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Abstract: This paper formulates and analyzes a general delayed mathematical model which describe
the within-host dynamics of Human T-cell lymphotropic virus class I (HTLV-I) under the effect
Cytotoxic T Lymphocyte (CTL) immunity. The models consist of four components: uninfected
CD4+T cells, latently infected cells, actively infected cells and CTLs. The mitotic division of actively
infected cells are modeled. We consider general nonlinear functions for the generation, proliferation
and clearance rates for all types of cells. The incidence rate of infection is also modeled by a general
nonlinear function. These general functions are assumed to be satisfy some suitable conditions. To
account for series of events in the infection process and activation of latently infected cells, we
introduce two intracellular distributed-time delays into the models: (i) delay in the formation of
latently infected cells, (ii) delay in the activation of latently infected cells. We determine a bounded
domain for the system’s solutions. We calculate two threshold numbers, the basic reproductive
number R0 and the CTL immunity stimulation number R1. We determine the conditions for the
existence and global stability of the equilibrium points. We study the global stability of all
equilibrium points using Lyapunov method. We prove the following: (a) if R0 ≤ 1, then the
infection-free equilibrium point is globally asymptotically stable (GAS), (b) if R1 ≤ 1 < R0, then the
infected equilibrium point without CTL immunity is GAS, (c) if R1 > 1, then the infected equilibrium
point with CTL immunity is GAS. We present numerical simulations for the system by choosing
special shapes of the general functions. The effects of proliferation of CTLs and time delay on the
HTLV-I progression is investigated. We noted that the CTL immunity does not play the role in
clearing the HTLV-I from the body, but it has an important role in controlling and suppressing the
viral infection. On the other hand, we observed that, increasing the time delay intervals can have
similar influences as drug therapies in removing viruses from the body. This gives some impression to
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develop two types of treatments, the first type aims to extend the intracellular delay periods, while the
second type aims to activate and stimulate the CTL immune response.

Keywords: HTLV-I infection; global stability; mitotic transmission; CTL immunity; time delays;
Lyapunov functional

1. Introduction

Human T-cell lymphotropic virus class I (HTLV-I) is one of the most dangerous viruses that infect
the human body and causes inflammatory and malignant diseases. It was estimated that about 10 to 25
million humans infected with HTLV-I worldwide [1]. HTLV-I can be transferred via bodily fluids
including blood and semen. Further, HTLV-I can be transferred from mother to child via
breast-feeding [2]. The high transmission of HTLV-I was reported in Caribbean Islands, Central
Africa, Northeast South America and Southwestern Japan [3]. HTLV-I can progress to serious
diseases, adult T-cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis
(HAM/TSP) [4]. HTLV-I is a single-stranded RNA virus which infects the most important component
of the immune system, CD4+T cells [5]. There are two modes of within-host transmission, vertical or
mitotic transmission of actively HTLV-I infected cells and horizontal by infectious transmission
through direct cell-to-cell touch [6].

Mathematical modeling of HTLV-I was established since 1990 to understand the pathogenesis of
the HTLV-I infection inside the host cell that has a critical ramifications for the movement of remedial
measures and for the acknowledgment of hazard elements of the advancement of HAM/TSP. A lot of
mathematical models were planned by numerous scientists to epitomize the intuitive dynamics within-
host among HTLV-I infection to depict the pathogenesis of HTLV-I related infection [7–12].

Stilianakis and Seydel [7] constructed a four-dimensional system of ODEs which describes the
within-host HTLV-I dynamics as:

U̇(t) = ν − ν̄U(t) − βU(t)A(t), (1.1)
L̇(t) = βU(t)A(t) − (π + µ) L(t), (1.2)
Ȧ(t) = πL(t) − (δ∗ + κ)A(t), (1.3)

Q̇(t) = κA(t) + λQ(t)
(
1 −

Q(t)
Qmax

)
− ℓQ(t), (1.4)

where U, L, A and Q (cells mm−3) are the concentrations of healthy or uninfected CD4+T cells, latently
CD4+T infected cells, actively CD4+T infected cells and leukemia cells (ATL cells), respectively. The
variable t denotes to the time (days). Uninfected cells are created at a constant rate ν. The bilinear
incidence term βUA accounts for the rate of infectious via horizontal transmission appears by cell-to-
cell touch between uninfected and actively infected cells. πL is the activation rate of latently infected
cells, and κA is the conversion rate of actively infected cells to ATL cells. Qmax is the maximal growth
of ATL cells and λ is the maximum proliferation rate of ATL cells. The death rates of the uninfected
cells, latently infected cells, actively infected cells and ATL cells are indicated by ν̄U, µL, δ∗A and ℓQ,
respectively.
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As mentioned before HTLV-I has two modes of transmission, horizontal and vertical. Actively
infected cells propagate faster than uninfected and latently infected cells. This causes an increasing in
the proviral load. As a consequence, mitotic transmission plays an instrumental role in the persistence
of HTLV-I infection [3]. Li and Lim [10] developed an HTLV-I infection model by considering both
horizontal and vertical transmissions as:

U̇(t) = ν − ν̄U(t) − βU(t)A(t), (1.5)

L̇(t) = ϵβU(t)A(t) + ωε∗A(t)
(
1 −

U(t) + L(t)
Umax

)
− (π + µ) L(t), (1.6)

Ȧ(t) = πL(t) − δ∗A(t), (1.7)

where ϵ ∈ (0, 1) is the probability of new HTLV-I infections via horizontal route become latently
infected. The vertical transmission is represented in proliferating the actively infected cells at rate
ε∗A

(
1 − U+L

Umax

)
, where Umax is the CD4+T cells carrying capacity. The actively infected cells become

latent at rate ωε∗A
(
1 − U+L

Umax

)
, where ω ∈ (0, 1). It was shown in [13] that U + L < Umax. Therefore,

in [14], the logistic term ε∗A
(
1 − U+L

Umax

)
was replaced by an exponential growth term ε∗A.

Cytotoxic T lymphocyte (CTL) is identified as the tremendous element of human immunity in
killing viral infections. It represses viral reproduction and kills the cells which can be tainted by
infections. It was mentioned in [13, 15] that the CTLs assume a strong part in controlling the HTLV-I
related diseases. CTLs can realize and kill the actively infected CD4+T cells, further, they able to lessen
the proviral load. The effect of CTL immunity was included in several models for HTLV-I infection
(e.g., [4,16–25]).

To incorporate both CTL immunity and mitosis into the HTLV-I dynamics model, Lim and
Maini [14] proposed the following system:

U̇(t) = ν − ν̄U(t) − βU(t)A(t), (1.8)
L̇(t) = βU(t)A(t) + ε∗A(t) − (π + µ) L(t), (1.9)
Ȧ(t) = πL(t) − δ∗A(t) − αA(t)C(t), (1.10)
Ċ(t) = ρA(t) − γC(t), (1.11)

where C denotes the concentration of CTLs. The removal rate of actively infected by CTLs is
represented by αAC, where α represents the CTL-mediated lysis constant [5]. The term ρA indicates
the proliferation rate of CTLs. The death rate of the CTLs is denoted by γC. The authors studied the
global stability of equilibrium points by utilizing Lyapunov approach. Models (1.8)–(1.11) was
developed and modified in [26–28]. Recently, Khajanchi et al. [1] modified models (1.8)–(1.11) by
replacing Eq (1.11) by

Ċ(t) = ρA(t)C(t) − γC(t).

The authors investigated the global stability for chronic infection equilibrium point via two approaches
Lyapunov and geometric.

In the above models, it was assumed that the uninfected CD4+T cells become latently infected
instantaneously. Moreover, the transition from latently infected to actively infected is also
instantaneously. However, there exist delays in the infection process and activation of latently infected
cells. Therefore, ignoring these time delays is biologically unrealistic. In addition, these time
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intracellular delays have an important effect on the stability of system [29, 30]. HTLV-I infection
models have been incorporated with intracellular delay [23,24,31–33] or immune response
delay [16, 20, 21, 34, 35]. Both intracellular and immune response delays were considered
in [25, 29, 36]. Katri and Ruan [31] modified models (1.1)–(1.4) by including a discrete-time
intracellular delay τ1 which describes the time between the initial infection of uninfected CD4+T cells
to become latently CD4+T infected cells. Equation (1.2) was replaced by

L̇(t) = βU(t − τ1)A(t − τ1) − (π + µ) L(t).

The delayed HTLV-I infection models presented in the literature included either discrete-time
delay [16,20,21,24,25,32–36], or distributed-time delay [23]. All these models neglected the latently
infected cells.

In the literature of HTLV-I infection models, the intrinsic growth rate of uninfected cells was given
by two main forms, linear form Φ (U) = ν − ν̄U [7,11,23–25], and logistic function Φ(U) = ν − ν̄U +
ςU

(
1 − U

Umax

)
[16], where ς > 0 is the maximum propagation rate of uninfected cells and Umax > 0 is

maximal population level of uninfected cells.
The incidence rate that models the touch between the uninfected cells and actively infected cells

presented in models (1.1)–(1.4), (1.5)–(1.7) and (1.8)–(1.11) was given by bilinear incidence βUA.
This bilinear form may not be completely characterize the incidence between uninfected cells and
actively infected cells [37]. Several HTLV-I infection models were introduced in the literature by
considering different incidence rate forms such as: (i) saturated incidence βUA

1+υA [11], βUA
1+ηU [27],

(ii) standard incidence βUA
U+A [38], (iii) Beddington-DeAngelis incidence βUA

1+ηU+υA [29], (iv) Crowley
Martin incidence βUA

(1+ηU)(1+υA) [23], and (v) nonlinear incidence in the form βUqAp [28]; βUΛ(A) [24]
and [39]; Λ(U, A)A [26] , where β, υ, η, p and q are positive constants and Λ is a general function
satisfies some conditions.

In models (1.1)–(1.4), (1.5)–(1.7) and (1.8)–(1.11) and most of the HTLV-I models introduced in
the literature, the death rate of the cells is given by linear function of their concentration. However, the
death rate of the cells is generally not known.

Our aim of the present paper is to formulate and analyze a general delayed HTLV-I mathematical
model under the following generalizations:

G1: We assume that the intrinsic growth rate of the uninfected CD4+T cells is given by a general
function Φ(U).

G2: We consider a general incidence rate in the form Λ(U, A).
G3: We assume that the death rates of the latently infected cells, actively infected cells and CTLs

are given by general nonlinear functions µΨ1 (L), δ∗Ψ2 (A) and γΨ3 (C), respectively.
G4: We assume that the transition rate from latently infected phase to actively infected phase is

given by a general nonlinear function in the form πΨ1 (L).
G5: We assume that actively infected cells proliferate at rate ε∗Ψ2 (A), with (1 − ω) ε∗Ψ2 (A), ω ∈

(0, 1) staying in the actively infected cells compartment, while ωε∗Ψ2 (A) being latent and therefore
escaping from the CTL immunity.

G6: We assume that the replenishment rate of CTLs and the elimination of actively infected cells
by CTLs are given by ρΨ2 (A)Ψ3 (C) and αΨ2 (A)Ψ3 (C), respectively.

G7: We include distributed intracellular delay which describes the cell mutates from uninfected to
latent.
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G8: We include distributed delay in the activation of latently infected.

2. HTLV-I dynamics model with delay-distributed

With the above generalizations G1–G8 we propose the following HTLV-I dynamics model with two
types of distributed-time delays:

U̇(t) = Φ(U(t)) − Λ(U(t), A(t)), (2.1)

L̇(t) =

κ1∫
0

f1(ϖ)e−ξ1ϖΛ(U(t −ϖ), A(t −ϖ))dϖ + ωε∗Ψ2 (A(t)) − (π + µ)Ψ1 (L(t)) , (2.2)

Ȧ(t) = π

κ2∫
0

f2(ϖ)e−ξ2ϖΨ1 (L(t −ϖ)) dϖ + (1 − ω)ε∗Ψ2 (A(t)) − δ∗Ψ2 (A(t)) − αΨ2 (A(t))Ψ3 (C(t)) ,

(2.3)

Ċ(t) = ρΨ2 (A(t))Ψ3 (C(t)) − γΨ3 (C(t)) , (2.4)

Here, ϖ is a random variable generated from probability distribution functions fi(ϖ), i = 1, 2 over the
time interval [0, κi], i = 1, 2 where κi is the upper limit of the delay period. Here f1(ϖ)e−ξ1ϖ represents
the probability of surviving the cells from time t − ϖ to time t. The factor f2(ϖ)e−ξ2ϖ represents
the probability that latently infected cells is survived ϖ time units to become actively infected cells.
Functions fi(ϖ)i=1,2 satisfy the following conditions:

(a) fi(ϖ) > 0, i = 1, 2,

(b)
κi∫

0
fi(ϖ)dϖ = 1, i = 1, 2,

(c)
κi∫

0
e−ξiϖfi(ϖ)dϖ < ∞, ξi > 0, i = 1, 2.

Here, Φ, Λ, Ψi, i = 1, 2, 3 are continuously differentiable functions, in addition they satisfy a set of
conditions:

Condition (C1): (a) there exists a U0 > 0 such that Φ(U0) = 0 and Φ(U) > 0 for U ∈ [0,U0).
(b) Φ′(U) < 0 for all U > 0.
(c) there exists ν > 0 and ν̄ > 0 such that Φ(U) ≤ ν − ν̄U, for all U ≥ 0.
Condition (C2): (a) Λ(U, A) > 0 and Λ(0, A) = Λ(U, 0) = 0, for all U > 0, A > 0.
(b) ∂Λ(U,A)

∂U > 0, ∂Λ(U,A)
∂A > 0 and ∂Λ(U,0)

∂A > 0, for all U > 0, A > 0.
(c) d

dU

(
∂Λ(U,0)
∂A

)
> 0, for all U > 0.

Condition (C3): (a) Ψi(s) > 0 for all s > 0, Ψi(0) = 0, i = 1, 2, 3.
(b) Ψ′i(s) > 0, for all s > 0, i = 1, 3, Ψ′2(s) > 0, for all s ≥ 0.
(c) there is αi > 0, i = 1, 2, 3 such that Ψi(s) ≥ αis, for all s ≥ 0.
Condition (C4): Λ(U,A)

Ψ2(A) is decreasing w.r.t A, for all A > 0.
Let κ = max {κ1, κ2} and assume the initial conditions of systems (2.1)–(2.4) having the following

form:

U(θ) = ϕ1(θ), L(θ) = ϕ2(θ), A(θ) = ϕ3(θ), C(θ) = ϕ4(θ);
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ϕi(θ) ≥ 0, θ ∈ [−κ, 0] , i = 1, 2, 3, 4, (2.5)

where ϕ ∈ C and C = C
(
[−κ, 0] ,R4

+

)
is the Banach space of continuous mapping the interval [−κ, 0]

into R4
+ with the norm ∥ϕi∥ = sup

−κ≤θ≤0
|ϕi(θ)| for ϕi ∈ C, i = 1, 2, 3, 4, where

R4
+ = {(U, L, A,C) : U ≥ 0, L ≥ 0, A ≥ 0,C ≥ 0}. We note that the systems (2.1)–(2.4) with initial

conditions (2.5) by the fundamental theory of functional differential equations has a unique
solution [40].

The parameters presented in models (2.1)–(2.4) are positive. In [14, 41, 42], it was assumed that
ε∗ < min{ν̄, µ, δ∗}. Since ε∗ < δ∗ and 0 < ω < 1, so (1−ω)ε∗ < δ∗. Let’s assume that δ = δ∗−(1−ω)ε∗ >
0 and ε = ωε∗. Hence, δ − ε = δ∗ − ε∗ > 0. Then the systems (2.1)–(2.4) will take the following form:

U̇ = Φ(U(t)) − Λ(U(t), A(t)), (2.6)

L̇ =

κ1∫
0

f1(ϖ)e−ξ1ϖΛ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A(t)) − (π + µ)Ψ1 (L(t)) , (2.7)

Ȧ = π

κ2∫
0

f2(ϖ)e−ξ2ϖΨ1 (L(t −ϖ)) dϖ − δΨ2 (A(t)) − αΨ2 (A(t))Ψ3 (C(t)) , (2.8)

Ċ = ρΨ2 (A(t))Ψ3 (C(t)) − γΨ3 (C(t)) . (2.9)

Let us define 𭟋i as:

𭟋i =

κi∫
0

e−ξiϖfi(ϖ)dϖ, i = 1, 2.

Clearly 0 < 𭟋i ≤ 1, i = 1, 2.

Remark 1. If the time delay is not considered, ϖ = 0, all proliferated actively infected by mitosis
become latent, ω = 1, the intrinsic growth rate of the uninfected CD4+T cells is given by linear
function, Φ(U) = ν − ν̄U, the infection rate is given by bilinear incidence, Λ(U, A) = βUA, the death
rates of the compartments are given by linear functions Ψi (x) = x, i = 1, 2, 3, and the CTL immune
response is given by linear form, ρA, then systems (2.1)–(2.4) will lead to the ODEs
systems (1.8)–(1.11). In addition, if the CTL immune response is given by a nonlinear form, ρAC,
then systems (2.1)–(2.4) will reduce to the model presented in [1]. Thus, systems (2.1)–(2.4) can be
considered a generalization of the systems presented in [14, 1]. We mention that functions Φ (U),
Λ(U, A) and Ψi, i = 1, 2, 3, include and generalize many forms presented in the literature. The general
distribution functions fi, i = 1, 2 considered in our work allows us to include several special forms of
intracellular delays existing in the literature (see [24,31–33]). Finally, models (2.1)–(2.4) can be
considered as a generalization of the model presented in [23] which neglected the latently infected
cells.

2.1. Properties of solutions

Proposition 1. Suppose that Conditions C1–C3 are valid. Then the solutions of (2.6)–(2.9) are non-
negative and ultimately bounded.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.



12699

Proof. We assume that systems (2.6)–(2.9) can be written in matrix form Ẋ = Y(X(t)), where

Y(X(t)) =


Y1(X(t))
Y2(X(t))
Y3(X(t))
Y4(X(t))

 =


Φ(U(t)) − Λ(U(t), A(t))
κ1∫
0

e−ξ1ϖ f1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A(t)) − (π + µ)Ψ1 (L(t))

π
κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ − δΨ2 (A(t)) − αΨ2 (A(t))Ψ3 (C(t))

ρΨ2 (A(t))Ψ3 (C(t)) − γΨ3 (C(t))


.

Clearly, Y(X(t)) satisfies the following: Yi(X(t))|Xi=0,X(t)∈R4
+
≥ 0, i = 1, 2, 3, 4. From Lemma 2 in [43]

we get that the solutions of systems (2.6)–(2.9) with initial conditions (2.5) satisfies
(U(t), L(t), A(t),C(t)) ≥ 0 for all t ≥ 0. Hence, the R4

≥0 is positively invariant for systems (2.6)–(2.9).
Now, we show that the solutions of the system are bounded. The non-negativity of the system’s
solution implies that lim sup

t−→∞
U (t) ≤ ν

ν̄
= M1.We define

Θ(t) =

κ1∫
0

e−ξ1ϖf1(ϖ)U(t −ϖ)dϖ + L(t) + A(t) + π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ +
α

ρ
C(t).

Then

Θ̇(t) =

κ1∫
0

e−ξ1ϖf1(ϖ)U̇(t −ϖ)dϖ + L̇(t) + Ȧ(t) − ξ2π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ

+ πΨ1 (L (t))

κ2∫
0

f2(ϖ)dϖ − π

κ2∫
0

f2(ϖ)e−ξ2ϖΨ1 (L (t −ϖ)) dϖ +
α

ρ
Ċ(t)

=

κ1∫
0

e−ξ1ϖf1(ϖ) [Φ(U(t −ϖ)) − Λ(U(t −ϖ), A(t −ϖ))] dϖ

+

κ1∫
0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A(t)) − (π + µ)Ψ1 (L(t))

+ π

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ − δΨ2 (A(t)) − αΨ2 (A(t))Ψ3 (C(t))

− ξ2π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ + πΨ1 (L (t)) − π

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L (t −ϖ)) dϖ

+
α

ρ
(ρΨ2 (A(t))Ψ3 (C(t)) − γΨ3 (C(t)))

=

κ1∫
0

e−ξ1ϖf1(ϖ)Φ(U(t −ϖ))dϖ − µΨ1 (L(t)) − (δ − ε)Ψ2 (A(t)) −
αγ

ρ
Ψ3 (C(t))
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− ξ2π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ.

By using Conditions C1 and C3, we get

Θ̇(t) ≤ ν

κ1∫
0

e−ξ1ϖf1(ϖ)dϖ − ν̄

κ1∫
0

e−ξ1ϖf1(ϖ)U(t −ϖ)dϖ − µα1L(t) − (δ − ε)α2A(t)

− ξ2π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ −
αγ

ρ
α3C(t).

It follows that

Θ̇(t) ≤ ν − ν̄

κ1∫
0

e−ξ1ϖf1(ϖ)U(t −ϖ)dϖ − µα1L(t) − (δ∗ − ε∗)α2A(t)

−
αγ

ρ
α3C(t) − ξ2π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ

≤ ν − σ


κ1∫

0

e−ξ1ϖf1(ϖ)U(t −ϖ)dϖ + L(t) + A(t)

+π

κ2∫
0

f2(ϖ)

t∫
t−ϖ

e−ξ2(t−θ)Ψ1 (L (θ)) dθdϖ +
α

ρ
C(t)


= ν − σ Θ(t),

where σ = min {ν̄, µα1, (δ∗ − ε∗)α2, ξ2, γα3}. The non-negativity of the model’s solutions imply that
lim sup

t−→∞
L (t) ≤ M1, lim sup

t−→∞
A (t) ≤ M1 and lim sup

t−→∞
C(t) ≤ M2, where M2 =

ρ

α
M1. Therefore,

U(t), L(t), A(t) and C(t) are all ultimately bounded.□
According to Proposition 1, we can establish that the region Ω = {(U, L, A,C) ∈ C4

≥0 : ∥U∥ ≤ M1,

∥L∥ ≤ M1, ∥A∥ ≤ M1, ∥C∥ ≤ M2} is positively invariant for systems (2.6)–(2.9).

2.2. Equilibrium points and threshold parameters

Here, we look at the model’s equilibrium points and deduce the conditions that allow them to exist.

Lemma 1. Suppose that C1–C4 are valid, then there exist two positive threshold numbers R0 and R1

with R0 > R1 such that:

(a) if R0 ≤ 1, then there exists a single equilibrium point EP0 = (U0, 0, 0, 0).
(b) if R1 ≤ 1 < R0, then there exist two equilibrium points EP0 and EP1 = (U1, L1, A1, 0).
(c) if R1 > 1, then there exist three equilibrium points EP0, EP1 and EP2 = (U2, L2, A2,C2).
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Proof. Any equilibrium point EP = (U, L, A,C) satisfies

0 = Φ(U) − Λ(U, A), (2.10)
0 = 𭟋1Λ(U, A) + εΨ2 (A) − (π + µ)Ψ1 (L) , (2.11)
0 = π𭟋2Ψ1 (L) − δΨ2 (A) − αΨ2 (A)Ψ3 (C) , (2.12)
0 = ρΨ2 (A)Ψ3 (C) − γΨ3 (C) . (2.13)

Equation (2.13) has two possibilities Ψ3(C) = 0 and Ψ2 (A) = γ
ρ
.

If Ψ3(C) = 0, then from Condition C3 we obtain C = 0. From Condition C3 we have Ψ−1
i , i = 1,2

exist, moreover, these functions are strictly increasing. Define

Ξ(U) = Ψ−1
1

(
δ𭟋1

π (δ − ε𭟋2) + δµ
Φ(U)

)
, Π(U) = Ψ−1

2

(
π𭟋1𭟋2

π (δ − ε𭟋2) + δµ
Φ(U)

)
.

Therefore, Eqs (2.11) and (2.12) imply that

L = Ξ(U), A = Π(U). (2.14)

Obviously, from Condition C1 we have Ξ(0),Π(0) > 0 and Ξ(U0) = Π(U0) = 0.
From Eqs (2.10)–(2.12) we get

ϱΛ (U,Π (U)) − Ψ2 (Π(U)) = 0, (2.15)

where ϱ = π𭟋1𭟋2
π(δ−ε𭟋2)+δµ .

Equation (2.15) admits a solution U = U0 which yields L = A = C = 0 and provides the infection-
free equilibrium point EP0 = (U0, 0, 0, 0). Let

Γ1(U) = ϱΛ (U,Π (U)) − Ψ2 (Π(U)) .

It is clear from Conditions C1–C3 that,

Γ1(0) = −Ψ2(Π(0)) < 0.

Γ1(U0) = ϱΛ (U0, 0) − Ψ2 (0) = 0.

Moreover,

Γ′1(U) = ϱ
(
∂Λ (U, A)
∂U

+ Π′ (U)
∂Λ (U, A)
∂A

)
− Ψ′2 (Π(U))Π′(U).

Γ′1(U0) = ϱ
(
∂Λ (U0, 0)
∂U

+ Π′ (U0)
∂Λ (U0, 0)
∂A

)
− Ψ′2 (0)Π′(U0).

We note from Condition C1 that, ∂Λ(U0,0)
∂U = 0. Then

Γ′1(U0) = Ψ′2 (0)Π′(U0)
(
ϱ

Ψ′2 (0)
∂Λ (U0, 0)
∂A

− 1
)
.

Since Ψ2 (Π(U)) = ϱΦ(U) then Ψ′2 (Π(U))Π′(U) = ϱΦ′(U). Substituting by U = U0, we get
Ψ′2 (0)Π′(U0) = ϱΦ′(U0). Therefore,

Γ′1(U0) = ϱΦ′(U0)
(
ϱ

Ψ′2 (0)
∂Λ (U0, 0)
∂A

− 1
)
.
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Condition C1 implies that Φ′(U0) < 0, thus if ϱ

Ψ′2(0)
∂Λ(U0,0)
∂A > 1, then Γ′1(U0) < 0 and there exists

U1 ∈ (0,U0) such that Γ1(U1) = 0. It follows from Eq (2.14) that, L1 = Ξ(U1) > 0 and A1 = Π(U1) > 0.
This shows that, an infected equilibrium point without CTL immunity EP1 = (U1, L1, A1, 0) exists
when ϱ

Ψ′2(0)
∂Λ(U0,0)
∂A > 1.We denote

R0 =
ϱ

ϱΨ′2 (0)
∂Λ (U0, 0)
∂A

,

which defines the basic infection reproductive number and decides when the HTLV-I infection will
be chronic. The second possibility of Eq (2.13) is Ψ3(C) , 0 and Ψ2(A2) = γ

ρ
. This yields that

A2 = Ψ
−1
2 (γ
ρ
) > 0. We insert the value of A2 in Eq (2.10) and let

Γ2(U) = Φ(U) − Λ(U, A2) = 0.

Based on Conditions C1 and C2, Γ2 is a strictly decreasing function of U. Clearly, Γ2(0) = Φ(0) > 0
and Γ2(U0) = −Λ(U0, A2) < 0. Thus, there exists a unique U2 ∈ (0,U0) such that Γ2(U2) = 0. From
Eq (2.11) we get

Ψ1 (L2) =
1
π + µ

(𭟋1Λ (U2, A2) + εΨ2 (A2)) =
1
π + µ

(
𭟋1Λ (U2, A2) +

εγ

ρ

)
=⇒ L2 = Ψ

−1
1

(
1
π + µ

(
𭟋1Λ (U2, A2) +

εγ

ρ

))
> 0.

From Eq (2.12) we get

C2 = Ψ
−1
3

(
π (δ − ε𭟋2) + δµ
α (π + µ)

(
ϱ
Λ (U2, A2)
Ψ2 (A2)

− 1
))
.

Clearly, C2 > 0 when ϱΛ(U2,A2)
Ψ2(A2) > 1. Let us denote

R1 = ϱ
Λ (U2, A2)
Ψ2 (A2)

,

which represents the CTL immunity stimulation number and determines when CTL immunity can be
activated. Therefore, C2 can be written as:

C2 = Ψ
−1
3

(
π (δ − ε𭟋2) + δµ
α (π + µ)

(R1 − 1)
)
.

Thus, there exists an infected equilibrium point with CTL immunity EP2 = (U2, L2, A2,C2) when
R1 > 1.

Conditions C2 and C4 imply that

R1 = ϱ
Λ

(
U2, A2

)
Ψ2 (A2)

≤ ϱ lim
A→0+

Λ (U2, A)
Ψ2 (A)

=
ϱ

Ψ′2 (0)
∂Λ (U2, 0)
∂A

≤
ϱ

Ψ′2 (0)
∂Λ (U0, 0)
∂A

= R0.□
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2.3. Global stability analysis

Stability analysis of equilibrium points is at the heart of dynamical system analysis. Stable solutions
can only be observed experimentally. Thus, we demonstrate the global asymptotic stability of all
equilibrium points in this section by establishing appropriate Lyapunov functions [44–46] and applying
Lyapunov-LaSalle asymptotic stability theorem (L-LAST) [47–49]. We define the function H(x) ≥ 0
for all x > 0 as: H(x) = x − 1 − ln x, whereH(x) = 0 if and only if x = 1. Hence,

ln x ≤ x − 1.

Denote (U, L, A,C) = (U (t) , L (t) , A (t) ,C (t)) .
We will use the follow equations:

ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
= ln

(
Λ (Ui, Ai)
Λ (U, Ai)

)
+ ln

(
Λ(U(t −ϖ), A(t −ϖ))Ψ1(Li)

Λ(Ui, Ai)Ψ1(L)

)
+ ln

(
Ψ1(L)Λ (U, Ai)
Ψ1(Li)Λ(U, A)

)
, i = 1, 2 (2.16)

ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
= ln

(
Ψ1 (L(t −ϖ))Ψ2(Ai)
Ψ1(Li)Ψ2(A)

)
+ ln

(
Ψ2(A)Ψ1(Li)
Ψ2(Ai)Ψ1(L)

)
, i = 1, 2 (2.17)

ln
(
Ψ2 (A)Λ(U, A1)
Ψ2(A1)Λ(U, A)

)
= ln

(
Ψ2(A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

)
+ ln

(
Ψ1(L)Λ (U, A1)
Ψ1(L1)Λ(U, A)

)
(2.18)

Let T j(U, L, A,C) be a Lyapunov function candidate and define a set

Υ j =

{
(U, L, A,C) :

dT j

dt
= 0

}
, j = 0, 1, 2.

and Υ
′

j be the largest invariant subset of Υ j.

Theorem 1. If R0 ≤ 1 and Conditions C1–C4 are satisfied, then the equilibrium point EP0 is globally
asymptotically stable (GAS).

Proof. Let T0 be defined as:

T0 = U − U0 −

∫ U

U0

lim
A→0+

Λ (U0, A)
Λ (η, A)

dη +
1
𭟋1

L +
(π + µ)
π𭟋1𭟋2

A +
α (π + µ)
ρπ𭟋1𭟋2

C

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
∫ t

t−ϖ
Λ(U(θ), A(θ))dθdϖ

+
(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
∫ t

t−ϖ
Ψ1(L(θ))dθdϖ.

Obviously, T0(U, L, A,C) > 0 for all U, L, A,C > 0, while T0(U0, 0, 0, 0) = 0. The time derivative of
T0 along the trajectories of systems (2.6)–(2.9) is calculated as follows:

dT0

dt
=

(
1 − lim

A→0+

Λ (U0, A)
Λ (U, A)

)
U̇ +

1
𭟋1

L̇ +
(π + µ)
π𭟋1𭟋2

Ȧ +
α (π + µ)
ρπ𭟋1𭟋2

Ċ
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+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) (Λ(U, A) − Λ(U(t −ϖ), A(t −ϖ))) dϖ

+
(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) (Ψ1(L) − Ψ1(L(t −ϖ))) dϖ

=

(
1 − lim

A→0+

Λ (U0, A)
Λ (U, A)

)
(Φ(U) − Λ(U, A))

+
1
𭟋1


κ1∫

0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A) − (π + µ)Ψ1 (L)


+

(π + µ)
π𭟋1𭟋2

π
κ2∫

0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ − δΨ2 (A) − αΨ2 (A)Ψ3 (C)


+
α (π + µ)
ρπ𭟋1𭟋2

(ρΨ2 (A)Ψ3 (C) − γΨ3 (C))

+
1
𭟋1

𭟋1Λ(U, A) −

κ1∫
0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ


+

(π + µ)
𭟋1𭟋2

𭟋2Ψ1(L) −

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1(L(t −ϖ))dϖ


=

(
1 − lim

A→0+

Λ (U0, A)
Λ (U, A)

)
Φ(U) + Λ(U, A) lim

A→0+

Λ (U0, A)
Λ (U, A)

+
1
𭟋1

(
ε −
δ (π + µ)
π𭟋2

)
Ψ2(A)

−
αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C).

Since Φ(U0) = 0, then

dT0

dt
=

(
1 − lim

A→0+

Λ (U0, A)
Λ (U, A)

)
(Φ(U) − Φ(U0))

+

(
Λ(U, A)
Ψ2(A)

lim
A→0+

Λ (U0, A)
Λ (U, A)

−
π (δ − ε𭟋2) + δµ

π𭟋1𭟋2

)
Ψ2(A) −

αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C).

Using Condition C4 we obtain

dT0

dt
≤

(
1 − lim

A→0+

Λ (U0, A)
Λ (U, A)

)
(Φ(U) − Φ(U0)) +

(
lim

A→0+

Λ (U, A)
Ψ2(A)

lim
A→0+

Λ (U0, A)
Λ (U, A)

−
π (δ − ε𭟋2) + δµ

π𭟋1𭟋2

)
Ψ2(A) −

αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C)

=

(
1 −
∂Λ(U0, 0)/∂A
∂Λ(U, 0)/∂A

)
(Φ(U) − Φ(U0)) +

(
∂Λ(U0, 0)/∂A
Ψ′2(0)

−
π (δ − ε𭟋2) + δµ

π𭟋1𭟋2

)
Ψ2(A) −

αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C)
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=

(
1 −
∂Λ(U0, 0)/∂A
∂Λ(U, 0)/∂A

)
(Φ(U) − Φ(U0)) +

π (δ − ε𭟋2) + δµ
π𭟋1𭟋2

(R0 − 1)Ψ2(A)

−
αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C).

Therefore, if R0 ≤ 1, then dT0
dt ≤ 0 and dT0

dt = 0 when U = U0 and A = C = 0. The solutions of systems
(2.6)–(2.9) are limited Υ′0 which contains elements with A(t) = 0 and C(t) = 0. Then from Eq (2.8)

Ȧ(t) = 0 = π

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ =⇒ L(t) = 0, for all t.

It follows that Υ′0 = {EP0} and using L-LAST, we derive that EP0 is GAS [47–49].

Remark 2. We know from Conditions C2 and C4 that

(Λ(U, A) − Λ(U, Ai))
(
Λ(U, A)
Ψ2(A)

−
Λ(U, Ai)
Ψ2(Ai)

)
≤ 0, U, Ai > 0, i = 1, 2.

which provides us (
1 −
Λ(U, Ai)
Λ(U, A)

) (
Λ(U, A)
Λ(U, Ai)

−
Ψ2(A)
Ψ2(Ai)

)
≤ 0, U, Ai > 0, i = 1, 2.

Lemma 2. Let R0 > 1 and Conditions C1–C4 are satisfied, then

sgn(U2 − U1) = sgn(A1 − A2) = sgn(R1 − 1).

Proof. From C1 and C2, for U1,U2, A1, A2 > 0, we obtain

(Φ(U2) − Φ(U1))(U1 − U2) > 0, (2.19)
(Λ(U2, A2) − Λ(U1, A2))(U2 − U1) > 0, (2.20)
(Λ(U1, A2) − Λ(U1, A1))(A2 − A1) > 0. (2.21)

Using Condition C4, we get(
Λ(U1, A2)
Ψ2(A2)

−
Λ(U1, A1)
Ψ2(A1)

)
(A1 − A2) > 0. (2.22)

First, assume that sgn(U2 − U1) = sgn(A2 − A1). We have

Φ(U2) − Φ(U1) = Λ(U2, A2) − Λ(U1, A1)
= (Λ(U2, A2) − Λ(U1, A2)) + (Λ(U1, A2) − Λ(U1, A1)).

Hence, from Inequalities (2.19)–(2.21) we get:

sgn(U1 − U2) = sgn(U2 − U1),
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which leads to a contradiction and hence, sgn(U2−U1) = sgn(A1−A2). Utilizing the equilibrium point
conditions for EP1 we obtain ϱΛ(U1,A1)

Ψ2(A1) = 1, then

R1 − 1 = ϱ
Λ (U2, A2)
Ψ2 (A2)

− ϱ
Λ (U1, A1)
Ψ2 (A1)

.

= ϱ

(
Λ (U2, A2)
Ψ2 (A2)

−
Λ (U1, A1)
Ψ2 (A1)

)
.

= ϱ

(
1

Ψ2 (A2)
(Λ (U2, A2) − Λ (U1, A2)) +

Λ (U1, A2)
Ψ2 (A2)

−
Λ (U1, A1)
Ψ2 (A1)

)
.

Thus, from Inequalities (2.20) and (2.22) we obtain sgn(R1 − 1) = sgn(U2 − U1) = sgn(A1 − A2).□

Theorem 2. If R1 ≤ 1 < R0 and Conditions C1-C4 are satisfied, then the infected equilibrium point
without CTL immunity EP1 is GAS.

Proof. Let T1 be defined as:

T1 = U − U1 −

∫ U

U1

Λ (U1, A1)
Λ (η, A1)

dη +
1
𭟋1

(
L − L1 −

∫ L

L1

Ψ1(L1)
Ψ1(η)

dη
)

+
(π + µ)
π𭟋1𭟋2

(
A − A1 −

∫ A

A1

Ψ2(A1)
Ψ2(η)

dη
)
+
α (π + µ)
ρπ𭟋1𭟋2

C

+
1
𭟋1
Λ (U1, A1)

κ1∫
0

e−ξ1ϖf1(ϖ)
∫ t

t−ϖ
H

(
Λ(U(θ), A(θ))
Λ (U1, A1)

)
dθdϖ

+
(π + µ)
𭟋1𭟋2

Ψ1(L1)

κ2∫
0

e−ξ2ϖf2(ϖ)
∫ t

t−ϖ
H

(
Ψ1(L(θ))
Ψ1(L1)

)
dθdϖ.

Clearly T1(U, L, A,C) > 0 for all U, L, A,C > 0 and T1(U1, L1, A1, 0) = 0. Calculate dT1
dt as

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
U̇ +

1
𭟋1

(
1 −
Ψ1(L1)
Ψ1(L)

)
L̇ +

(π + µ)
π𭟋1𭟋2

(
1 −
Ψ2(A1)
Ψ2(A)

)
Ȧ +
α (π + µ)
ρπ𭟋1𭟋2

Ċ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
[
Λ(U, A) − Λ(U(t −ϖ), A(t −ϖ)) + Λ (U1, A1) ln

(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

]

+
(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
[
Ψ1(L) − Ψ1(L(t −ϖ)) + Ψ1(L1) ln

(
Ψ1(L(t −ϖ))
Ψ1(L)

)]
dϖ

=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Λ(U, A))

+
1
𭟋1

(
1 −
Ψ1(L1)
Ψ1(L)

) 
κ1∫

0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A) − (π + µ)Ψ1 (L)


+

(π + µ)
π𭟋1𭟋2

(
1 −
Ψ2(A1)
Ψ2(A)

) π
κ2∫

0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ − δΨ2 (A) − αΨ2 (A)Ψ3 (C)


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+
α (π + µ)
ρπ𭟋1𭟋2

(ρΨ2 (A)Ψ3 (C) − γΨ3 (C)) + Λ(U, A) +
(π + µ)
𭟋1
Ψ1(L)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
(
Λ(U(t −ϖ), A(t −ϖ)) − Λ (U1, A1) ln

(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

))
dϖ

−
(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
(
Ψ1(L(t −ϖ)) − Ψ1(L1) ln

(
Ψ1(L(t −ϖ))
Ψ1(L)

))
dϖ.

Collecting terms we get

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
Φ(U) + Λ (U1, A1)

Λ(U, A)
Λ (U, A1)

−
1
𭟋1

Ψ1(L1)
Ψ1(L)

κ1∫
0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ +
ε

𭟋1
Ψ2 (A) −

ε

𭟋1

Ψ2 (A)Ψ1(L1)
Ψ1(L)

+
(π + µ)
𭟋1
Ψ1(L1) −

(π + µ)
𭟋1𭟋2

Ψ2(A1)
Ψ2(A)

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ −
δ(π + µ)
π𭟋1𭟋2

Ψ2 (A)

+
δ(π + µ)
π𭟋1𭟋2

Ψ2(A1) +
α(π + µ)
π𭟋1𭟋2

Ψ2(A1)Ψ3 (C) −
αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3 (C)

+
1
𭟋1
Λ (U1, A1)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

+
(π + µ)
𭟋1𭟋2

Ψ1(L1)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ.

Using Φ(U1) = Λ (U1, A1) we obtain

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
+ Λ (U1, A1)

Λ(U, A)
Λ (U, A1)

−
1
𭟋1

Ψ1(L1)
Ψ1(L)

κ1∫
0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ −
π (δ − ε𭟋2) + δµ

π𭟋1𭟋2
Ψ2 (A)

−
ε

𭟋1

Ψ2 (A)Ψ1(L1)
Ψ1(L)

+
(π + µ)
𭟋1
Ψ1(L1) −

(π + µ)
𭟋1𭟋2

Ψ2(A1)
Ψ2(A)

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ

+
δ(π + µ)
π𭟋1𭟋2

Ψ2(A1) +
α(π + µ)
π𭟋1𭟋2

(
Ψ2(A1) −

γ

ρ

)
Ψ3 (C)

+
1
𭟋1
Λ (U1, A1)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ
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+
(π + µ)
𭟋1𭟋2

Ψ1(L1)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ.

Utilizing the equilibrium point conditions for EP1:

(π + µ)Ψ1(L1) =
δ(π + µ)𭟋1

π (δ − ε𭟋2) + δµ
Λ (U1, A1) ,

δ(π + µ)
π
Ψ2(A1) =

δ(π + µ)𭟋1𭟋2

π (δ − ε𭟋2) + δµ
Λ (U1, A1) ,

we obtain

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
+ Λ (U1, A1)

Λ(U, A)
Λ (U, A1)

−
1
𭟋1
Λ (U1, A1)

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L1)

Λ (U1, A1)Ψ1(L)
dϖ − Λ (U1, A1)

Ψ2 (A)
Ψ2(A1)

−
πε𭟋2

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

Ψ2 (A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

+
2δ(π + µ)

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

−
δ(π + µ)

𭟋2
[
π (δ − ε𭟋2) + δµ

]Λ (U1, A1)

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ

+
δ(π + µ)

𭟋2
[
π (δ − ε𭟋2) + δµ

]Λ (U1, A1)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

+
1
𭟋1
Λ (U1, A1)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

+
α(π + µ)
π𭟋1𭟋2

(
Ψ2(A1) −

γ

ρ

)
Ψ3 (C) .

Therefore dT1
dt can be written as:

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
Λ(U, A)
Λ (U, A1)

−
Ψ2 (A)
Ψ2(A1)

)

+ Λ (U1, A1)

1 − Λ (U1, A1)
Λ (U, A1)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L1)

Λ (U1, A1)Ψ1(L)
dϖ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

 − πε𭟋2

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

Ψ2 (A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

+
δ(π + µ)

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

2 − 1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ
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+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 + α(π + µ)
π𭟋1𭟋2

(
Ψ2(A1) −

γ

ρ

)
Ψ3 (C)

=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
Λ(U, A)
Λ (U, A1)

− 1 −
Ψ2 (A)
Ψ2(A1)

+
Ψ2 (A)Λ(U, A1)
Ψ2(A1)Λ(U, A)

)

+ Λ (U1, A1)

4 − Λ (U1, A1)
Λ (U, A1)

−
Ψ2 (A)Λ(U, A1)
Ψ2(A1)Λ(U, A)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L1)

Λ (U1, A1)Ψ1(L)
dϖ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ −

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 − πε𭟋2

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

Ψ2 (A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

− 2Λ (U1, A1) +
1
𭟋2
Λ (U1, A1)

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ

−
1
𭟋2
Λ (U1, A1)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ +

α(π + µ)
π𭟋1𭟋2

(
Ψ2(A1) −

γ

ρ

)
Ψ3 (C)

+
δ(π + µ)

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

2 − 1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 . (2.23)

Equation (2.23) can be written as:

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
Λ(U, A)
Λ (U, A1)

−
Ψ2 (A)
Ψ2(A1)

) (
1 −
Λ (U, A1)
Λ (U, A)

)

+ Λ (U1, A1)

4 − Λ (U1, A1)
Λ (U, A1)

−
Ψ2 (A)Λ(U, A1)
Ψ2(A1)Λ(U, A)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L1)

Λ (U1, A1)Ψ1(L)
dϖ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ −

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 + πε

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

×

κ2∫
0

e−ξ2ϖf2(ϖ)
[
2 −
Ψ2 (A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

−
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

+ ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)]
dϖ
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+
α(π + µ)
π𭟋1𭟋2

(
Ψ2(A1) −

γ

ρ

)
Ψ3 (C) . (2.24)

Equation (2.24) can be simplified as:

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
Λ(U, A)
Λ (U, A1)

−
Ψ2 (A)
Ψ2(A1)

) (
1 −
Λ (U, A1)
Λ (U, A)

)

− Λ (U1, A1)

H
(
Λ (U1, A1)
Λ (U, A1)

)
+

1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)H
(
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L1)

Λ (U1, A1)Ψ1(L)

)
dϖ

+H

(
Ψ2 (A)Λ(U, A1)
Ψ2(A1)Λ(U, A)

)
+

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)H
(
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

)
dϖ


−

πε𭟋2

π (δ − ε𭟋2) + δµ
Λ (U1, A1)

H
(
Ψ2 (A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

)
+

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)H
(
Ψ1 (L(t −ϖ))Ψ2(A1)
Ψ1(L1)Ψ2(A)

)
dϖ


+
α(π + µ)
π𭟋1𭟋2

(Ψ2(A1) − Ψ2(A2))Ψ3 (C) .

Lemma 2 implies that, if R1 ≤ 1, then A1 ≤ A2 and from Condition C3 we get Ψ2(A1) ≤ Ψ2(A2).
Therefore, if R1 ≤ 1, then dT1

dt ≤ 0, where dT1
dt = 0 occurs at the equilibrium point EP1. Hence

Υ′1 = {EP1} and then L-LAST guarantees the global asymptotic stability of EP1. □

Theorem 3. If R1 > 1 and Conditions C1–C4 are satisfied, then the infected equilibrium point with
CTL immunity EP2 is GAS.

Proof. We define T2 as:

T2 = U − U2 −

∫ U

U2

Λ (U2, A2)
Λ (η, A2)

dη +
1
𭟋1

(
L − L2 −

∫ L

L2

Ψ1(L2)
Ψ1(η)

dη
)

+
(π + µ)
π𭟋1𭟋2

(
A − A2 −

∫ A

A2

Ψ2(A2)
Ψ2(η)

dη
)
+
α (π + µ)
ρπ𭟋1𭟋2

(
C −C2 −

∫ C

C2

Ψ3(C2)
Ψ3(η)

dη
)

+
1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ)
∫ t

t−ϖ
H

(
Λ(U(θ), A(θ))
Λ (U2, A2)

)
dθdϖ

+
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ)
∫ t

t−ϖ
H

(
Ψ1(L(θ))
Ψ1(L2)

)
dθdϖ.

Clearly, T2(U, L, A,C) > 0 for all U, L, A,C > 0 and T2(U2, L2, A2,C2) = 0. Calculate dT2
dt as:

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
U̇ +

1
𭟋1

(
1 −
Ψ1(L2)
Ψ1(L)

)
L̇ +

(π + µ)
π𭟋1𭟋2

(
1 −
Ψ2(A2)
Ψ2(A)

)
Ȧ

+
α (π + µ)
ρπ𭟋1𭟋2

(
1 −
Ψ3(C2)
Ψ3(C)

)
Ċ +

1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) (Λ(U, A) − Λ(U(t −ϖ), A(t −ϖ))
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+Λ (U2, A2) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

))
dϖ +

(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)

×

(
Ψ1(L) − Ψ1(L(t −ϖ)) + Ψ1(L2) ln

(
Ψ1(L(t −ϖ))
Ψ1(L)

))
dϖ

=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Λ(U, A))

+
1
𭟋1

(
1 −
Ψ1(L2)
Ψ1(L)

) 
κ1∫

0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ + εΨ2 (A) − (π + µ)Ψ1 (L)


+

(π + µ)
π𭟋1𭟋2

(
1 −
Ψ2(A2)
Ψ2(A)

) π
κ2∫

0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ − δΨ2 (A) − αΨ2 (A)Ψ3 (C)


+
α (π + µ)
ρπ𭟋1𭟋2

(
1 −
Ψ3(C2)
Ψ3(C)

)
(ρΨ2 (A)Ψ3 (C) − γΨ3 (C)) + Λ(U, A) +

(π + µ)
𭟋1
Ψ1(L)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
(
Λ(U(t −ϖ), A(t −ϖ))dϖ − Λ (U2, A2) ln

(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

))
dϖ

−
(π + µ)
𭟋1𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
(
Ψ1(L(t −ϖ))dϖ − Ψ1(L2) ln

(
Ψ1(L(t −ϖ))
Ψ1(L)

))
dϖ.

Collecting terms we get

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
Φ(U) + Λ (U2, A2)

Λ(U, A)
Λ (U, A2)

−
1
𭟋1

Ψ1(L2)
Ψ1(L)

κ1∫
0

e−ξ1ϖf1(ϖ)Λ(U(t −ϖ), A(t −ϖ))dϖ

+
ε

𭟋1
Ψ2 (A) −

ε

𭟋1

Ψ2 (A)Ψ1(L2)
Ψ1(L)

+
(π + µ)
𭟋1
Ψ1(L2)

−
(π + µ)
𭟋1𭟋2

Ψ2(A2)
Ψ2(A)

κ2∫
0

e−ξ2ϖf2(ϖ)Ψ1 (L(t −ϖ)) dϖ

−
δ(π + µ)
π𭟋1𭟋2

Ψ2 (A) +
δ(π + µ)
π𭟋1𭟋2

Ψ2(A2) +
α(π + µ)
π𭟋1𭟋2

Ψ2(A2)Ψ3 (C)

−
α (π + µ)
π𭟋1𭟋2

Ψ2 (A)Ψ3(C2) −
αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3 (C) +
αγ (π + µ)
ρπ𭟋1𭟋2

Ψ3(C2)

+
1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ
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+
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ.

Using Φ(U2) = Λ(U2, A2) we obtain

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
+ Λ (U2, A2)

Λ(U, A)
Λ (U, A2)

+
1
𭟋1

(
εΨ2(A2) −

(π + µ)
π𭟋2

(δΨ2(A2) + αΨ2(A2)Ψ3(C2))
)
Ψ2 (A)
Ψ2(A2)

+
(π + µ)
𭟋1
Ψ1(L2)

−
1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ (U2, A2)Ψ1(L)
dϖ −

ε

𭟋1
Ψ2(A2)

Ψ2 (A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

−
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ +
(π + µ)
π𭟋1𭟋2

(
δΨ2(A2) +

αγ

ρ
Ψ3 (C2)

)

+
α(π + µ)
π𭟋1𭟋2

(
Ψ2(A2) −

γ

ρ

)
Ψ3(C2) +

1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

+
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ.

Using the equilibrium point conditions for EP2:

Λ(U2, A2) =
1
𭟋1

((π + µ)Ψ1(L2) − εΨ2(A2)) ,

πΨ1(L2) =
1
𭟋2

(δΨ2(A2) + αΨ2(A2)Ψ3(C2)) ,

Ψ2(A2) =
γ

ρ
,

we obtain
dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
+ Λ (U2, A2)

Λ(U, A)
Λ (U, A2)

+
1
𭟋1

(εΨ2(A2) − (π + µ)Ψ1(L2))
Ψ2 (A)
Ψ2(A2)

+
2(π + µ)
𭟋1

Ψ1(L2) −
ε

𭟋1
Ψ2(A2)

Ψ2 (A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

−
1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ (U2, A2)Ψ1(L)
dϖ

−
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ

+
1
𭟋1
Λ (U2, A2)

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ
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+
(π + µ)
𭟋1𭟋2

Ψ1(L2)

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
Λ(U, A)
Λ (U, A2)

−
Ψ2 (A)
Ψ2(A2)

)

+ Λ (U2, A2)

1 − Λ (U2, A2)
Λ (U, A2)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ (U2, A2)Ψ1(L)
dϖ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ

 − ε𭟋1
Ψ2(A2)

Ψ2 (A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

+
(π + µ)
𭟋1
Ψ1(L2)

2 − 1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 . (2.26)

Equation (2.26) can be written as:

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
Λ(U, A)
Λ (U, A2)

− 1 −
Ψ2 (A)
Ψ2(A2)

+
Ψ2 (A)Λ(U, A2)
Ψ2(A2)Λ(U, A)

)

+ Λ (U2, A2)

4 − Λ (U2, A2)
Λ (U, A2)

−
Ψ2 (A)Λ(U, A2)
Ψ2(A2)Λ(U, A)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ (U2, A2)Ψ1(L)
dϖ

+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ −

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 − ε𭟋1
Ψ2(A2)

Ψ2 (A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

− 2Λ (U2, A2)

+
1
𭟋2
Λ (U2, A2)

κ2∫
0

e−ξ2ϖf2(ϖ)
(
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

− ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

))
dϖ

+
(π + µ)
𭟋1
Ψ1(L2)

2 − 1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
(
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

− ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

))
dϖ


=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
Λ(U, A)
Λ (U, A2)

−
Ψ2 (A)
Ψ2(A2)

) (
1 −
Λ(U, A2)
Λ(U, A)

)

+ Λ (U2, A2)

4 − Λ (U2, A2)
Λ (U, A2)

−
Ψ2 (A)Λ(U, A2)
Ψ2(A2)Λ(U, A)

−
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ (U2, A2)Ψ1(L)
dϖ
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+
1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ) ln
(
Λ(U(t −ϖ), A(t −ϖ))

Λ(U, A)

)
dϖ −

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ

+
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 + ε𭟋1
Ψ2(A2)

[
2 −
Ψ2 (A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

−
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

dϖ +
1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ) ln
(
Ψ1(L(t −ϖ))
Ψ1(L)

)
dϖ

 .
Using Eqs (2.16) and (2.18) we get

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
Λ(U, A)
Λ (U, A2)

−
Ψ2 (A)
Ψ2(A2)

) (
1 −
Λ(U, A2)
Λ(U, A)

)

− Λ (U2, A2)

H
(
Λ (U2, A2)
Λ (U, A2)

)
+

1
𭟋1

κ1∫
0

e−ξ1ϖf1(ϖ)H
(
Λ(U(t −ϖ), A(t −ϖ))Ψ1(L2)

Λ(U2, A2)Ψ1(L)

)
dϖ

+H

(
Ψ2 (A)Λ(U, A2)
Ψ2(A2)Λ(U, A)

)
+

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)H
(
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

)
dϖ


−
ε

𭟋1
Ψ2(A2)

H
(
Ψ2(A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

)
+

1
𭟋2

κ2∫
0

e−ξ2ϖf2(ϖ)H
(
Ψ1 (L(t −ϖ))Ψ2(A2)
Ψ1(L2)Ψ2(A)

)
dϖ

 .
Hence, if R1 > 1, then U2, L2, A2, C2 > 0. From Conditions C1, C2 and C4, we get that dT2

dt ≤ 0 and
dT2
dt = 0 when U = U2, L = L2 and A = A2. The solutions of the system converge to Υ′2 which has

elements with U = U2, L = L2 and A = A2. It follows that Ȧ = 0 and Eq (2.8) becomes

0 = π𭟋2Ψ1 (L2) − δΨ2 (A2) − αΨ2 (A2)Ψ3 (C(t))

=⇒ C (t) = C2 for all t,

and hence Υ′2 = {EP2} . L-LAST implies the global asymptotic stability of EP2.□

3. Special case of the distributed-time delay

In this section, we take a particular form of the probability distributed functions as:

fi(ϖ) = ∆(ϖ − τi), i = 1, 2,

where ∆(.) is the Dirac delta function and τi, i = 1, 2 are constants. When κi → ∞, i = 1, 2, we have∫ ∞

0
fi(ϖ)dϖ = 1,∫ ∞

0
∆(ϖ − τi)e−ξiϖdϖ = e−ξiτi .
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Moreover, ∫ ∞

0
∆(ϖ − τ1)e−ξ1ϖΛ(U(t −ϖ), A(t −ϖ))dϖ = e−ξ1τ1Λ(U(t − τ1), A(t − τ1)),∫ ∞

0
∆(ϖ − τ2)e−ξ2ϖΨ1 (L(t −ϖ)) dϖ = e−ξ2τ2Ψ1 (L(t − τ2)) ,

Hence, models (2.6)–(2.9) will reduce to the following model with discrete-time delays:

U̇ = Φ(U(t)) − Λ(U(t), A(t)), (3.1)
L̇ = e−ξ1τ1Λ(U(t − τ1), A(t − τ1)) + εΨ2 (A(t)) − (π + µ)Ψ1 (L(t)) , (3.2)
Ȧ = πe−ξ2τ2Ψ1 (L(t − τ2)) − δΨ2 (A(t)) − αΨ2 (A(t))Ψ3 (C(t)) , (3.3)
Ċ = ρΨ2 (A(t))Ψ3 (C(t)) − γΨ3 (C(t)) . (3.4)

Similar to the proof of Proposition 1, one can show that the solutions of systems (3.1)–(3.4) are non-
negative and ultimately bounded.

Corollary 1. Consider systems (3.1)–(3.4) and suppose that C1–C4 are satisfied, then there exist two
positive threshold numbers R0 and R1 with R0 > R1 such that:

(a) If R0 ≤ 1, then there exists a single equilibrium point EP0.
(b) If R1 ≤ 1 < R0, then there exist two equilibrium points EP0 and EP1.
(c) If R1 > 1, then there exist three equilibrium points EP0, EP1 and EP2.
The proof can be completed as the same as given in Lemma 1 by replacing 𭟋i by e−ξiτi , i = 1, 2. The

parameters R0 and R1 for system (3.1)-(3.4) are given by

R0 =
ϱS

Ψ′2 (0)
∂Λ (U0, 0)
∂A

, R1 = ϱ
S Λ (U2, A2)
Ψ2 (A2)

,

where ϱS = πe−ξ1τ1−ξ2τ2
π(δ−εe−ξ2τ2)+δµ .

We can obtain the global dynamics of models (3.1)–(3.4) as follows:

Corollary 2. Consider systems (3.1)–(3.4) and suppose that Conditions C1–C4 are satisfied.

(i) If R0 ≤ 1, then the equilibrium point EP0 is GAS.
(ii) If R1 ≤ 1 < R0, then the infected equilibrium point without CTL immunity EP1 is GAS.
(iii) If R1 > 1, then the infected equilibrium point with CTL immunity EP2 is GAS.
Proof. (i) We consider the Lyapunov function T0 as:

T0 = U − U0 −

∫ U

U0

lim
A→0+

Λ (U0, A)
Λ (η, A)

dη + eξ1τ1 L +
(π + µ)eξ1τ1+ξ2τ2

π
A

+
α (π + µ) eξ1τ1+ξ2τ2

ρπ
C +

∫ t

t−τ1
Λ(U(θ), A(θ))dθ + (π + µ)eξ1τ1

∫ t

t−τ2
Ψ1(L(θ))dθ.

Following the proof of Theorem 1 we obtain dT0
dt as:

dT0

dt
≤

(
1 −
∂Λ(U0, 0)/∂A
∂Λ(U, 0)/∂A

)
(Φ(U) − Φ(U0)) +

(
π
(
δ − εe−ξ2τ2

)
+ δµ

)
eξ1τ1+ξ2τ2

π
(R0 − 1)Ψ2(A)
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−
αγ (π + µ) eξ1τ1+ξ2τ2

ρπ
Ψ3(C).

(ii) We define the Lyapunov function T1 as:

T1 = U − U1 −

∫ U

U1

Λ (U1, A1)
Λ (η, A1)

dη + eξ1τ1
(
L − L1 −

∫ L

L1

Ψ1(L1)
Ψ1(η)

dη
)

+
(π + µ) eξ1τ1+ξ2τ2

π

A − A1 −

∫ A

A1

Ψ2(A1)
Ψ2(η)

dη
 + α (π + µ) eξ1τ1+ξ2τ2

ρπ
C

+ Λ (U1, A1)
∫ t

t−τ1
H

(
Λ(U(θ), A(θ))
Λ (U1, A1)

)
dθ

+ (π + µ) eξ1τ1Ψ1(L1)
∫ t

t−τ2
H

(
Ψ1(L(θ))
Ψ1(L1)

)
dθ.

Then, we follow the proof of Theorem 2 to get

dT1

dt
=

(
1 −
Λ (U1, A1)
Λ (U, A1)

)
(Φ(U) − Φ(U1)) + Λ (U1, A1)

(
Λ(U, A)
Λ (U, A1)

−
Ψ2(A)
Ψ2(A1)

) (
1 −
Λ (U, A1)
Λ(U, A)

)
− Λ(U1, A1)

[
H

(
Λ (U1, A1)
Λ (U, A1)

)
+H

(
Ψ2(A)Λ (U, A1)
Ψ2(A1)Λ(U, A)

)
+H

(
Λ(U(t − τ1), A(t − τ1))Ψ1(L1)

Λ(U1, A1)Ψ1(L)

)
+H

(
Ψ1 (L(t − τ2))Ψ2(A1)
Ψ1(L1)Ψ2(A)

)]
−

πεe−ξ2τ2

(π (δ − εe−ξ2τ2) + δµ)
Λ (U1, A1)

[
H

(
Ψ2(A)Ψ1(L1)
Ψ2(A1)Ψ1(L)

)
+H

(
Ψ1 (L(t − τ2))Ψ2(A1)
Ψ1(L1)Ψ2(A)

)]
+
α (π + µ) eξ1τ1+ξ2τ2

π

(
Ψ2(A1) −

γ

ρ

)
Ψ3(C).

(iii) We define the Lyapunov function T2 as:

T2 = U − U2 −

∫ U

U2

Λ (U2, A2)
Λ (η, A2)

dη + eξ1τ1
(
L − L2 −

∫ L

L2

Ψ1(L2)
Ψ1(η)

dη
)

+
(π + µ) eξ1τ1+ξ2τ2

π

(
A − A2 −

∫ A

A2

Ψ2(A2)
Ψ2(η)

dη
)

+
α (π + µ) eξ1τ1+ξ2τ2

ρπ

(
C −C2 −

∫ C

C2

Ψ3(C2)
Ψ3(η)

dη
)

+ Λ (U2, A2)
∫ t

t−τ1
H

(
Λ(U(θ), A(θ))
Λ (U2, A2)

)
dθ

+ (π + µ) eξ1τ1Ψ1(L2)
∫ t

t−τ2
H

(
Ψ1(L(θ))
Ψ1(L2)

)
dθ.

Following the proof of Theorem 3 we obtain dT2
dt as:

dT2

dt
=

(
1 −
Λ (U2, A2)
Λ (U, A2)

)
(Φ(U) − Φ(U2)) + Λ (U2, A2)

(
Λ(U, A)
Λ (U, A2)

−
Ψ2(A)
Ψ2(A2)

) (
1 −
Λ (U, A2)
Λ(U, A)

)
− Λ (U2, A2)

[
H

(
Λ (U2, A2)
Λ (U, A2)

)
+H

(
Ψ2(A)Λ (U, A2)
Ψ2(A2)Λ(U, A)

)
+H

(
Λ(U(t − τ1), A(t − τ1))Ψ1(L2)

Λ(U2, A2)Ψ1(L)

)
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+H

(
Ψ1 (L(t − τ2))Ψ2(A2)
Ψ1(L2)Ψ2(A)

)]
− εeξ1τ1Ψ2(A2)

[
H

(
Ψ2(A)Ψ1(L2)
Ψ2(A2)Ψ1(L)

)
+H

(
Ψ1 (L(t − τ2))Ψ2(A2)
Ψ1(L2)Ψ2(A)

)]
.

(3.5)

Similar to the proofs of Theorems 1–3 one can complete the proof.

4. Numerical simulations

To illustrate and validate our theoretical results we present some numerical simulations for systems
(3.1)–(3.4) with the following specific shapes of the general functions:

• Logistic function for the intrinsic growth rate of uninfected cells

Φ(U) = ν − ν̄U + ςU
(
1 −

U
Umax

)
,

• Crowley-Martin incidence rate

Λ(U, A) =
βUA

(1 + η1U)(1 + η2A)
,

• Linear death rate of the cells
Ψi(s) = s, i = 1, 2, 3.

Thus, systems (3.1)–(3.4) become

U̇ (t) = ν − ν̄U (t) + ςU (t)
(
1 −

U (t)
Umax

)
−

βU (t) A (t)
(1 + η1U (t))(1 + η2A (t))

, (4.1)

L̇ (t) = e−ξ1τ1
βU(t − τ1)A(t − τ1)

(1 + η1U(t − τ1))(1 + η2A(t − τ1))
+ ωε∗A (t) − (π + µ)L (t) , (4.2)

Ȧ (t) = πe−ξ2τ2 L(t − τ2) + (1 − ω)ε∗A (t) − δ∗A (t) − αA (t) C (t) , (4.3)
Ċ (t) = ρA (t) C (t) − γC (t) . (4.4)

Clearly Φ(0) = ν > 0 and Φ(U0) = 0, where U0 =
Umax
2 ς

(
ς − ν̄ +

√
(ς − ν̄)2 +

4νς
Umax

)
. It was mentioned

in [16] that the term ς − ν̄ is not necessary to be positive, therefore we assume that ς < ν̄.We see that
Φ′(U) = −ν̄ + ς − 2ςU

Umax
< 0.

Obviously,Φ(U) > 0 for all U ∈ [0,U0). Hence, Condition C1 is satisfied. We note thatΛ(U, A) > 0
for all U, A > 0 and Λ(U, 0) = Λ(0, A) = 0.Moreover, for all U > 0, A > 0 we have

∂Λ(U, A)
∂U

=
βA

(1 + η1U)2(1 + η2A)
> 0,

∂Λ(U, A)
∂A

=
βU

(1 + η1U)(1 + η2A)2 > 0,

∂Λ(U, 0)
∂A

=
βU

1 + η1U
> 0,
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Table 1. The data of models (4.1)–(4.4).

P Value Sources P Value Sources
ν 10 cells mm−3day−1 [10, 14, 50] µ 0.03 day−1 [1, 10, 14, 27]
ν̄ 0.012 day−1 [10, 14, 26] δ∗ 0.03 day−1 [10, 14, 26]
ς 0.03 day−1 [51, 52] α 0.029 cells−1 mm3 day−1 [14, 26, 54]
Umax 1500 cells mm−3 [51, 52] ρ Varies Assumed
β Varies Assumed γ 0.03 day−1 [10, 14, 26]
η1 0.0013 cells−1 mm3 [53] ξ1 1 Assumed
η2 0.009 cells−1 mm3 [53] ξ2 1 Assumed
ε∗ 0.011 day−1 [27] τ1 Varies Assumed
ω 0.9 [27] τ2 Varies Assumed
π 0.003 day−1 [10, 13, 14, 26]

d
dU

(
∂Λ(U, 0)
∂A

)
=

β

(1 + η1U)2 > 0.

Then Condition C2 is satisfied.
Also, we can see that Ψi(s) > 0, for all s > 0 and Ψi(0) = 0, i = 1, 2, 3. Moreover, Ψ′i(s) = 1 > 0,

i = 1, 2, 3 for all s ≥ 0. Thus, Condition C3 is satisfied. Finally, we have

Λ(U, A)
Ψ2(A)

=
βU

(1 + η1U)(1 + η2A)
,

∂

∂A

(
Λ(U, A)
Ψ2(A)

)
=

−η2βU
(1 + η1U)(1 + η2A)2 < 0, for all U, A > 0.

Thus, Condition C4 is satisfied as well. We can also see that our example satisfied the global stability
results (Theorems 1–3) with, R0 and R1 given by

R0 =
βπe−ξ1τ1−ξ2τ2U0[

π (δ∗ − (1 − ω)ε∗ − ωε∗e−ξ2τ2) + (δ∗ − (1 − ω)ε∗)µ
]
(1 + η1U0)

,

R1 =
βπe−ξ1τ1−ξ2τ2U2ρ[

π (δ∗ − (1 − ω)ε∗ − ωε∗e−ξ2τ2) + (δ∗ − (1 − ω)ε∗)µ
]
(1 + η1U2)(ρ + η2γ)

,

where U2 is the positive root of the equation

ν − ν̄U + ςU
(
1 −

U
Umax

)
−

βUγ
(1 + η1U)(ρ + η2γ)

= 0.

We present some numerical results for models (4.1)–(4.4) to address the stability of equilibrium
points. Further, we address the effect of time delays on the dynamical behavior of the system. All the
simulations are done using the solver dde23 MATLAB.

4.1. Stability of equilibrium points

In this subsection, we illustrate our global stability results given in Theorems 1–3 by showing that
from any selected initial conditions, the solution of the HTLV-I infection model will tend to one of the
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three equilibrium points. Let us select three initial conditions as:

IC1 : (U(θ), L(θ), A(θ),C(θ)) = (600, 150, 15, 4),
IC2 : (U(θ), L(θ), A(θ),C(θ)) = (500, 200, 20, 3),
IC3 : (U(θ), L(θ), A(θ),C(θ)) = (400, 250, 25, 2), where θ ∈ [−max{τ1, τ2}, 0] .

We fix the time delays τ1 and τ2 to become τ1 = τ2 = 0.1. We use the values of some parameters
of models (4.1)–(4.4) given in Table 1 and establish the effect of the other parameters, β and ρ on the
stability of the three equilibrium points. We investigate three cases as follows:

Case 1. (R0 ≤ 1): Choosing β = 0.0001 and ρ = 0.0001 which gives R0 = 0.1276 < 1 and R1 =

0.0332 < 1. Lemma 1 and Theorem 1 prove that the system has a single equilibrium point, EP0 and
it is GAS. Figure 1 shows that for all the three initials IC1-IC3, the concentrations of latently infected
cells, actively infected cells and CTLs are tending to zero. In the mean time, the concentration of the
uninfected cells tends to its healthy value U0 = 1288.15. This case means that there is no HTLV-I
infection in the body.

Case 2. (R1 ≤ 1 < R0): We take β = 0.004 and ρ = 0.0001. So, we get R0 = 5.1054 > 1 and
R1 = 0.0936 < 1. Based on Lemma 1 and Theorem 2, the infected equilibrium point without CTL
immunity EP1 exists. In such case, EP1 is GAS. Figure 2 shows that the numerical simulations illustrate
our theoretical result given in Theorem 2. The system’s solutions converge to the equilibrium point
EP1 = (144.65, 343.80, 32.29, 0) for all the three initials IC1-IC3. In this situation, the HTLV-I-patient
has non-active CTL immunity.

Case 3. (R1 > 1): We choose β = 0.004 and ρ = 0.005. Then, we calculate R0 = 5.1054 > 1
and R1 = 4.2216 > 1. Lemma 1 and Theorem 3 state that the infected equilibrium point with CTL
immunity EP2 = (923.92, 263.87, 6, 3.12) exists and is GAS. Figure 3 displays the numerical solutions
of the system converge to EP2 for all the three initials IC1-IC3. The results support the theoretical
results presented in Theorem 3. This case corresponds to an HTLV-I chronic infection with active CTL
immunity.

4.2. Impact of the CTL immunity on the dynamics of HTLV-I

We observe that the values of the parameter α, ρ and γ have no effect on the value of R0. It means
that, CTL immunity has no effect on the stability of the infection-free equilibrium point EP0. Now
we address the effect of the proliferation rate constant of CTL ρ on the HTLV-I dynamics. Using the
values of the parameters in Table 1 to solve the model (4.1)-(4.4) with initial condition IC2. We choose
β = 0.004, τ1 = τ2 = 0.1. We can see from Table 2 that R1 can be increased by increasing the value of
ρ. We can see from Figure 4 when ρ is increased, the concentrations of uninfected cells and CTLs are
increased, while the concentration of actively infected cells is decreased. Therefore, CTL immunity
does not play the role in deleting the virus, but it has an important role in controlling the HTLV-I
infection.

4.3. Impact of time delays τ1 and τ2 on the dynamics of HTLV-I

In this part, we study the effect of vary the time delays τ1 and τ2 on the HTLV-1 dynamics. Using
the values of the parameters in Table 1 and considering β = 0.004 and ρ = 0.001 to solve the models
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(4.1)–(4.4) with initial condition:

IC4 : U(θ) = 500, L(θ) = 200, A(θ) = 20 and C(θ) = 0.2 where θ ∈ [−max{τ1, τ2}, 0] .

Consider τ = τ1 = τ2, then R0 and R1 can be given as functions of τ as follows:

R0 (τ) =
βπe−(ξ1+ξ2)τU0[

πωε∗e−ξ2τ − (π + µ) (δ∗ − (1 − ω) ε∗)
]
(1 + η1U0)

.

R1 (τ) =
βπe−(ξ1+ξ2)τU2ρ[

πωε∗e−ξ2τ − (π + µ) (δ∗ − (1 − ω) ε∗)
]
(1 + η1U2) (ρ + η2γ)

.

We note that R0 and R1 are decreasing functions of τ. Let τCR0 and τCR1 be such that R0
(
τCR0

)
= 1 and

R1
(
τCR1

)
= 1. Using the values of the parameters in Table 1 and considering β = 0.004 and ρ = 0.001,

we obtain τCR0 = 0.907187 and τCR1 = 0.142356. Therefore, we have the following cases:
(a) if τ ≥ 0.907187, then R0 (τ) ≤ 1 and EP0 is GAS;
(b) if 0.142356 ≤ τ < 0.907187, then R1 (τ) ≤ 1 < R0 (τ) and EP1 is GAS;
(c) if τ < 0.142356, then R1 (τ) > 1 and EP2 is GAS.
It is clear from Figure 5 that as τ increases, the concentration of uninfected CD4+T cells is increased

and the other concentrations are decreased. In Table 3 we calculate the values of R0 and R1 as functions
of τ. We note that, when τ is increased, the values of both R0 and R1 are decreased. We can see from
the above discussion that increasing time delays values can have similar effect as antiviral treatments.

5. Conclusions and discussion

In this work, we proposed and examined a general HTLV-I infection models with CTL immunity
and mitotic transmission of actively infected cells. We introduce two intracellular distributed-time
delays into the models: (i) delay in the formation of latently infected cells, (ii) delay in the activation
of latently infected cells. We constructed the model with more general nonlinear functions for the
generation/stimulation and clearance rates of all compartments as well as the incidence rate of
infection. We established some conditions on such general functions and determined two threshold
numbers R0 and R1 which control the existence and global stability of the three equilibrium points.
We formulated Lyapunov functions and used L-LAST to establish the global asymptotic stability of
the equilibrium points. We proved that

• If R0 ≤ 1, then the infection-free equilibrium point EP0 is GAS. This result suggests that when
R0 ≤ 1, the HTLV-I infection is predicted to die out regardless of the initial conditions. From a
control viewpoint, making R0 ≤ 1 will be an ideal way but HTLV-I infection is lifelong, and the
viruses are rarely cleared.

• If R1 ≤ 1 < R0, then the infected equilibrium point without CTL immunity EP1 is GAS. This
result establishes that when R1 ≤ 1 < R0, the HTLV-I infection with inactive CTL immunity is
always established regardless of the initial conditions.

• If R1 > 1, then the infected equilibrium point with CTL immunity EP2 is GAS. This result
illustrates that when R1 > 1, the HTLV-I infection with active CTL immunity is always established
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regardless of the initial conditions. This implies that the infection becomes chronic and the CTL
immune response is persistent. In cases R1 ≤ 1 < R0 and R1 > 1, the individuals have a high risk
of developing HAM/TSP and can be characterized as the HAM/TSP patients.
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Figure 1. Solutions of systems (4.1)–(4.4) with initial conditions IC1-IC3 in case of R0 ≤ 1,
(a) Uninfected cells; (b) Latently infected cells; (c) Actively infected cells; (d) CTLs.

Table 2. The values of R1 for models (4.1)–(4.4) with selected values of ρ.

ρ 0.0001 0.0005 0.001 0.002 0.005 0.01
R1 0.094 0.50 1.09 2.47 4.22 4.69

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.



12722

0 100 200 300 400 500 600

Time

100

200

300

400

500

600

700

800

U
n

in
fe

c
te

d
 c

e
ll

s

IC1

IC2

IC3

(a) Uninfected cells

0 100 200 300 400 500 600

Time

100

200

300

400

500

600

L
a
te

n
tl

y
 i

n
fe

ct
ed

 c
el

ls

IC1

IC2

IC3

(b) Latently infected cells

0 100 200 300 400 500 600

Time

5

10

15

20

25

30

35

40

45

A
ct

iv
el

y
 i

n
fe

ct
ed

 c
el

ls

IC1

IC2

IC3

(c) Actively infected cells

0 50 100 150 200 250 300

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

C
T

L
s

IC1

IC2

IC3

(d) CTLs

Figure 2. Solutions of systems (4.1)–(4.4) with initial conditions IC1-IC3 in case of R1 ≤

1 < R0, (a) Uninfected cells; (b) Latently infected cells; (c) Actively infected cells; (d) CTLs.

We studied the global stability of a general HTLV-I model with discrete-time delays as a special case
of the model with distributed-time delays when the probability distributed function is given by Dirac
delta function. To support the obtained theoretical results, we conducted numerical simulations for the
model with discrete-time delays, logistic form for the intrinsic growth rate of uninfected cells, Crowley-
Martin incidence rate and linear death rate of the cells. We discussed the impacts of the proliferation of
CTLs on the HTLV-I dynamics. We noted that the CTL immunity does not play the role in deleting the
virus from the body, but it has an important role in controlling and suppressing the HTLV-I infection.
We showed that the parameter ρ has a significant effect of the dynamical behavior of the HTLV-I.
The effect of the time delays on the HTLV-I dynamics was discussed. We established that, when all
other parameters are fixed and delays are sufficiently large, R0 becomes less than one, which makes the
infection-free equilibrium point EP0 globally asymptotically stable. From a biological viewpoint, time
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delays play positive roles in the HTLV-I infection process in order to eliminate the virus. Sufficiently
large time delays makes the HTLV-I development slower, and the HTLV-I is controlled and disappears.
This gives us some suggestions on new drugs to prolong the time of formation of latent infected cells,
or the time of activation of latent infected cells.
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Figure 3. Solutions of systems (4.1)–(4.4) with initial conditions IC1-IC3 in case of R1 > 1,
(a) Uninfected cells; (b) Latently infected cells; (c) Actively infected cells; (d) CTLs.

We mention that models (1.8)–(1.11) presented by Lim and Maini [14] considered a linear
proliferation rate of the CTLs, ρA. In comparison with our proposed model, models (1.8)–(1.11)
admits only two equilibrium points, infection-free equilibrium point ẼP0 = ( ν

ν̄
, 0, 0, 0) and infected

equilibrium point ẼP1 = (Ũ1, L̃1, Ã1, C̃1). The existence and stability of ẼP0 and ẼP1 are determined
by the basic reproductive number

R̃0 =
π

δ∗ (π + µ)

(
β
ν

ν̄
+ ε∗

)
.
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Figure 4. Impact of the CTL immunity ρ on the dynamics of HTLV-I given by systems
(4.1)–(4.4) with initial condition IC2, (a) Uninfected cells; (b) Latently infected cells; (c)
Actively infected cells; (d) CTLs.

We note that, R̃0 does not depends on the proliferation rate constant of the CTLs, ρ. As a result, ρ
does not play any role on the existence and stability of both equilibria. In this case, the effect of the
CTL immune response on the dynamical behavior of the HTLV-I does not appear explicitly. In our
model, by considering a nonlinear proliferation rate of the CTLs, the role of the CTLs in controlling
the HTLV-I infection is well presented. In [1], an HTLV-I infection model was presented with a
nonlinear proliferation rate of the CTLs, ρAC, however, the intracellular time delay was neglected. In
addition, the infection rate was given by bilinear incidence which may not be completely characterize
the incidence between uninfected cells and actively infected cells [37]. Overall, our proposed model
helps to better understand the dynamical behavior of HTLV-I infection with CTL immunity and time
delays.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.



12725

0 500 1000 1500

Time

0

200

400

600

800

1000

1200

1400

U
n

in
fe

c
te

d
 c

e
ll

s

=0.0

=0.7

=1.0

=1.5

(a) Uninfected cells

0 500 1000 1500

Time

0

100

200

300

400

500

600

L
a
te

n
tl

y
 i

n
fe

ct
ed

 c
el

ls

=0.0

=0.7

=1.0

=1.5

(b) Latently infected cells

0 500 1000 1500

Time

0

10

20

30

40

50

A
ct

iv
el

y
 i

n
fe

ct
ed

 c
el

ls

=0.0

=0.7

=1.0

=1.5

(c) Actively infected cells

0 500 1000 1500

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
T

L
s

=0.0

=0.7

=1.0

=1.5

(d) CTLs

Figure 5. Impact of time delays τ1, τ2 on the HTLV-I dynamics given by systems (4.1)–
(4.4) with initial condition IC4 (a) Uninfected cells; (b) Latently infected cells; (c) Actively
infected cells; (d) CTLs.

Table 3. The values of R0 and R1 for models (4.1)–(4.4) with selected values of τ.

τ R0 R1

0 6.25 1.34
0.142356 4.69 1
0.7 1.52 0.32
0.907187 1 0.21
1 0.83 0.18
1.5 0.30 0.06
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The model presented in this paper can be extended in many directions such as (i) including the
reaction diffusion [55], (ii) considering the stochastic interactions [56], (iii) modeling the coinfection
with HTLV-I and other types of viruses.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, Saudi Arabia under grant no. (KEP-PHD-38-130-43). The authors, therefore, acknowledge
with thanks DSR technical and financial support.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. S. Khajanchi, S. Bera, T. K. Roy, Mathematical analysis of the global dynamics of a HTLV-
I infection model, considering the role of cytotoxic T-lymphocytes, Math. Comput. Simul., 180
(2021), 354–378. https://doi.org/10.1016/j.matcom.2020.09.009

2. F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, E. L. Murphy, Global
epidemiology of HTLV-I infection and associated diseases, Oncogene, 24 (2005), 6058–6068.
https://doi.org/10.1038/sj.onc.1208968

3. C. R. M. Bangham, HTLV-I infections, J. Clin. Pathol., 53 (2000), 581–586.
http://dx.doi.org/10.1136/jcp.53.8.581

4. D. Wodarz, C. R. M. Bangham, Evolutionary dynamics of HTLV-I, J. Mol. Evol., 50 (2000), 448–
455. https://doi.org/10.1007/s002390010047

5. B. Asquith, C. R. M. Bangham, How does HTLV-I persist despite a strong cell-mediated immune
response?, Trends Immunol., 29 (2008), 4–11. https://doi.org/10.1016/j.it.2007.09.006

6. H. Shiraki, Y. Sagara, Y. Inoue, Cell-to-cell transmission of HTLV-I, Gann Monogr. Cancer Res.,
50 (2003), 303–316.

7. N. I. Stilianakis, J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection,
Bull. Math. Biol., 61 (1999), 935–947. https://doi.org/10.1006/bulm.1999.0117

8. H. Gomez-Acevedo, M. Y. Li, Backward bifurcation in a model for HTLV-I infection of CD4+T
cells, Bull. Math. Biol., 67 (2005), 101–114. https://doi.org/10.1016/j.bulm.2004.06.004

9. C. Vargas-De-Leon, The complete classification for global dynamics of a model for
the persistence of HTLV-1 infection, Appl. Math. Comput., 237 (2014), 489–493.
https://doi.org/10.1016/j.amc.2014.03.138

10. M. Y. Li, A. G. Lim, Modelling the role of tax expression in HTLV-I persistence in vivo, Bull.
Math. Biol., 73 (2011), 3008–3029. https://doi.org/10.1007/s11538-011-9657-1

11. X. Song, Y. Li, Global stability and periodic solution of a model for HTLV-
1 infection and ATL progression, Appl. Math. Comput., 180 (2006), 401–410.
https://doi.org/10.1016/j.amc.2005.12.022

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.

http://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.09.009
http://dx.doi.org/https://doi.org/10.1038/sj.onc.1208968
http://dx.doi.org/http://dx.doi.org/10.1136/jcp.53.8.581
http://dx.doi.org/https://doi.org/10.1007/s002390010047
http://dx.doi.org/https://doi.org/10.1016/j.it.2007.09.006
http://dx.doi.org/https://doi.org/10.1006/bulm.1999.0117
http://dx.doi.org/https://doi.org/10.1016/j.bulm.2004.06.004
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.03.138
http://dx.doi.org/https://doi.org/10.1007/s11538-011-9657-1
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.12.022


12727

12. L. Wang, M. Y. Li, D. Kirschner, Mathematical analysis of the global dynamics of a
model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207–217.
https://doi.org/10.1016/S0025-5564(02)00103-7

13. B. Asquith, C. R. M. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 85 (2007),
280–286. https://doi.org/10.1038/sj.icb.7100050

14. A. G. Lim, P. K. Maini, HTLV-I infection: A dynamic struggle between viral persistence and host
immunity, J. Theor. Biol., 352 (2014), 92–108. https://doi.org/10.1016/j.jtbi.2014.02.022

15. C. R. M. Bangham, CTL quality and the control of human retroviral infections, Eur. J. Immunol.,
39 (2009), 1700–1712. https://doi.org/10.1002/eji.200939451

16. X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability
switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235.
https://doi.org/10.1016/j.jmaa.2019.07.051

17. C. Bartholdy, J. P. Christensen, D. Wodarz, A. R. Thomsen, Persistent virus infection
despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice
infected with lymphocytic choriomeningitis virus, J. Virol., 74 (2000), 10304–10311.
https://doi.org/10.1128/JVI.74.22.10304-10311.2000

18. H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLV-
I infection and its implications to HAM/TSP development and prevention, Bull. Math. Biol., 72
(2010), 681–696. https://doi.org/10.1007/s11538-009-9465-z

19. J. Lang, M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL
response to HTLV-I infection, J. Math. Biol., 65 (2012), 181–199. https://doi.org/10.1007/s00285-
011-0455-z

20. M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to
HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793. https://doi.org/10.1007/s11538-010-
9591-7

21. M. Y. Li, H. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+
T cells with delayed CTL response, Nonlinear Anal. Real World Appl., 13 (2012), 1080–1092.
https://doi.org/10.1016/j.nonrwa.2011.02.026

22. D. Wodarz, M. A. Nowak, C. R. M. Bangham, The dynamics of HTLV-I and the CTL response,
Immunol. Today, 20 (1999), 220–227. https://doi.org/10.1016/S0167-5699(99)01446-2

23. L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-I infection
model with distributed delay, CTL response and immune impairment, Discrete Contin. Dyn. Syst.,
25 (2020), 917–933. http://dx.doi.org/10.3934/dcdsb.2019196

24. Y. Muroya, Y. Enatsu, H. Li, Global stability of a delayed HTLV-I infection model with a class of
nonlinear incidence rates and CTLs immune response, Appl. Math. Comput., 219 (2013), 10559–
10573. https://doi.org/10.1016/j.amc.2013.03.081

25. Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with
intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527.
https://doi.org/10.1016/j.jmaa.2017.10.027

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.

http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00103-7
http://dx.doi.org/https://doi.org/10.1038/sj.icb.7100050
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2014.02.022
http://dx.doi.org/https://doi.org/10.1002/eji.200939451
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2019.07.051
http://dx.doi.org/https://doi.org/10.1128/JVI.74.22.10304-10311.2000
http://dx.doi.org/https://doi.org/10.1007/s11538-009-9465-z
http://dx.doi.org/https://doi.org/10.1007/s00285-011-0455-z
http://dx.doi.org/https://doi.org/10.1007/s00285-011-0455-z
http://dx.doi.org/https://doi.org/10.1007/s11538-010-9591-7
http://dx.doi.org/https://doi.org/10.1007/s11538-010-9591-7
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2011.02.026
http://dx.doi.org/https://doi.org/10.1016/S0167-5699(99)01446-2
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2019196
http://dx.doi.org/https://doi.org/10.1016/j.amc.2013.03.081
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2017.10.027


12728

26. F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively
infected cells and delayed CTL immune response, Math. Methods Appl. Sci., 41 (2018), 3000–
3017. https://doi.org/10.1002/mma.4797

27. S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Contin.
Dyn. Syst., 21 (2016), 863–881. http://dx.doi.org/10.3934/dcdsb.2016.21.863

28. W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection
with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930.
http://dx.doi.org/10.11948/2017057

29. X. Jia, R. Xu, Global dynamics of a delayed HTLV-I infection model with Beddington-
DeAngelis incidence and immune impairment, Chaos Solitons Fractals, 155 (2022), 111733.
https://doi.org/10.1016/j.chaos.2021.111733

30. A. M. Elaiw, N. H. AlShamrani, Stability of HIV/HTLV-I co-infection model with delays, Math.
Methods Appl. Sci., 45 (2022), 238–300. https://doi.org/10.1002/mma.7775

31. P. Katri, S. Ruan, Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T
cells, C. R. Biol., 327 (2004), 1009–1016. https://doi.org/10.1016/j.crvi.2004.05.011

32. Y. Wang, J. Liu, Global stability for delay-dependent HTLV-I model with CTL immune response,
AIP Conf. Proc., 1738 (2016), 480074. https://doi.org/10.1063/1.4952310

33. X. Sun, J. Wei, Global dynamics of a HTLV-I infection model with CTL response, Elec. J. Qual.
Theory Diff. Equations, 2013 (2013), 1–15.

34. M. Y. Li, X. Lin, H. Wang, Global Hopf branches in a delayed model for immune response to
HTLV-1 infections: coexistence of multiple limit cycles, Can. Appl. Math. Q., 20 (2012), 39–50.

35. S. Bera, S. Khajanchi, T. K. Roy, Dynamics of an HTLV-I infection model
with delayed CTLs immune response, Appl. Math. Comput., 430 (2022), 127206.
https://doi.org/10.1016/j.amc.2022.127206

36. X. Lu, L. Hui, S. Liu, J. Li, A mathematical model of HTLV-I infection with two time delays,
Math. Biosci. Eng., 12 (2015), 431–449. http://dx.doi.org/10.3934/mbe.2015.12.431

37. A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent
parasite reproduction and virulence and non-linear incidence rate, Math. Med. Biol. J. IMA, 26
(2009), 225–239. https://doi.org/10.1093/imammb/dqp006

38. K. Qi, D. Jiang, Threshold behavior in a stochastic HTLV-I infection model with CTL
immune response and regime switching, Math. Methods Appl. Sci., 41 (2018), 6866–6882.
https://doi.org/10.1002/mma.5198

39. L. Cai, X. Li, M. Ghosh, Global dynamics of a mathematical model for HTLV-I infection of CD4+

T-cells, Appl. Math. Modell., 35 (2011), 3587–3595. https://doi.org/10.1016/j.apm.2011.01.033

40. J. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical
Science, Springer Verlag, New York, 1993.

41. A. M. Elaiw, N. H. AlShamrani, Modeling and analysis of a within-host HIV/HTLV-I co-infection,
Bol. Soc. Mat. Mex., 27 (2021), 27–38. https://doi.org/10.1007/s40590-021-00330-6

42. A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with
immunity, Virus Res., 295 (2021), 198204. https://doi.org/10.1016/j.virusres.2020.198204

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.

http://dx.doi.org/https://doi.org/10.1002/mma.4797
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2016.21.863
http://dx.doi.org/http://dx.doi.org/10.11948/2017057
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111733
http://dx.doi.org/https://doi.org/10.1002/mma.7775
http://dx.doi.org/https://doi.org/10.1016/j.crvi.2004.05.011
http://dx.doi.org/https://doi.org/10.1063/1.4952310
http://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127206
http://dx.doi.org/http://dx.doi.org/10.3934/mbe.2015.12.431
http://dx.doi.org/https://doi.org/10.1093/imammb/dqp006
http://dx.doi.org/https://doi.org/10.1002/mma.5198
http://dx.doi.org/https://doi.org/10.1016/j.apm.2011.01.033
http://dx.doi.org/https://doi.org/10.1007/s40590-021-00330-6
http://dx.doi.org/https://doi.org/10.1016/j.virusres.2020.198204


12729

43. X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-
species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109–116.
https://doi.org/10.1016/0898-1221(96)00129-0

44. A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004),
879–883. https://doi.org/10.1016/j.bulm.2004.02.001

45. A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull.
Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y

46. A. M. Elaiw, N. H. AlShamrani, Global stability of humoral immunity virus dynamics models
with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161–190.
https://doi.org/10.1016/j.nonrwa.2015.05.007

47. E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, Groningen, 1970.

48. J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.

49. A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, 55 (1992), 531–
534. https://doi.org/10.1080/00207179208934253

50. A. S. Perelson, D. E. Kirschner, R. de boer, Dynamics of HIV Infection of CD4+ T cells, Math.
Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-A

51. R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,
Math. Biosci., 165 (2000), 27–39. https://doi.org/10.1016/S0025-5564(00)00006-7

52. Y. Wang, Y. Zhou, J. Wu, J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis
model, Math. Biosci., 219 (2009), 104–112. https://doi.org/10.1016/j.mbs.2009.03.003

53. M. N. Jan, N. Ali, G. Zaman, I. Ahmad, Z. Shah, P. Kumam, HIV-1 infection dynamics and
optimal control with Crowley-Martin function response, Comput. Methods Prog. Biomed., 193
(2020), 105503. https://doi.org/10.1016/j.cmpb.2020.105503

54. B. Asquith, A. J. Mosley, A. Barfield, S. E. F. Marshall, A. Heaps, P. Goon, et al., A functional
CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences
in human T-lymphotropic virus type 1 proviral load, J. Gener. Virol., 86 (2005), 1515–1523.
https://doi.org/10.1099/vir.0.80766-0

55. N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross diffusion models in
complex environments: Models and analytic problems toward a multiscale vision, Math. Models
Methods Appl. Sci., 32 (2022), 713–792. https://doi.org/10.1142/S0218202522500166

56. L. Gibelli, A. M. Elaiw, M. A. Alghamdi, A. M. Althiabi, Heterogeneous population dynamics
of active particles: Progression, mutations, and selection dynamics, Math. Models Methods Appl.
Sci., 27 (2017), 617–640. https://doi.org/10.1142/S0218202517500117

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12693–12729.

http://dx.doi.org/https://doi.org/10.1016/0898-1221(96)00129-0
http://dx.doi.org/https://doi.org/10.1016/j.bulm.2004.02.001
http://dx.doi.org/https://doi.org/10.1007/s11538-007-9196-y
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2015.05.007
http://dx.doi.org/https://doi.org/10.1080/00207179208934253
http://dx.doi.org/https://doi.org/10.1016/0025-5564(93)90043-A
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(00)00006-7
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2009.03.003
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2020.105503
http://dx.doi.org/https://doi.org/10.1099/vir.0.80766-0
http://dx.doi.org/https://doi.org/10.1142/S0218202522500166
http://dx.doi.org/https://doi.org/10.1142/S0218202517500117
http://creativecommons.org/licenses/by/4.0

	Introduction
	HTLV-I dynamics model with delay-distributed
	Properties of solutions
	Equilibrium points and threshold parameters
	Global stability analysis

	Special case of the distributed-time delay
	Numerical simulations
	Stability of equilibrium points
	Impact of the CTL immunity on the dynamics of HTLV-I
	Impact of time delays 1 and 2 on the dynamics of HTLV-I

	Conclusions and discussion

