 − ln k,
1
k
− 1 − ln

(
1
k

)}
. (2.15)

Combining Eqs (2.14) and (2.15) yields

Q (T (0), I(0),V(0)) + Mt ≥ E (Q (T (τk ∧ T ∗,w), I(τk ∧ T ∗,w),V(τk ∧ T ∗,w))) ,
= E

(
1Ωk(w).Q (T (τk,w) , I (τk,w) ,V (τk,w))

)
,

≥ P (Ωk) min
{

k − 1 − ln k,
1
k
− 1 − ln

(
1
k

)}
,

≥ εmin
{

k − 1 − ln k,
1
k
− 1 − ln

(
1
k

)}
, (2.16)

where 1Ωk is the indicator function. By taking a limit k → ∞ of Eq (2.16), we obtain

∞ = Q(T (0), I(0),V(0)) + Mt < ∞.

This is contradiction. We get τ∞ = ∞ or P(τ∞ = ∞) = 1. Therefore, there exists a unique time-global
solution (T (t), I(t),V(t)) ∈ Γ ⊂ R3

+, t ≥ 0 with probability 1. □

3. The equilibria and their stabilities

In this section, the theorem of the extinction and persistence in the mean condition system (2.2) is
derived.

3.1. Extinction

In this part, we investigate the almost surely exponential stability of the disease-free equilibrium
point by using the suitable Lyapunov function and another technique of stochastic analysis.

Lemma 3.1. If

σ >
β

√
2(δ2 − (1 − ϵ)k ∧ c)

, (3.1)

the disease-free equilibrium point (T, I,V) = (Λ/δ1, 0, 0) is almost surely exponentially stable in Γ.

Proof. The technical proof of this theorem follows from [38, 40]. Define a function Q = ln(I + V).
Using Itô’s formula, we obtain

dQ =
∂Q
∂t

dt +
∂Q
∂T

dT +
∂Q
∂I

dI +
∂Q
∂V

dV +
1
2

[
∂2Q
∂T 2 dTdT +

∂2Q
∂I2 dIdI +

∂2Q
∂V2 dVdV

]
+
∂2Q
∂T∂I

dTdI +
∂2Q
∂T∂V

dTdV +
∂2Q
∂I∂V

dIdV,
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=
1

I + V
[((1 − η)βVT − δ2I)dt + σ(1 − η)VTdB] +

1
I + V

[(1 − ϵ)kI − cV]dt

+
1
2

[
−

1
I + V)2 (σ2(1 − η)2(VT )2)dt

]
,

=

{
(1 − η)βZ −

δ2I
I + V

−
cV

I + V
+

(1 − ϵ)kI
I + V

−
1
2
σ2(1 − η)2Z2

}
dt + σ(1 − η)ZdB,

where Z = VT
I+V . Futhermore, we have

dQ ≤ −
1
2
σ2(1 − η)2

[
Z −

β

δ2(1 − η)

]2

dt +
β2

2σ2 dt − [δ2 − (1 − ϵ)k ∧ c]dt + σ(1 − η)ZdB,

≤
β2

2σ2 dt − [δ2 − (1 − ϵ)k ∧ c]dt + σ(1 − η)ZdB. (3.2)

Taking the integral of (3.2) and dividing both sides by t and then computing the limit superior t → ∞
yield

lim
t→∞

sup
1
t

ln(I(t) + V(t)) ≤ lim
t→∞

sup
1
t
{ln(I(0) + V(0)) +

β2

2σ2 − [δ2 − (1 − ϵ)k ∧ c]}

+ lim
t→∞

sup
∫ t

0

1
t
σ(1 − η)ZdB. (3.3)

By the strong law of large number for Martingales [41], we have

lim
t→∞

sup
∫ t

0

1
t
σ(1 − η)ZdB = 0. (3.4)

Thus, from Eqs (3.3) and (3.4), we obtain

lim
t→∞

sup
1
t

ln(I(t) + V(t)) ≤ lim
t→∞

sup
1
t
{ln(I(0) + V(0)) +

β2

2σ2 − [δ2 − (1 − ϵ)k ∧ c]} < 0.

□

By Lemma 3.1, if the noise is increasing and satisfies the condition (3.1) HCV will die out. How-
ever, in this study, we also get that a bounded variation of infection rate could also lead to extinction.
This is presented in the following theorem.

Theorem 3.2. Let (T (0), I(0),V(0)) ∈ Γ be the initial value of system (2.2) and (T (t), I(t),V(t)) ∈ Γ be
the corresponding solution. If

Rs
0 =

(1 − ϵ)(1 − η)βkΛ
cδ1δ2

− [
1

4cδ2
1δ

2
2

(1 − ϵ)2(1 − η)2k2Λ2σ2]

= Rd
0 − [

1
4cδ2

1δ
2
2

(1 − ϵ)2(1 − η)2k2Λ2σ2] < 1

and σ2 < 4δ1δ2β
(1−ϵ)(1−η)kΛ , then HCV will be extinct almost surely, i.e.,

lim
t→∞

T (t) =
Λ

δ1
, lim

t→∞
I(t) = 0, lim

t→∞
V(t) = 0.
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Proof. The proof technique follows from [38, 40, 42, 43]. Consider the first equation of system (2.2),
then we get

T (t) − T (0) = Λt −

t∫
0

(1 − η)βV(s)T (s)ds −
∫ t

0
δ1T (s)ds −

∫ t

0
σ(1 − η)V(s)T (s)dB(s),

or

1
t

∫ t

0
T (s)ds =

Λ

δ1
−

(T (t) − T (0))
δ1t

−
1
δ1t

t∫
0

(1 − η)βV(s)T (s)ds −
1
δ1t

∫ t

0
σ(1 − η)V(s)T (s)dB(s).

For simplicity, we define an integrable function ⟨X⟩ = 1
t

∫ t

0
X(s)ds, X(t) ∈ [0,+∞), thus

⟨T ⟩ =
Λ

δ1
−

(T (t) − T (0))
δ1t

−
1
δ1

(1 − η)β⟨VT ⟩ −
1
δ1t

∫ t

0
σ(1 − η)V(s)T (s)dB(s). (3.5)

Taking the limit of Eq (3.5) as t tend to infinity, we obtain

lim
t→∞
⟨T ⟩ =

1
δ1

lim
t→∞

[Λ −
(T (t) − T (0))

t
− (1 − η)β⟨VT ⟩ −

1
t

∫ t

0
σ(1 − η)V(s)T (s)dB(s)],

≤
1
δ1

lim
t→∞

[Λ −
1
t

∫ t

0
σ(1 − η)V(s)T (s)dB(s)],

≤
Λ

δ1
.

Next, define a function Q = ln((1 − ϵ)kI + δ2V). Applying Ito’s formula, we obtain

dQ =
∂Q
∂t

dt +
∂Q
∂T

dT +
∂Q
∂I

dI +
∂Q
∂V

dV +
1
2

[
∂2Q
∂T 2 dTdT +

∂2Q
∂I2 dIdI +

∂2Q
∂V2 dVdV

]
+
∂2Q
∂T∂I

dTdI +
∂2Q
∂T∂V

dTdV +
∂2Q
∂I∂V

dIdV,

=
(1 − ϵ)k

(1 − ϵ)kI + δ2V
[((1 − η)βVT − δ2I)dt + σ(1 − η)VTdB]

+
δ2

(1 − ϵ)kI + δ2V
[(1 − ϵ)kI − cV]dt

+
1
2

[
−

1
((1 − ϵ)kI + δ2V)2 (1 − ϵ)2k2(σ2(1 − η)2(VT )2)dt

]
,

≤

[
(1 − ϵ)k(1 − η)βT

δ2
− c −

1
2δ2

2

1
2

(1 − ϵ)2k2σ2(1 − η)2T 2
]

dt

+
(1 − ϵ)k

(1 − ϵ)kI + δ2V
σ(1 − η)VTdB. (3.6)

Integrating both sides of Eq (3.6) from 0 to t yields

ln((1 − ϵ)kI + δ2V) ≤ ln((1 − ϵ)kI(0) + δ2V(0)) +
(1 − ϵ)k
δ2

(1 − η)β
∫ t

0
T (s)ds
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− ct −
1

4δ2
2

(1 − ϵ)2k2σ2(1 − η)2
∫ t

0
(T (s))2ds

+

∫ t

0

(1 − ϵ)k
(1 − ϵ)kI(s) + δ2V(s)

σ(1 − η)VTdB(s). (3.7)

Dividing both sides of Eq (3.7) by t and taking a limit superior for t → 0, we get

lim
t→∞

sup
1
t

ln((1 − ϵ)kI + δ2V) ≤ lim
t→∞

sup
1
t
[ln((1 − ϵ)kI(0) + δ2V(0)) +

(1 − ϵ)k
δ2

(1 − η)β
∫ t

0
T (s)ds]

− c − lim
t→∞

sup
1

4δ2
2

(1 − ϵ)2k2σ2(1 − η)2
∫ t

0
(T (s))2ds

+

∫ t

0

(1 − ϵ)k
(1 − ϵ)kI(s) + δ2V(s)

σ(1 − η)VTdB(s).

By the strong law of large number for Martingales [41],

lim
t→∞

sup
1
t

∫ t

0

(1 − ϵ)k
(1 − ϵ)kI(s) + δ2V(s)

σ(1 − η)VTdB(s) = 0,

we obtain

lim
t→∞

sup
1
t

ln((1 − ϵ)kI + δ2V) ≤
(1 − ϵ)k
δ1δ2

(1 − η)βΛ − c −
1

4δ2
2

(1 − ϵ)2k2σ2(1 − η)2 (Λ)2

(δ1)2 ,

≤ c{[
(1 − ϵ)(1 − η)βkΛ

cδ1δ2
−

1
4cδ2

2δ
2
1

(1 − ϵ)2(1 − η)2k2Λ2σ2] − 1},

≤ c[Rs
0 − 1] < 0.

Thus, lim
t→∞

I(t) = 0 and lim
t→∞

V(t) = 0. In other words, HCV will be extinct. □

3.2. Persistence in mean

In this subsection, we give a sufficient condition to guarantee the persistence in the mean condition.

Definition 3.3. [31, 40, 44]
System (2.2) is said to be persistent in mean if

lim inf
t→∞

1
t

∫ t

0
[I(s) + V(s)]ds > 0

almost surely.

Theorem 3.4. Let (T (0), I(0),V(0)) ∈ Γ be the initial value of system (2.2) and (T (t), I(t),V(t)) ∈ Γ be
the corresponding solution. If

Rs
1 =

(1 − ϵ)(1 − η)βkΛ
cδ1δ2

−

[
1

2cδ2
1(1 + δ2)2

(1 − ϵ)2(1 − η)2k2Λ2σ2
]

= Rd
0 −

[
1

2cδ2
1(1 + δ2)2

(1 − ϵ)2(1 − η)2k2Λ2σ2
]
> 1,
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then HCV will be persistent in mean, i.e.,

lim inf
t→∞

1
t

∫ t

0
{I(s) + V(s)}ds ≥

δ2/(δ2 ∨ c)
(1 − η)(1 − ϵ)βΛk

[δ1c(Rs
1 − 1)].

Proof. Analogue to the proof technique in [40] and [44]. Integrating the system (2.2) yields

T (t) − T (0) + I(t) − I(0) + V(t) − V(0) = Λt − δ1

∫ t

0
T (s)ds − δ2

∫ t

0
I(s)ds

+ (1 − ϵ)k
∫ t

0
I(s)ds − c

∫ t

0
V(s)ds (3.8)

Dividing both sides Eq (3.8) by t, we get

T (t) − T (0)
t

+
I(t) − I(0)

t
+

V(t) − V(0)
t

= Λ −
δ1

t

∫ t

0
T (s)ds −

δ2

t

∫ t

0
I(s)ds

+
(1 − ϵ)k

t

∫ t

0
I(s)ds −

c
t

∫ t

0
V(s)ds

1
t

∫ t

0
T (s)ds =

Λ

δ1
−
δ2

δ1t

∫ t

0
I(s)ds +

(1 − ϵ)k
δ1t

∫ t

0
I(s)ds −

c
δ1t

∫ t

0
V(s)ds − Φ (3.9)

where

Φ(t) =
T (t) − T (0)

t
+

I(t) − I(0)
t

+
V(t) − V(0)

t
.

Define a function Q = ln[(1 − ϵ)kI(t) + (1 + δ2)V(t)]. Applying Itô’s formula, we obtain

dQ =
(1 − ϵ)k[((1 − η)βVT − δ2I)dt + σ(1 − η)VTdB]

(1 − ϵ)kI + (1 + δ2)V

+
(1 + δ2)((1 − ϵ)kI − cV)dt

(1 − ϵ)kI + (1 + δ2V)
+

1
2

[−
(1 − η)2(1 − ϵ)2k2σ2(VT )2

[(1 − ϵ)kI + (1 + δ2)V]2 dt],

≥ (
(1 − ϵ)(1 − η)kβT

δ2
− c −

1
2

(1 − η)2(1 − ϵ)2k2σ2T 2

(1 + δ2)2 )dt

+
σ(1 − η)(1 − ϵ)kVTdB
(1 − ϵ)kI + (1 + δ2)V

. (3.10)

Integrating Eq (3.10) from 0 to t and dividing both sides by t, we have

1
t

ln[(1 − ϵ)kI(t) + (1 + δ2)V(t)] ≥
1
t

ln[(1 − ϵ)kI(0) + (1 + δ2)V(0)

+
1
t

∫ t

0

(1 − ϵ)(1 − η)kβT (s)ds
δ2

− c

−
1
t

∫ t

0

1
2

(1 − η)2(1 − ϵ)2k2σ2T (s)2ds
(1 + δ2)2

+
1
t

∫ t

0

σ(1 − η)(1 − ϵ)kV(s)T (s)dB(s)
(1 − ϵ)kI + (1 + δ2)V

. (3.11)
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According to Eqs (3.9) and (3.11), we get

δ2

δ1t

∫ t

0
I(s)ds +

c
δ1t

∫ t

0
V(s)ds ≥

δ2

(1 − η)(1 − ϵ)βΛk
[c(Rs

1 − 1) − Φ(t) − Ψ(t) + M(t)]

(3.12)

where

Rs
1 =

(1 − ϵ)(1 − η)βkΛ
cδ1δ2

− [
1

2cδ2
1(1 + δ2)2

(1 − ϵ)2(1 − η)2k2Λ2σ2],

Ψ(t) =
1
t

ln[(1 − ϵ)kI(0) + (1 + δ2)V(0),

M(t) =
1
t

∫ t

0

σ(1 − η)(1 − ϵ)kV(s)T (s)dB(s)
(1 − ϵ)kI + (1 + δ2)V

.

Taking the limit inferior of Eq (3.12) as t → 0 yields

lim
t→∞

inf
δ2

δ1t

∫ t

0
I(s)ds +

c
δ1t

∫ t

0
V(s)ds ≥ lim

t→∞
inf

δ2

(1 − η)(1 − ϵ)βΛk
[c(Rs

1 − 1)],

lim
t→∞

inf
1
t

[∫ t

0
I(s)ds +

∫ t

0
V(s)ds

]
≥ lim

t→∞
inf

δ2/(δ2 ∨ c)
(1 − η)(1 − ϵ)βΛk

[δ1c(Rs
1 − 1)].

This completes the proof. □

4. Numerical simulation

In this section, we carry out a numerical simulation in order to provide an interpretation of the solu-
tion. We use the Euler-Maruyama method to determine the solution of system (2.2). The discretization
of system (2.2) is given as follows

Ti+1 = Ti + (Λ − δ1Ti − (1 − η)βViTi)∆t − σ(1 − η)ViTi
√
∆tζ

Ii+1 = Ii + ((1 − η)βViTi − δ2Ii)∆t + σ(1 − η)ViTi
√
∆tζ

Vi+1 = Vi + ((1 − ϵ)kIi − cVi)∆t

(4.1)

where t ∈ [t0, tN],∆t = tN−t0
N , and ζ is normally distributed N(0,1).

Three simulations are conducted. The first simulation is deterministic system. The second simula-
tion is to represent the solution of a stochastic model in the extinction condition. The third simulation
is illustrating the solution of a stochastic model when Lemma 3.1 and Theorem 3.2 are violated. The
parameters and initial values of the model in each simulation are given in Table 2.

Figure 1 shows the solution of a deterministic model (σ = 0) with Rd
0 > 1. It can be seen that the

solution is tend to the endemic equilibrium point E1 = (6.6× 106, 2.6× 106, 7× 105) which means that
HCV disease is persistent.

Figure 2 illustrates the stochastic model with σ = 4 × 10−7 the condition

σ =
√

1.6 × 10−13 = 4 × 10−7 >
β

√
2(δ2 − (1 − ϵ)k ∧ c)

= 0.76 × 10−7
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Figure 1. Simulation 1: a deterministic model of the system (2.1).

(a) infected cell

(b) free virus

Figure 2. Simulation 2: a stochastic model of the system (2.2) with σ = 4 × 10−7, 10 paths.
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Table 2. Values and parameters of the model.

Sim.1 Sim.2 Sim.3 Unit Reference
T (0) 106 106 106 cell/mL [45]
I(0) 105 105 105 cell/mL [45]
V(0) 105 105 105 virion/mL [45]
Λ 8 × 105 8 × 105 8 × 105 cell/day×mL [17]
η 0.7 0.7 0.7 – [17]
k 0.9 0.2 0.9 virion/cell×day [17]
ϵ 0.75 0.75 0.75 – [17]
β 5.4 × 10−8 5.4 × 10−8 5.4 × 10−7 mL/virion × day [17]
δ1 0.0047 0.1 0.0047 1/day [17, 46]
δ2 0.3 0.3 0.3 1/day [17]
c 0.8 1 0.8 1/day [17]
σ – 4 × 10−7 9 × 10−8 – –

and Rs
0 < 1 where σ2 = 1.6 × 10−13 < 4δ1δ2β

(1−ϵ)(1−η)kΛ = 5.4 × 10−13 satisfies Lemma 3.1 and Theorem
3.2 respectively. More precisely, when the choosen parameters satisfy Lemma 3.1 and Theorem 3.2,
the point E0 = (8 × 106, 0, 0) is almost exponentially stable. It can be seen from Figure 2 where the
concentration of infected cells and free viruses go to zero. Therefore, HCV will go extinct almost
surely.

Figure 3 describes the condition when basic reproduction number Rs
0 = 0.0214 < 1 and σ2 =

4.9 × 10−15 < 4δ1δ2β
(1−ϵ)(1−η)kΛ = 5.4 × 10−13. This is satisfying Theorem 3.2 and violating Lemma 3.1. That

figure shows a stochastic noise impact the disease extinction.

(a) infected cell (b) free virus

Figure 3. Simulation 2: a stochastic model of the system (2.2) with σ = 7 × 10−8, 10 paths

Figure 4 shows that if the intensity of the disturbance is smaller whereσ2 = 8.1×10−16 < 1.9×10−12,
thus Lemma 3.1 is violated. Taking the time interval [0,400] with 4000 points and 10 paths, it appears
in Figure 4(a) that the concentration of uninfected cells rises to a peak around at t = 30 days, then
drops sharply to around t = 45 days and then they rise slowly. The graphics in Figures 4(b),(c) show
the concentration of infected cells and free virus after t = 50 days which tend to certain interval values.
This shows that hepatitis C remains exist.
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(a) uninfected cell (b) infected cell (c) free virus

Figure 4. Simulation 3: a stochastic model of the system (2.2) with σ = 9 × 10−8, 10 paths.

Figure 5 describes the condition of the HCV extinction when Lemma 3.1 is satisfied while Theorem
3.2 is violated. It can be seen that figures show the concentration of infected cells and free virus from
initial value that tends to zero for a long period of time.

(a) infected cell (b) free virus

Figure 5. Simulation 3: a stochastic model of the system (2.2) with β = 2.5× 10−8, 10 paths.

(a) uninfected cell (b) infected cell (c) free virus

Figure 6. A stochastic model of the system (2.2) with confidence interval on simulation 2.

Figure 6(a) shows the distribution value of uninfected cells in simulation 2 with a confidence interval
of 95 %. After time t about 50 days the concentration of uninfected cells will go to a positive constant
value (8×106). From Figure 6(b), the simulation at t = 5 is more diverse than t=10. After time t 20 days,
the concentration of infected cells will go to zero. Figure 6(c) shows the free virus concentration at the
time t from 3 to 15 days is in the certain interval value. After time t 20 days, the virus concentration will
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go to zero. Therefore, from simulation 2, it can be concluded that stochastic disturbances can affect the
behavior of the spread of hepatitis C. When conditions are met according to Lemma 3.1 and Theorem
3.2, at a certain time t hepatitis C will disappear. Mathematically, in this case, the basic reproduction
number in the extinction condition is less than one.

Figure 7 shows the confidence intervals for simulation 3 where we reduced the sigma values while
preserving the other parameter values. Figure 7(a) shows the concentration of uninfected cells will
reach peaks around 23 to 30 days and then decline. After 75 days the concentration will move to a
certain interval value. The green lines show the mean value of the simulations. Figures 7(b),(c) show
that after 75 days, the concentration of infected cells and free virus lead to a certain positive number
interval value with a confidence interval of approximately 95 %. In other words, hepatitis C disease
will persist.

(a) uninfected cell (b) infected cell (c) free virus

Figure 7. A stochastic model of the system (2.2) with confidence interval on simulation 2.

Figure 8. A stochastic model of the system (2.2) on persistence in mean simulation compared
to a deterministic.

Lastly, we conduct a simulation for persistence in mean condition where β = 5.4 × 10−7, δ1 =

0.0047, k = 1, c = 0.6, σ = 9 × 10−8, and the rest of parameters and initial values state in Table 2.
Figure 8 illustrates the solution of the stochastic model compared to the deterministic. Figure 9 shows
the number of concentrations of healthy cells, infected cells, and free virus at a certain value which are
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more than zero. When t ≥ 50, it appears that the concentrations of uninfected cells, infected cells and
free viruses go to an equilibrium state. According to the numerical calculations, we obtain Rs

1 > 1 and
the endemic equilibrium point E1 = (T, I,V) = (4.4×106, 2.6×106, 1.08×106). According to Theorem
3.4 hepatitis C remains to exist which are also depicted in Figure 9. Figure 10 describes the condition
if the noise intensity is increasing, then the solution of model (2.2) will be strongly oscillating around
the endemic equilibrium point of the model (2.1).

(a) uninfected cell (b) infected cell (c) free virus

Figure 9. A stochastic model of the system (2.2) with σ = 9 × 10−8, 10 paths on simulation
persistence in mean.

(a) uninfected cell (b) infected cell (c) free virus

Figure 10. A stochastic model of the system (2.2) with σ = 2× 10−7, 10 paths on simulation
persistence in mean.

(a) uninfected cell (b) infected cell (c) free virus

Figure 11. A stochastic model of the system (2.2) with confidence interval on persistence in
mean simulation.

Furthermore, in Figure 11, we generate a 95% confidence interval for t ∈ [0, 400] with 4000 paths.
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Figure 11(a) describes the number of uninfected cells that tends to a consistent interval value after 75
days. Figure 11(b),(c) show the confidence intervals of infected liver cells and free viruses. In the time
t span of 0 to 400 days the number of concentrations in a row increases to a peak around day 27 for
infected cells and free viruses, then decreases. After 30 days, leading to a consistent value for infected
cells from 1.9 × 106 to 3.9 × 106, and free viruses from 0.75 × 106 to 1.5 × 106.

5. Conclusions

In this paper, we propose an epidemic model for HCV transmission at the cellular level incor-
porating statistical noise. The results extend the paper of Neumann, et.al. [24] in understanding the
dynamics of a deterministic hepatitis C virus. Various types of Lyapunov functions are designed to
study the persistence in mean conditions as well as the extinction of the stochastic system. Based on
this model, there exists a unique time-global solution for any given positive initial value. In addition,
numerical simulations are carried out to describe the solution behaviour of the model. We analyze that
if the noise intensity is increasing, then the disease will go to extinction. If the basic reproduction num-
ber of the extinction condition is less than one, then hepatitis C will extinct. If the basic reproduction
number of the persistence in the mean condition is more than one, then hepatitis C remains to exist.
When the noise intensity increases, the solution will give a strong oscillation under the condition of
persistence in the mean. It can provide some useful strategies for controlling the dynamics of that dis-
ease. In future research, we can consider an optimal control of the stochastic model for HCV, research
on memory effect, and fractional derivatives [47]. Furthermore, it needs to investigate the stochastics
noise for other parameters apart from infection rate. It is also important to consider a stochastic model
for HCV transmission involving the response immune system.
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