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Abstract: The most common non-monotonic hazard rate situations in life sciences and engineering
involves bathtub shapes. This paper focuses on the quantile residual life function in the class of lifetime
distributions that have bathtub-shaped hazard rate functions. For this class of distributions, the shape
of the α-quantile residual lifetime function was studied. Then, the change points of the α-quantile
residual life function of a general weighted hazard rate model were compared with the corresponding
change points of the basic model in terms of their location. As a special weighted model, the order
statistics were considered and the change points related to the order statistics were compared with the
change points of the baseline distribution. Moreover, some comparisons of the change points of two
different order statistics were presented.
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1. Introduction

In many real-life situations, we are dealing with an object (a manufactured device or a born living
thing) that goes through three distinct phases of life: the early risky life phase, the use phase, and the
wear and tear phase. In the early life phase, the object is naturally exposed to a higher than average
hazard rate (HR), which decreases over time, and at the end of this phase the object reaches a more
reliable state. After the use phase, in which the object is exposed to a rather low risk, the wear phase
begins. In the wear phase, the HR due to erosion or aging increases over time. In medical and industrial
applications, such aging behavior suggests a life model with a bathtub-shaped hazard rate (BSHR).

There is a vast literature dealing with BSHR lifetime distribution. Rajarshi and Rajarshi [1] and Lai
et al. [2] have presented two good surveys of BSHR models. Many authors have introduced models
with such behavior, e.g., Glaser [3], Mudholkar and Sirvastava [4], Navarro and Hernandez [5], Xie
et al. [6], Wang [7] and many others. In addition, Lai and Xie [8] and Nadarajah [9] have presented
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lists of such models. Mi [10] and Gupta and Akman [11] characterized the mean residual life (MRL)
function and showed that when the HR function is bathtub-shaped, the MRL function is decreasing
or upside-down bathtub-shaped (UBS). Mi [10] applied this result to determine the optimal time for
burn-in. In addition, Block et al. [12] characterized the average HR function, the MRL function, the
average mean residual life function, the harmonic average mean residual life function, the variance
residual life function, and the residual entropy function when the HR function is bathtub-shaped. They
investigated the coefficient of variation of the residual life as a criterion for burn-in.

The α-quantile residual life function (α-QRL), which describes the α-quantile of the remaining life
span survival to a certain time, was introduced by Haines and Singpurwalla [13]. After that, Arnold and
Brockett [14], Gupta and Longford [15], Joe and Proschan [16], Joe [17], Launer [18], Song and Cho
[19], Lin [20], Shafaei Noughabi and Kayid [21], Kayid et al. [22], Shafaei Noghabi et al. [23], Shafaei
Noughabi and Franco-Pereira [24, 25] and many others have conducted researches on this measure.

Franco-Pereira et al. [26] pointed out that the α-QRL function is preferable to the MRL function in
some situations, e.g., when the concerned distribution is skewed or heavily tailed. They studied some
features of this function, in particular for the case when the HR is bathtub-shaped, and presented a
characterization of BSHR distribution via the percentile residual life function.

Shen et al. [27] have shown that there are relationships between the change points of the MRL
functions (the point that maximizes the MRL function) in series or parallel systems and the change
points of the MRL function of the components. Shafaei Noughabi et al. [28] considered a more
general weighted HR model and proved similar results for series and parallel systems as special cases
of the study. The aim of this paper is to study the relationship between points maximizing the α-QRL
of the basic model and such points for a general weighted HR model and order statistics as a special
case. The rest of the paper is organized as follows. In Section 2, we present a new characterization of
the α-QRL function BSHR distributions. In Section 3, the maximization points of the α-QRL function
of a general weighted HR model are compared with the change points corresponding to the baseline
distribution with respect to its location. Then, the order statistic was considered as a special case.

2. Characterization of QRL functions

Let lifetime of an object be represented by the random variable T following the distribution function
F(t) and the reliability function F̄(t). When F is absolutely continuous with the density function f (t),
the HR function is defined by λ(t) =

f (t)
F̄(t) , t ∈ (0, u), u = sup{t : F̄(t) > 0} ∈ (0,∞]. Here, we consider

the following definition for the class of BSHR distributions.

Definition 1. The distribution function F is said to be BSHR with the change points t0 and t1, 0 < t0 ≤

t1 < u, if its corresponding HR function is strictly decreasing in (0, t0), constant in (t0, t1), and strictly
increasing in (t1, u).

Definition 2. A function q(t) has an UBS form with change points a and b when it is strictly increasing
on (0, a), constant on (a, b) and strictly decreasing for t ≥ b.

The conditional residual life of an item with variable lifetime T given survival up to time t is
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Tt = (T − t|T ≥ t). Then, the conditional reliability survival up to time t can be written as

F̄t(x) = P(Tt > x) =
F̄(t + x)

F̄(t)
. (2.1)

Based on this measure, the α-QRL function is defined to be

qα(t) = inf{x : F̄t(x) ≤ ᾱ}
= inf{x : F̄(t + x) ≤ ᾱF̄(t)}
= inf{y : F̄(y) ≤ ᾱF̄(t)} − t

= F̄−1(ᾱF̄(t)) − t,

(2.2)

where ᾱ = 1 − α. The following basic theorem from Joe and Proschan [16] will be applied repeatedly
in this paper.

Theorem 1. Assume that F(t) is absolutely continuous with the density function f (t) and the HR
function λ(t). Then, qα(t) satisfies the condition∫ t+qα(t)

t
λ(u) du = − ln ᾱ, 0 ≤ t + qα(t) < u.

Therefore, for continuous λ(t) and differentiable qα(t) we have

q′α(t) =
λ(t)

λ(t + qα(t))
− 1. (2.3)

As an immediate result of Theorem 1, assume that there exists one t∗ such that λ(t) ≤ λ(t∗) for all
0 ≤ t ≤ t∗, and λ(t) is increasing for t ≥ t∗. Then, the α-QRL function is decreasing for all α0 ≤ α < 1
where α0 = F(t∗). To make this statement clear, note that for t ≥ t∗, we have λ(t) ≤ λ(t + qα(t)) so
q′α(t) ≤ 0. Also, if 0 ≤ t < t∗, then

t∗ = F̄−1(1 − α0) ≤ F̄−1((1 − α)F̄(t)) = t + qα(t).

Thus, λ(t) ≤ λ(t + qα(t)) and in turn q′α(t) ≤ 0.

For example, if F is a BSHR distribution and there exists a t∗ such that λ(t∗) ≥ λ(0), then the
corresponding α-QRL is decreasing for all F(t∗) ≤ α < 1, refer to Joe and Proschan [16] for more
details.

Launer [18] assumed a critical point for the α-QRL function at which this function is maximized
or minimized, and showed that this critical point precedes the critical point of the HR function. The
critical point of the hazard rate was defined to be the point that the hazard rate is minimized (in the case
of BSHR) or maximized (in the case of upside down bathtub shaped hazard rate). Then, he assumed
that λ(x) has a bathtub shape and satisfies λ(0) = λ(t0) for a t0 > 0, and showed that the corresponding
α-QRL function is decreasing for all α ≥ α0 for one 0 < α0 < 1 while for α < α0, it has a maximum
preceding the first change point of λ(t). Moreover, Franco-Pereira et al. [26] presented some results
related to the form of the α-QRL function when the HR is bathtub shaped.
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Here we provide a new characterization of the α-QRL function in terms of the bathtub-shaped HR
functions, which provides for a more detailed behavior of the quantile residual lifetime function and is
useful for the next part of our study.

Definition 3. A function g is said to be wide UBS in an interval (0, b) when it satisfies the following
conditions.
(a) g′(x) = 0 implies g′(s) ≤ 0 for x < s ≤ b, and g′(r) ≥ 0 for 0 < r < x,
(b) g′(x) < 0 implies g′(s) < 0 for x < s ≤ b,
and
(c) g′(x) > 0 implies g′(r) > 0 for 0 < r < x.

The following lemma will be applied in the next results.

Lemma 1. Let F be a BSHR distribution with the change points t1 and t2. Then qα(t) is a wide UBS
function in the interval (0, t2].

Proof: From Eq (2.3) the sign of the continuous function

d(t) = λ(t) − λ(t + qα(t)) = λ(t + qα(t))q′α(t), (2.4)

equals the sign of q′α(t), because λ(t + qα(t)) > 0.

Now, we show that d(x) = 0 implies that d(s) ≤ 0 for x < s < t2 and d(r) ≥ 0 for 0 < r < x < t2.

Let d(x) = 0, i.e., λ(x) = λ(x + qα(x)), and x < s < t2. Clearly, λ(x) ≥ λ(s) since the HR is
decreasing in the interval [0, t2]. On the other hand, we must have

t1 < x + qα(x) < s + qα(s). (2.5)

The first inequality of Eq (2.5) is true since x + qα(x) ≤ t1 contradicts with the assumption λ(x) =

λ(x + qα(x)) and the second inequality results from the fact that F̄−1(ᾱF̄(t)) = t + qα(t) is increasing in
t. Consequently λ(s + qα(s)) ≥ λ(x + qα(x)). Thus,

d(s) = λ(s) − λ(s + qα(s)) ≤ λ(x) − λ(x + qα(x)) = 0.

For the other argument, let d(x) = 0, and 0 < r < x < t2. If r + qα(r) ≤ t1, then clearly, d(r) ≥ 0
since the HR function is strictly decreasing in [0, t1]. Assume that r + qα(r) > t1. Then, we have
λ(x) ≤ λ(r) since r < x < t2 and the HR is decreasing in [0, t2]. Also, λ(r + qα(r)) ≤ λ(x + qα(x)) since
t1 < r + qα(r) < x + qα(x). Thus, we can write

d(r) = λ(r) − λ(r + qα(r)) ≥ λ(x) − λ(x + qα(x)) = 0.

The statements (b) and (c) of Definition 3 can be checked in a similar way. �

Proposition 1. Let F be a BSHR distribution with the change points t1 and t2. Then, for every
α ∈ (0, 1), qα(t) is decreasing or has an UBS form.

Proof: The HR function is strictly increasing in the interval [t2, u), so λ
(
t+qα(t)

)
> λ(t) in this interval.

This proves that qα(t) is strictly decreasing in the interval [t2, u).
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To check the behavior of qα(t) for t ≤ t2, we note that by Lemma 1, qα(t) is a wide UBS function in
the interval (0, t2]. Then, by the fact that qα(t) is continuous and q′α(t2) < 0 (since the HR function is
strictly increasing in [t2, u) it results that λ(t2) < λ(t2 + qα(t2)) or equivalently q′α(t2) < 0), all possible
forms of it consists of strictly increasing then constant then strictly decreasing, strictly increasing then
strictly decreasing, strictly decreasing or constant then strictly decreasing. �

Note that the conditions of Proposition 1 do not guarantee a strict UBS form for the α-QRL function.
The following theorem provides a condition at which the α-QRL function exhibits an early strictly
increasing interval.

Proposition 2. Let F be a BSHR distribution with the change points t1 and t2, t1 ≤ t2, with the
continuous HR function λ and λ(0) > limt→∞ λ(t). Then, for every α ∈ (0, 1), qα(t) has an UBS form.

Proof: Consider a point t∗ < t1 that satisfies the condition

λ(t∗) = lim
t→∞

λ(t). (2.6)

Thus, λ(t) > λ(s) for all t < s, t ≤ t∗. So, for every α ∈ (0, 1), we have

q′α(t) =
λ(t)

λ(t + qα(t))
− 1 > 0, 0 < t < t∗.

Proposition 1 states that the α-QRL function of a BSHR distribution is decreasing or UBS. There-
fore, it results that if

q′α(0) ≤ 0, or equivalently λ(0) ≤ λ(qα(0)), (2.7)

then the α-QRL will be a decreasing function and if

q′α(0) > 0, or equivalently λ(0) > λ(qα(0)), (2.8)

it will show an UBS form. �

Suppose that m(t) is the mean residual life function of a lifetime model. Gupta and Akman [11]
proved similar results for m(t) which state that for a BSHR distribution, when λ(0) < (≥) 1

m(0) , the mean
residual life function is decreasing (UBS).

Mi [10] considered the expected lifetime as an important measure of the quality of a product and
proposed the point at which the MRL function is maximized as the optimal burn-in time. Here, we
propose the α-QRL function as another criterion for burn-in, especially when α = 0.5 (which is the
median residual life). Based on this criterion, the optimal burn-in time is the smallest time that max-
imizes the α-QRL function. This burn-in time, which is a function of α, is denoted by bq(α). For a
BSHR distribution, by Eqs (2.6) and (2.7), it results that bq(α) = 0 if λ(0) ≤ λ(qα(0)).

3. The α-QRL of weighted HR models

The weighted HR model defined in the following was considered by Shafaei Noughabi et al. [28].
Moreover, many special cases of such models appeared in the literature, e.g., Takahasi [29], Nagaraja
[30], Misra et al. [31], Navarro et al. [32] and Samaniego [33].
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Definition 4. For a baseline HR function λ, the weighted HR model is characterized by the HR function

λw(t) = w(t)λ(t), (3.1)

where w(t) ≥ 0 and
∫ t

0
λw(x)dx < +∞ for all t ∈ (0, u) and

∫ u

0
λw(x)dx = +∞. Moreover, F and Fw are

taken to be the corresponding distribution functions to λ and λw respectively.

Two special cases of this general weighted model are the proportional HR model and the coher-
ent system with possibly dependent and identically distributed components, see relation Eq (2.8) of
Navarro et al. [32] and Eq (5) of Samaniego [33]. The order statistics are special cases of such coher-
ent systems.

Definition 5. Let F1 and F2 be two distribution functions with continuous HR functions and UBS or
decreasing α-QRL function q1,α and UBS α-QRL function q2,α respectively with change points a1 and
b1 (in the case that q1,α is UBS), and change points a2 and b2. Then, we say that the burn-in period of
F1 is less than F2 when a1 ≤ a2 and b1 ≤ b2 or q1,α is decreasing.

In this paper, we assume that the baseline HR function λ does not vanish at the range. This mild
condition is necessary for proving the following Lemma and subsequently next results.

Lemma 2. Assume that 0 < w(t) < 1 and F and Fw are as described in Eq (3.1). Then, Fw is strictly
greater than F in the α-QRL, i.e.,

qw,α(t) > qα(t), 0 < t < u, (3.2)

for all 0 < α < 1.

Proof. Since λw(t) ≤ λ(t), i.e., Fw ≥ F in the HR order, it results that qw,α(t) ≥ qα(t) for all 0 ≤ t ≤ u
and 0 < α < 1, refer Joe and Proschan [16]. We show that under the conditions of this lemma, the
inequality is strict, i.e., qw,α(t) > qα(t). For every t > 0 and 0 < α < 1 we have∫ t+qw,α(t)

t
λ(x)dx >

∫ t+qw,α(t)

t
w(t)λ(x)dx =

∫ t+qα(t)

t
λ(x)dx = − ln ᾱ. (3.3)

The strict inequality results from the fact that 0 < w(t) < 1 and the equality can be concluded by
Theorem 1. Then, Eq (3.3) implies that ∫ t+qw,α(t)

t+qα(t)
λ(x)dx > 0, (3.4)

and since λ(x) > 0, we must have qw,α(t) > qα(t) for all t in the support and all 0 < α < 1. �

The following result can be used to compare the burn-in time of a weighted HR model with the
baseline model.

Proposition 3. Consider the baseline BSHR distribution F with the HR function λ(t) and the α-QRL
function qα(t) and the weighted HR distribution Fw with the HR function λw and decreasing or UBS
α-QRL function qw,α(t). If qα(t) is an UBS function, w(t) is an increasing function, and 0 < w(t) < 1,
then the burn-in period of Fw is less than F. If qα(t) is decreasing, then qw,α(t) is decreasing too.

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1239–1250.



1245

Proof: By Proposition 1, qα(t) is decreasing or UBS. Let qα(t) be an UBS function, a and b show
change points of qα(t) and aw and bw be change points of qw,α(t) (in the case that qw,α(t) be an UBS
function). Note that qw,α(t) may be decreasing and in this case aw and bw do not exist. So, we are
comparing two functions which one of them is UBS and the other is decreasing or UBS. By this fact,
in order to show that aw ≤ a and bw ≤ b (in the case that qw,α(t) is UBS) or qw,α(t) is decreasing, it is
sufficient to show that

(i) q′w,α(t) > 0 implies q′α(t) > 0,

and

(ii) q′w,α(t) = 0 implies q′α(t) ≥ 0,

respectively.

Assume that q′w,α(t) > 0. Then, since w(t) is increasing, we have

1 < q′w,α(t) + 1 =
w(t)λ(t)

w(t + qw,α(t))λ(t + qw,α(t))
≤

λ(t)
λ(t + qw,α(t))

, (3.5)

so λ(t) > λ(t + qw,α(t)). In the sequel, we use one simple property of bathtub shaped functions. For
a bathtub shaped HR function λ(t), if x < y < z be three positive values, then λ(x) > λ(z) implies
λ(x) > λ(y). By Lemma 2, we have three ordered points t < t + qα(t) < t + qw,α(t) and by Eq (3.5), it
results that λ(t) > λ(t + qw,α(t)). Thus, we can conclude that λ(t) > λ(t + qα(t)), which by Theorem 1,
gives q′α(t) > 0 and proves (i).

Assume that q′w,α(t) = 0. Again, applying Theorem 1 and properties of the weight function w(t), we
have

q′w,α(t) + 1 =
w(t)λ(t)

w(t + qw,α(t))λ(t + qw,α(t))
≤

λ(t)
λ(t + qw,α(t))

, (3.6)

so λ(t) ≥ λ(t + qw,α(t)). Similar to part (i), we apply one simple property of bathtub shaped functions.
It states that if x ≤ y ≤ z are positive ordered values, then λ(x) ≥ λ(z) implies λ(x) ≥ λ(y).

Since t < t + qα(t) < t + qw,α(t), and λ(t) ≥ λ(t + qw,α(t)), we can conclude that λ(t) ≥ λ(t + qα(t)),
which by Theorem 1 implies that q′α(t) ≥ 0 and completes the proof of (ii).

Similarly, it can be shown that q′α(t) ≤ 0 implies q′w,α(t) < 0 which proves the last statement of the
proposition. �

3.1. Order statistics

Let T1,T2, ...,Tn represent n independent and identically distributed (iid) lifetimes following the
distribution function F and the reliability function F̄, and Tk:n, 1 ≤ k ≤ n is the kth order statistic such
that Ti:n ≤ T j:n, 1 ≤ i ≤ j ≤ n. The kth order statistic Tk:n describes the lifetime of a n − k + 1-out-of-n
system in the reliability literature. Two special cases T1:n and Tn:n are considered as the lifetimes of the
series and parallel system, respectively. The HR function of Tk:n is given by

λk:n(t) = k
(
n
k

) ( F(t)
F̄(t) )

k−1∑k−1
i=0

(
n
i

)
( F(t)

F̄(t) )
i
λ(t), (3.7)
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where λ is the baseline HR corresponding to the distribution function F. It has been proven that the
coefficient of λ is increasing in t, see Samaniego [33]. Furthermore, we can express the HR of some
coherent systems based on the HR function λk:n(t) as in the following.

λk+1:n(t) =
(k + 1)

(
n

k+1

)
k
(

n
k

) λk:n(t)gk:n
1 (ξ(t)), (3.8)

λk:n−1(t) =

(
n−1

k

)(
n
k

) λk:n(t)gk:n
2 (ξ(t)), (3.9)

and

λk+1:n+1(t) =
(k + 1)

(
n+1
k+1

)
k
(

n
k

) λk:n(t)gk:n
3 (ξ(t)), (3.10)

where ξ(t) =
F(t)
F̄(t) is an increasing function of t, and gk:n

1 (x), gk:n
2 (x) and gk:n

3 (x) are respectively defined
by

gk:n
1 (x) =

∑k−1
j=0

(
n
j

)
x j+1∑k

j=0

(
n
j

)
x j

, (3.11)

gk:n
2 (x) =

∑k−1
j=0

(
n
j

)
x j∑k−1

j=0

(
n−1

j

)
x j
, (3.12)

and

gk:n
3 (x) =

∑k−1
j=0

(
n
j

)
x j+1∑k

j=0

(
n+1

j

)
x j
. (3.13)

Shafaei Noughabi et al. [28] proved that these functions are increasing.

We apply Proposition 3 to state some results about the burn-in time of a system. Let Fk:n denote the
distribution function of Tk:n.

Proposition 4. Suppose that F be a BSHR distribution and Fn:n, the distribution function of the parallel
system has a decreasing or UBS α-QRL function. Then, the burn-in period of the parallel system is
less than the baseline component.

Proof: Applying Eq (3.7), the HR function of the parallel system can be written as a weighted HR
model λn:n(t) = wn(t)λ(t) where

wn(t) = n
ξ(t)n−1∑n−1

i=0

(
n
i

)
ξ(t)i

,

is an increasing function and 0 < wn(t) < 1. Therefore, Proposition 3 gives the result. �

Proposition 5. Suppose that F is a BSHR distribution and F1:n is the distribution function of the series
system. Then, the burn-in period of the baseline model is less than that of the series system.

Proof: Applying Eq (3.7), we can write λ(t) = 1
nλ1:n(t). Thus, Proposition 3 proves the result immedi-

ately. �
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Proposition 6. Suppose that Fk:n is a BSHR distribution and Fk+1:n, Fk:n−1 and Fk+1:n+1 have decreasing
or UBS α-QRL functions. Then, we have
(i) The burn-in period of Fk+1:n is less than Fk:n,
(ii) The burn-in period of Fk:n−1 is less than Fk:n,
(iii) The burn-in period of Fk+1:n+1 is less than Fk:n.

Proof: Applying Eq (3.8), we can write the HR function of Fk+1:n as a weighted HR form of Fk:n,

λk+1:n(t) = wk,n(t)λk:n(t), (3.14)

where

wk,n(t) =
(k + 1)

(
n

k+1

)
k
(

n
k

) gk:n
1 (ξ(t)). (3.15)

As stated above, this function is increasing. Applying the HR ordering results of order statistics
it results that 0 < wk,n(t) < 1, refer to Shaked and Shanthikumar [34]. Then, by Proposition 3, (i) is
proved. The proof for (ii) and (iii) is completely similar. �

Example 1. To confirm the results, we consider the well-known Weibull additive HR model with the
HR function

λ(t) = ab(at)b−1 + ac(at)c−1, a > 0, b > 0, c > 0, t > 0. (3.16)

When b < 1 and c > 1, the HR will show a bathtub shape. We assume a = 0.1, b = 0.4 and c = 1.8.
Figure 1 draws the HR function for this model along with the HR of some order statistics (systems).
Moreover, this figure draws the α-QRL functions of this model and the selected order statistics. All
α-QRL functions have one maximum point which can be regarded as burn-in point. For F, F2:5, F3:5,
F2:4, F1:3 and F2:2, the maximum points are 1.3091, 1.4369, 0, 1.1334, 1.9992 and 0.1457, respectively
and confirms the results.

4. Conclusions

The α-QRL function is a reliability measure that can be a good candidate for describing the aging
behavior of an object. A special case of it is the median residual life function, which may be more
acceptable than the MRL function for reliability studies when the distribution is skewed or the data
consists of outliers. In this work, we have focused on BSHR distributions. For them, we proved that
the α-QRL function is decreasing or UBS. To improve the reliability of a product (with BSHR lifetime
distribution), a common approach is burn-in. In this way, it could be more natural to consider the
point that maximizes the α-QRL function than the point that minimizes the hazard rate function. For
example, the median residual life function at time t indicates when 50 percent of the surviving products
have failed at time t. A UBS α-QRL function reaches its maximum at its change point.

The change point of the α-QRL function of the distribution is compared to the corresponding change
point of a general weighted HR model with respect to its location. As special cases, the change points
corresponding to the order statistics are then compared with those of the baseline distribution. The
change points of a parallel system lie before the change points of the components, while the change
points of a series system lie after the change points of the components. We have also shown that there
are relationships between the change points of some order statistics. The results studied here may be
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Figure 1. The HR function (left side) and the median residual life function (right side) of the
baseline and some systems described in Example 1.

useful if we are interested in the optimal burn-in time of a weighted HR lifetime model. For example,
the results are useful in studying the burn-in times of coherent systems.

Note that for some models it may happen that the weighted HR model has BSHR or UBS α-QRL
functions, but that this property does not hold for the baseline distributions (e.g., exponential, Weibull,
Pareto,...). The results obtained in this paper are not applicable in such cases.
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20. G. D. Lin, On the characterization of life distributions via percentile residual lifetimes, Sankhyā,
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