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Abstract: In this paper, the global complexities of a stochastic virus transmission framework featur-
ing adaptive response and Holling type II estimation are examined via the non-local fractal-fractional
derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-
uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-
negative solutions are carried out. Besides that, the infection progresses in the sense of randomization
as a consequence of the response fluctuating within the predictive case’s equilibria. Additionally, the
extinction criteria have been established. To understand the reliability of the findings, simulation stud-
ies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-
Caputo derivative incorporating fractional-order α and fractal-dimension ℘ have also been addressed.
The strength of white noise is significant in the treatment of viral pathogens. The persistence of a
stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradi-
cation of the infection is aided by white noise of high concentration.

Keywords: immune effector response model; fractal-fractional derivative operator; Brownian
motion; ergodicity and stationary distribution

1. Introduction

Diverse viral outbreaks, including those engendered by the human immune compromised virus
(HIV) [1], ebola virus [2], acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) [3], dengue
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virus [4], nipah virus [5], HBV [6], etc., have been researched utilizing mathematical formulas to
describe the within-host nonlinear versatile tendencies. In typical latent infection systems, uncon-
trolled infections, vulnerable tissues, and attacked cellular responses interact. Additionally, several
researchers highlight the phenomenon of incubation by mentioning persistent contamination. The
recipient defensive mechanism responds to viral infestation via inherent and monoclonal antibody im-
munogenicity. Both kinds of reactions can be roughly classified into lytic and nonlytic parts. While
nonlytic responder processes prevent viremia by aqueous molecules, lytic responder strategies elim-
inate afflicted organisms. Innate mechanisms include the ability of autonomous assassin systems to
destroy intracellular pathogens and the nonlytic inhibition of viral multiplication by cytokines released
by cellular functions. Cytotoxic T lymphocytes (CTLs), which are allergen antibodies, destroy intra-
cellular pathogens while autoantibodies deactivate dispersed viral proteins and prevent the transmis-
sion of bacteria to infected macrophages. Furthermore, CD4+ and CD8+ T lymphocytes can produce
chemicals that inhibit infectious proliferation (e.g., IFN- and TNF-), (see Figure 1).

Figure 1. Life cycle of CD4+ and CD8+ T cells.

These discrepancies are not necessarily easy to make, though. For instance, cytokines like interferon
and tumour necrotic signal have been shown to promote apoptosis in some circumstances, in addition
to inhibiting infectious multiplication [7]. Eichelberger et al. [8] investigated whether the pathogen
can be eradicated by the CD4+ T-cell-dependent antigen reaction in the absence of CD8+ T cells, (see
Figure 2). Topham et al. [9] demonstrated that CD8+ T lymphocytes can eliminate the pathogen by
a lytic process that is either regulated by complement activation or Fas. In terms of explaining the
four distinct HCV scenarios quantitatively, Pan et al. [10] addressed the HCV infectious system, which
incorporates the pathways of contamination and propagation, such as infectious agent and cell-to-cell
dissemination patterns.
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Figure 2. Aging and respiratory viral infection: from acute morbidity to chronic.

Chronic infestations result when the pathogen weakens and suppresses the innate immunity. An
immunological reaction has occurred whereby, upon a bacteria’s penetration into the system, the im-
munological mechanism identifies the onslaught and communicates this information to the defensive
components, which then generate lymphocytes to eradicate the infection. Additionally, the respon-
sive immunological mechanism is very important in regulating the virus replication. When an infec-
tion propagates in a person, the cells respond in two ways: first, a host antibody immune reaction
is triggered by the B-cell, and then a cytotoxic immunological reaction is induced by the Cytotoxic
T Lymphocyte (CTL). According to earlier investigations, the autoimmune disease seems to be more
robust than the intracellular immunological defences. Elaiw et al. [11] addressed the production of an-
tibodies, particular nonlinear prevalence rate expression, and behavioural features of viral transmission
scenarios, including insidiously viral particles. Luo et al. [12] analyzed a nonlinear prevalence, cell-to-
cell dissemination, and host immune protection framework for diffusive pathogen infectious diseases.
Wang et al. [13] investigated the infectious patterns of a system of persistent HIV transmission that
included multiple latencies, B-cell immunological responses, and the Beddington-DeAngelis occur-
rence criterion. Hattaf [14] presented a generalised virus-induced framework with several delayed and
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immune regulatory components that exhibit global stability and Hopf bifurcation. Rajivganthi and
Rihan [15] presented the stochastic analysis of viral infection model involving latently infected cells.
Olaide et al. [16] presented a novel metaheuristic algorithm named ebola optimization search algorithm
(EOSA) based on the propagation mechanism of the ebola virus disease. For further investigations on
optimization and epidemics, we refer the readers [17–25].

Fractional calculus (FC) is a subfield of mathematics that was created by applying integer deriva-
tives to differential equations (DEs) involving fractional-orders [26–31]. Since many considerable
anomalies in digital circuits, phonics, physio-chemical processes, special relativity, photo-catalysis,
transport phenomena, stretchability, and optoelectronics can be characterized by fractional DEs, this
field, which deals with classical derivatives and fractional-order, has gained popularity in the last three
decades. Additionally, FC is currently an essential strategy for simulating complicated events as well
as electron mobility that occurs in permeable heterogeneity environments [32–36]. In order to an-
alyze FDEs, scientists require a powerful toolset, yet it might be challenging to identify precise al-
ternatives to these kinds of computations. Therefore, it is vital to designing appropriate quantitative
strategies to address these issues [37]. However, quantitative approaches for FDEs create mathemat-
ical challenges that are not present in the evaluation of integer-order models. Because certain of the
advantageous aspects of the conventional approximation operators are compromised, there are certain
systemic problems in performing simulations of the fractional derivatives. During the last decade,
the Atangana-Baleanu fractional operator has made recent advancements in fractional DEs approxima-
tion, [38]. Atangana [39] proposed a revolutionary nonlocal formulation that combines fractional-order
and fractal-dimension: fractal-fractional (FF) differential and integral operators. To examine intricate
real-world situations that can never be modelled using classical and fractional derivative/integral for-
mulations of single order, the F-F technique has been expounded as a valuable technique in numerous
scientific and epidemiological fields. Versaci et al. [40] presented a fuzzy similarity-based approach
to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate
defects. The present scheme can be further formulated with the method proposed by [40].

However, the fractional-order and integer-order mathematical models have been developed to ana-
lyze a large number of randomized order derivatives, providing an additional level of flexibility in se-
lecting; see [41–44]. The stochastic DEs might offer a significant level of reliability, and when linked to
deterministic systems, they encompass the comprehensive spectra of an individual cohort and produce
a highly precise result as compared to a classical model. We need to execute the simulations repeatedly
and detect commonalities in the projected scenarios because the results of every inquiry in a stochastic
procedure differ from the preceding [46–48]. According to several researchers, a non-linear recurrence
projection for stochastic processes is one of the epidemiological techniques that has been examined for
stability evaluation. In fact, random events are prevalent worldwide. Systems frequently experience
random disturbances. Various studies have been conducted on stochastic dynamics; for example, a
wide range of scientific theories, including meteorology, accounting, biology, and telecommunication
systems, frequently exhibit randomized fluctuations with long-term dependency. In order to analyze
fractional stochastic processes, fractional Brownian motion (BM) employing the Hurst index H(1/2, 1)
has been proposed as an alternative to classical BM [49]. Kerboua et al. [50] looked into stochastic
fractional DEs with perturbed regulatory frameworks that involved fractional BM. Pei and Xu [51]
investigated the non-Lipschitz stochastic DEs driven by fractional BM. In 2021, authors [52] presented
a novel notion for analyzing and predicting the transmission of COVID-19 throughout Africa and Eu-
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rope using stochastic and deterministic methods. Alkahtani and Koca [53] contemplated the fractional
stochastic SIR system within the fractional calculus technique. Rashid et al. [54] contemplated the
stochastic fractal-fractional tuberculosis model via a non-singular kernel with random densities.

Owing to the aforesaid propensity, we intend to suggest a novel fractal-fractional stochastic immune
effector response to viral infections while taking the notion of a fluctuating population with white
noise into consideration. We intend to divide the entire population into five distinct groups based
on the severity of viral infection. Furthermore, several qualitative analyses are conducted, such as
the existence and distinctiveness of the positive solution in the stochastic immune effector responses
considering a Holling type II functionality reaction. Perceptions from these systems are distilled in
this assessment, which also contrasts them with test findings. Numerical results are presented by
employing the revolutionary technique proposed by Atangana and Araz [52] in the fractal-fractional
derivative sense. Graphical illustrations are presented with low random densities, incorporating the
fractal-dimension and fractional-order. In a nutshell, we presented the simulation findings with and
without control.

The rest of this paper is structured as follows. Section 2 gives some foundational information on F-F
operators in the ABC sense, formulations of stochastic perturbation and the fractional viral infection
model construction. In Section 3, we demonstrate the model’s configuration. Section 4 exhibits the
solution’s existence-uniqueness, as well as ergodicity and conducts a stationary distribution study on
the proposed model. The unique result for the F-F viral model is established utilizing the Atangana-
Baleanu sense and standard Brownian motion in Section 5. Furthermore, the discussion of numerical
simulations utilizing the novel numerical scheme is provided to analyze the behaviors of the considered
model. Finally, we give the conclusion of our paper in the last section.

2. Preliminaries

Before advancing on to the formal description, it is imperative to study certain fundamental F-F
operator concepts. Take into account the parameters provided in [39] as well as the functional v(t1),
which is continuous and fractal differentiable on [c, d] with fractal-dimension ℘ and fractional-order
α.

Definition 2.1. ( [39]) The FF operator of v(t̄) involving the index law kernel in the perspective of
Riemann–Liouville (RL) can be described as follows for t̄ ∈ [0, 1]:

FFPDα,℘

0,t̄ (v(t̄)) =
1

Γ(u − α)
d

dt̄℘

t̄∫
0

(t̄ − w)u−α−1v(w)dw, (2.1)

where dv(w)
dw℘ = lim

t̄7→κ

v(t̄)−v(κ)
t̄℘−κ℘ and u − 1 < α, ℘ ≤ u ∈ N.

Definition 2.2. ( [39]) The FF operator of v(t̄) involving the exponential decay kernel in the terms of
RL can be described as follows for α ∈ [0, 1]:

FFEDα,℘

0,t̄ (v(t̄)) =
M(α)
1 − α

d
dt̄℘

t̄∫
0

exp
(
−

α

1 − α
(t̄ − κ)

)
v(κ)dκ, (2.2)

such thatM(0) = M(1) = 1 containing α > 0, ℘ ≤ u ∈ N.
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Definition 2.3. ( [39]) The FF operator of v(t̄) involving the generalized Mittag-Leffler kernel in the
perspective of RL can be described as follows for α ∈ [0, 1]:

FFMDα,℘

0,t̄ (v(t̄)) =
ABC(α)

1 − α
d

dt̄℘

t̄∫
0

Eα

(
−

α

1 − α
(t̄ − κ)

)
v(κ)dκ, (2.3)

such that ABC(α) = 1 − α + α
Γ(α) involving α > 0, ℘ ≤ 1 ∈ N.

Definition 2.4. ( [39]) The corresponding F-F integral formulae of (2.1) is described as:

FFPJα0,t̄(v(t̄)) =
℘

Γ(α)

t̄∫
0

(t̄ − κ)α−1κ℘−1v(κ)dκ. (2.4)

Definition 2.5. ( [39]) The corresponding F-F integral formulae of (2.2) is described as:

FFEJα0,t̄(v(t̄)) =
α℘

M(α)

t̄∫
0

κ℘−1v(κ)dκ +
℘(1 − α)t̄℘−1v(t̄)

M(α)
. (2.5)

Definition 2.6. ( [39]) The corresponding F-F integral formulae of (2.3) is described as:

FFMJα0,t̄(v(t̄)) =
α℘

ABC(α)

t̄∫
0

κ℘−1(t̄ − κ)α−1v(κ)dκ +
℘(1 − α)t̄℘−1v(t̄)

ABC(α)
. (2.6)

Definition 2.7. ( [38]) Let v ∈ H1(c,d), c < d and the Atangana-Baleanu fractional derivative
operator is described as:

ABC
c Dα

t̄ (v(t̄)) =
ABC(α)

1 − α

t̄∫
c

v′(κ)Eα

(
−
α(t̄ − κ)α

1 − α

)
dκ, α ∈ [0, 1], (2.7)

where ABC(α) represents the normalization function.

Definition 2.8. ( [55]) The Gaussian hypergeometric function 2F1, characterized as

2F1(y1, y2; y3, y4) =
1

B(y2, y3 − y2)

1∫
1

t̄y2−1(1 − t̄)y3−y2−1(1 − y4t̄)−y1dt̄, (y3 > y2 > 0, |y1| < 1), (2.8)

where B(y1, y2) =
Γ(y1)Γ(y2)
Γ(y1+y2) and Γ(y1) =

∞∫
0

exp(−t̄)t̄y1dt̄ is the Gamma function.
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3. Model configuration

Here, the immunological mechanism is necessary for the highly contagious viral replication. If
infectious processes are adequately described, the infection and the therapeutic medications employed
to address it can be comprehended. Lymphocytes are vicariously liable for specialization and retention
in responsive immunological systems. B cells and T cells are the two primary categories of lympho-
cytes. T cells have the ability to identify and eliminate contaminated organisms, whereas B cells are
responsible for producing antigens that can neutralize pathogens. Immune systems, including CTL and
antigen-response, have been examined in terms of their impact [56, 57]. The impact of CTL reactions
and cytoplasmic latencies has been considered by a few other scientists as well [58]. Murase et al. [59]
presented the mathematical framework that shows how adaptive immunity affects viral transmission as
follows: 

U(t̄)
dt̄ = Λ − ςU(t̄) − λ11U(t̄)F(t̄) − λ22U(t̄)A(t̄),

A(t̄)
dt̄ = λ1U(t̄)F(t̄) + λ2U(t̄)A(t̄) − δA(t̄),

F(t̄)
dt̄ = ϕA(t̄) − ν2F(t̄) − ξF(t̄)Q(t̄),

Q(t̄)
dt̄ = χF(t̄)Q(t̄) − ζQ(t̄)A(t̄) − δA(t̄),

(3.1)

The system (3.1) based on unrestricted infections F(t̄), unaffected target cells U(t̄), productively
infectious specific cells A(t̄) and antibodies/B tissue Q(t̄). The productivity Λ of the infectious organ-
isms U(t̄) and fatality rate ς are both constant. The incidence of the disease by uncontrolled pathogen is
λ11, and uncontrolled bacteria become constructively contaminated at a rate of λ22 for each of the two
individuals. The percentage of viral components that died at δ, ν2 and ζ released pathogens, antibodies,
and B tissues, respectively. When tissues are actively infested, individual viral particles are created at
a speed of ϕ, where is the ratio ξ at which responses can eliminate the pathogen. The frequency of
responses that are active versus the pathogen is χ.

However, the persistent infectious factor is applied to framework (3.1) in this article as an improve-
ment. We suppose that the incidence at which a Holling type II functioning reaction develops is that
the unaffected cell U(t̄) becomes contaminated by a neutral pathogen F(t̄) or by virus is transmitted
organism A(t̄) at the rate λ1U(t̄)F(t̄)

1+F(t̄) +
λ2U(t̄)A(t̄)

1+A(t̄) response. The rates of pathogen to tissue infection and
tissue to cell propagation are indicated by λ1 > 0 and λ2 > 0, , respectively, see [60]. We further
estimate that the amounts of contamination that result in response times and efficiency are 1 − φ and
φ ∈ (0, 1), respectively. In addition, we included the effect of unpredictability within the host by in-
jecting nonlinear disturbances on the spontaneous mortality rate, employing white noise throughout
each expression in an attempt to depict a more accurate state of pathogen progression. As a result, the
modified framework is specified:

dU(t̄) =
(
Λ − ςU(t̄) − λ1U(t̄)S(t̄)

1+S(t̄) −
λ2U(t̄)A(t̄)

1+A(t̄)

)
dt̄ + ρ1U(t̄)dB1(t̄),

dS(t̄) =
(
(1 − φ)

(
λ1U(t̄)S(t̄)

1+S(t̄) +
λ2U(t̄)A(t̄)

1+A(t̄)

)
− (ν1 + σ)S(t̄)

)
dt̄ + ρ2S(t̄)dB2(t̄),

dA(t̄) =
(
φ
(
λ1U(t̄)S(t̄)

1+S(t̄) +
λ2U(t̄)A(t̄)

1+A(t̄)

)
+ σS(t̄) − δA(t̄)

)
dt̄ + ρ3A(t̄)dB3(t̄),

dF(t̄) =
(
ϕA(t̄) − ν2F(t̄) − ξF(t̄)Q(t̄)

)
dt̄ + ρ4F(t̄)dB4(t̄),

dQ(t̄) =
(
χF(t̄)Q(t̄) − ζQ(t̄)

)
dt̄ + ρ5Q(t̄)dB5(t̄),

(3.2)
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subject to initial conditions (ICs) U(0) > 0, S(0) > 0, A(0) > 0, F(0) > 0, Q(0) > 0. Moreover,
the term S(t̄) stands for the concentrations of contaminated tissues in the predictive phase at time
t̄. ν1 be the death rate of S(t̄), the underlying contamination becomes prolific at the rate σ. Also,
ρ2
ι , ι = 1, ..., 5 are intensities of standard Gaussian white noise and Bι, ι = 1, ..., 5 are independent

standard Brownian motion (BM). The underlying ideas of probability theory and stochastic differential
equations are described as: let (Ω,F, {F}t̄≥0, P) be a complete probability space using filtration such that
{F}t̄≥0 admits the basic requirements. For further information on Itô’s technique, see [61]. However,
the deterministic model has certain limitations because it cannot consider demographic stochasticity,
which are important features of any natural system. Due to the influence of environmental noise,
population density usually does not stabilize at a fixed value, but fluctuates around a certain average
value. Nowadays, stochastic biological modeling has attracted great interest from researchers all over
the world [20–22].

4. Existence-uniqueness of non-negative solution

In what follows, we provide the accompanying result to identify the stochastic model’s (3.2) exis-
tence and uniqueness.

Theorem 4.1. For χ < ξ < ζ, λ1ϕ < ν2 + χ, 1 + λ2 <
δ
ϕ
, the solution of the system (3.2) (U(0),S(0),

A(0),F(0),Q(0)) is unique for t̄ ≥ 0 underlying ICs (U(0),S(0),A(0),F(0),Q(0)) ∈ R5
+. Also, the

solution will probably stay in R5
+ having unit probability, i,e., (U(0),S(0),A(0),F(0),Q(0)) ∈ R5

+, ∀ t̄ >
0 almost surely (a.s).

Proof. Briefly, if the local Lipschitz criterion is fulfilled by the components of the scheme (3.2).
Thus, (3.2) has an unique local solution (U(t̄),S(t̄),A(t̄),F(t̄),Q(t̄)) on [0, τe], where τe is the expo-
sition duration. Then, we illustrate that τe = ∞. Let us apply the same methodology used in [48] to
prove the result. Our intention is to define a non-negative mapping C2 as H : R5

+ 7→ R+ such that
lim
η7→∞

(U(t̄),S(t̄),A(t̄),F(t̄),Q(t̄)) ∈ R5
+\Υη infH(U,S,A,F,Q) = ∞ and LH(U,S,A,F,Q) ≤ k, where

Υη =
(
1/η, η

)
×

(
1/η, η

)
×

(
1/η, η

)
×

(
1/η, η

)
×

(
1/η, η

)
and k is non-negative constant.

Now, considering two positive constants values ε from (0, 1) and T must exist such that

P[T ≥ τ∞] > ε. (4.1)

Introducing a mappingH : R5
+ 7→ R+ as:

H(U,S,A,F,Q) = U + S + A + F + Q − 5 − (ln U + ln S + ln A + ln F + ln Q). (4.2)

This stored procedure non-negativity is shown by examining at %− 1 ln %, ∀% > 0. Suppose that k0 ≤ k

and T > 0. The Itô’s formula can be used to acquire

dH(U,S,A,F,Q) = LH(U,S,A,F,Q)dt̄ + ρ1(U − 1)dB1(t̄) + ρ2(S − 1)dB2(t̄)
+ρ3(A − 1)dB3(t̄) + ρ4(F − 1)dB4(t̄) + ρ5(Q − 1)dB5(t̄). (4.3)
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It follows that

LH(U,S,A,F,Q) =
(
1 −

1
U

)(
Λ − ςU(t̄) −

λ1U(t̄)S(t̄)
1 + S(t̄)

−
λ2U(t̄)A(t̄)

1 + A(t̄)

)
+
(
1 −

1
S
)(

(1 − φ)
(λ1U(t̄)S(t̄)

1 + S(t̄)
+
λ2U(t̄)A(t̄)

1 + A(t̄)

)
− (ν1 + σ)S(t̄)

)
+
(
1 −

1
A

)(
φ
(λ1U(t̄)S(t̄)

1 + S(t̄)
+
λ2U(t̄)A(t̄)

1 + A(t̄)

)
+
(
1 −

1
F
)(
ϕA(t̄) − ν2F(t̄) − ξF(t̄)Q(t̄)

)
+
(
1 −

1
Q

)(
χF(t̄)Q(t̄) − ζQ(t̄)

)
≤

1
2

(ρ2
1 + ρ2

2 + ρ2
3 + ρ2

4 + ρ2
5) + Λ + ς + ν1 + σ1 + δ + ν2 + ζ

+
(
(ξ − ζ) + (χ − ξ)F

)
Q + (λϕ − (ν2 + χ))F + ((λ2 + 1)ϕ − δ)A. (4.4)

Utilizing the given hypothesis, there exists a non-negative constant η such that LH < η.

Therefore,

U
[
H

(
U(τη ∧ T),S(τη ∧ T),A(τη ∧ T),F(τη ∧ T),Q(τη ∧ T)

)]
≤ H

(
U(0),S(0),A(0),F(0),Q(0)

)
+ U

[ ∫ τη∧T

0
ηdt̄

]
≤ H

(
U(0),S(0),A(0),F(0),Q(0)

)
+ ηT. (4.5)

Inserting Ωη = {τη ≤ T} for η ≥ η1 and by (4.1) we have P(Ωη) ≥ ε. Observe that for every ω from Ωη

there exist at least one U(τη, ω),S(τη, ω),A(τη, ω),F(τη, ω),Q(τη, ω) that yields 1/η or η.Consequently,
H

(
U(τη),S(τη),A(τη),F(τη),Q(τη)

)
≥

(
1/η − 1 + ln η

)
∧ U(η − 1 − ln η).

In view of (4.1) and (4.5), we can express

H
(
U(0),S(0),A(0),F(0),Q(0)

)
+ ηT ≥ U

[
1Ω(ω)H

(
U(τη),S(τη),A(τη),F(τη),Q(τη)

)]
≥ ε

(
1/η − 1 + ln η

)
∧ U(η − 1 − ln η). (4.6)

The indicating mapping of ω is denoted as 1Ω(ω) that approaches to∞, the contradiction

∞ > H
(
U(0),S(0),A(0),F(0),Q(0)

)
+ ηT = ∞

reveals itself, proving that τ∞ = ∞.

4.1. Ergodicity and Stationary distribution (ESD)

Now, we review and examine the model’s (3.2) stationary distribution outcomes, which show that
the infections are eliminated or enduring.
Suppose there be a regular Markov technique in Rn+ for which the behaviour is as below:

dΦ(t̄) = b1(Φ)dt̄ +

u∑
r1

ζr1dΨr1(t̄).
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The diffusion matrix takes the form

A(Φ) =
[
ai j(φ)

]
, ai j(φ) =

u∑
r1=1

ζ i
r1

(φ)ζr1
j (φ).

Lemma 4.1. ( [62]) Suppose there is a unique stationary distribution technique Φ(t̄). If there is a
bounded region involving regular boundary such that S , S̄ ∈ RdS̄ closure S̄ ∈ Rd satisfies the follow-
ing:
(a) The smallest eigenvalue for A(t̄) is bounded away from (0, 0) for the open region S having neigh-
bourhood.
(b) For ψ ∈ RdS , the mean time τ is bounded and for every compact subset K ⊂ Rn, supψ∈k S ψτ < ∞.

Therefore, f1(.) is an integrable mapping containing measure π, then

P
(

lim
T 7→∞

1
T

T∫
0

f1(Φψ(t̄))dt̄ =

∫
Rd

f1(ψ)π(dψ)
)

= 1, ∀ ψ ∈ Rd.

Theorem 4.2. For σ̂ = ν1 + σ +
ρ2

2
2 , δ̂ = δ +

ρ2
3

2 , ν̂2 = ν2 +
ρ2

4
2 , then assume that Rs

0 := Λσϕλ1(1−φ)
ςδ̂σ̂

> 1,
then for any ICs exists in R5

+, the system has a unique ESD π(.).

Proof. The diffusive matrix for system (3.2) is computed as follows:

A =


ρ2

1U2 0 0 0 0
0 ρ2

2S2 0 0 0
0 0 ρ2

3A2 0 0
0 0 0 ρ2

4F2 0
0 0 0 0 ρ2

5U2


.

This proves that the criteria (a) in Lemma 4.1 is applicable for any compact subset of R5
+. In view of

mapping C2 defined asH : R5
+ 7→ R+. Thus, we have

H(U,S,A,F,Q) :=M
(

ln
1
U

+ `1 ln
1
S

+ `2 ln
1
A

+ `3 ln
1
F

+ ln
1
Q

)
+ ln

1
U

+ ln
1
S

+ ln
1
A

+ ln
1
F

+
(U + S + A + F + Q)θ+1

θ + 1
=MH1 +H2 +H3 +H4 +H5 +H6,

where θ ∈ [0, 1], `1 =
Λλ1σϕ(1−φ)

σ̂2âν̂2
, `2 =

Λλ1σϕ(1−φ)
σ̂2â2ν̂2

, `3 =
Λλ1σϕ

σ̂âν̂2
2 fulfilling c − θ

2 (ρ2
1 ∨ ρ

2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5) > 0

andM > 0, admitting the assumption −Mν2 + N1 ≤ −2 and ν2 = ς(Rs
0 − 1) > 0.

This shows that H(U,S,A,F,Q) is continuous as well as it tends to ∞. So that (U,S,A,F,Q) ap-
proaches to R5

+ and ‖(U,S,A,F,Q)‖ 7→ ∞. Also,H have ICs that lies in R5
+.

Again, in view of mapping C2 defined asH : R5
+ 7→ R+. Thus, we have

H̄(U,S,A,F,Q) = HU,S,A,F,Q −H(U(0),S(0),A(0),F(0),Q(0)).
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Considering Itô’s technique L on the mappings H1, ...,H6 and utilizing the given hypothesis such
that c = max{ς, ν1, δ, ν2, ζ}, we have

LH1 ≤ −
Λ

U
−
`1

S
(1 − φ)λ1UF −

σ`2S
A
−
ϕA`3

F
+ ς + λ2A + `1(ν1 + σ) + δ`2 + ν2`3

+ξQ`3 − (χ − λ1)F + ζ +
1
2

(ρ2
1 + `1ρ

2
2 + `2ρ

2
3 + `3ρ

2
4 + ρ2

4)

≤ −F +
ρ2

1

2
+ ζ + ρ2

5 + λ2A + ξ`3Q. (4.7)

Analogously, we have

LH2 ≤ −
Λ

U
+ ς + λ1F + λ2A +

ρ2
1

2
,

LH3 = −
1
S

(1 − φ)
(λ1UF
1 + F

+
λ2UA
1 + A

)
+ ν1 + σ +

ρ2
2

2
,

LH4 = −
φλ1UF

A(1 + F)
−
φλ2U
1 + A

−
σS
A

+ δ +
ρ2

3

2
,

LH5 = −
ϕA
F

+ ν2 + ξQ +
ρ2

4

2
,

LH5 ≤ N2 −
1
2

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(Uθ+1,Sθ+1,Aθ+1,Fθ+1,Qθ+1), (4.8)

whereN2 = sup
(U,S,A,F,Q)∈R5

+

{
Λ(U+S+A+F+Q)θ− 1

2

(
c1−

θ
2 (ρ2

1∨ρ
2
2∨ρ

2
3∨ρ

2
4∨ρ

2
5)
)
(U+S+A+F+Q)θ+1

}
< ∞.

Utilizing (4.7) and (4.8), we have

LH̄ ≤
−Λ

U
−MF + (M`3 + 1)ξQ −

1
S

(1 − φ)λ1UF −
φλ2U
1 + A

−
ϕA
F

−
1
2

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(Uϑ+1 + Sϑ+1 + Aϑ+1 + Fϑ+1 + Qϑ+1) + ς

+(M + 1)
ρ2

1

2
+Mζ +M

ρ2
5

2
+ (M + 1)λ2A + δ + ν2 + λ1F +N2 + ν1 + σ

+
ρ2

2

2
+
ρ2

3

2
+
ρ2

4

2
. (4.9)

For ε > 0, we construct the following set

D =
{
(U,S,A,F,Q) ∈ R5

+ : U ∈ [ε, 1/ε],S ∈ [ε5, 1/ε5],A ∈ [ε2, 1/ε2],F ∈ [ε3, 1/ε3],Q ∈ [ε, 1/ε]
}
.

(4.10)

We can validate Lemma 4.1 in order to demonstrate that LH̄ ≤ −1 for (U,S,A,F,Q) ∈
R5

+\D and R5
+\D =

⋃10
ι=1Dι, where

D1 =
{
(U,S,A,F,Q) ∈ R5

+ : U ∈ (0, ε)
}
,

D2 =
{
(U,S,A,F,Q) ∈ R5

+ : A ∈ (0, ε5),U ≥ ε,F ≥ ε3},
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D3 =
{
(U,S,A,F,Q) ∈ R5

+ : A ∈ (0, ε2), U ≥ ε
}
,

D4 =
{
(U,S,A,F,Q) ∈ R5

+ : F ∈ (0, ε3),A ≥ ε2},
D5 =

{
(U,S,A,F,Q) ∈ R5

+ : Q ∈ (0, ε)
}
,

D6 =
{
(U,S,A,F,Q) ∈ R5

+ : U > 1/ε
}
,

D7 =
{
(U,S,A,F,Q) ∈ R5

+ : S > 1/ε5},
D8 =

{
(U,S,A,F,Q) ∈ R5

+ : A > 1/ε2},
D9 =

{
(U,S,A,F,Q) ∈ R5

+ : F > 1/ε3},
D10 =

{
(U,S,A,F,Q) ∈ R5

+ : Q > 1/ε
}
. (4.11)

Case (a) If (U,S,A,F,Q) ∈ D1, then by (4.9), we find

LH̄ ≤
−Λ

U
+ (M`3 + 1)ξQ −

1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(Uϑ+1 + Sϑ+1 + Aϑ+1

+Fϑ+1 + Qϑ+1) + ς + (M + 1)
ρ2

1

2
+Mζ +M

ρ2
5

2
+ (M + 1)λ2A + δ + ν2

+λ1F +N2 + ν1 + σ +
ρ2

2

2
+
ρ2

3

2
+
ρ2

4

2

≤ −
Λ

ε
+M1 (4.12)

If we choose a sufficiently small ε > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D1.

Case (b) If (U,S,A,F,Q) ∈ D2, then by (4.9), we find

LH̄ ≤
−1
S

(1 − φ)λ1UF +M1

≤
−1
ε

(1 − φ)λ1 +M1

If we choose a sufficiently small ε5 > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D2.

Case (c) If (U,S,A,F,Q) ∈ D3, then by (4.9), we find

LH̄ ≤
−φλ2U
1 + A

+M1

≤
−φλ2ε

1 + ε2 +M1.

If we choose a sufficiently small ε2 > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D3.

Case (d) If (U,S,A,F,Q) ∈ D4, then by (4.9), we find

LH̄ ≤
−ϕA

F
+M1

≤
−ϕ

ε
+M1.

If we choose a sufficiently small ε > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D4.
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Case (e) If (U,S,A,F,Q) ∈ D5, then by (4.9), we find

LH̄ ≤ −MF + (M`3 + 1)ξQ +N1

≤ −MF + (M`3 + 1)ξε +N1.

If we choose a sufficiently small ε > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D4.

Case (f) If (U,S,A,F,Q) ∈ D6, then by (4.9), we find

LH̄ ≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(U)θ+1 +M1

≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
) 1
ε(θ+1) +M1.

If we choose a sufficiently small ε > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D6.

Case (g) If (U,S,A,F,Q) ∈ D7, then by (4.9), we find

LH̄ ≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(S)θ+1 +M1

≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
) 1
ε5(θ+1) +M1.

If we choose a sufficiently small 1/ε5 > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D7.

Case (h) If (U,S,A,F,Q) ∈ D8, then by (4.9), we find

LH̄ ≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(A)θ+1 +M1

≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
) 1
ε2(θ+1) +M1.

If we choose a sufficiently small 1/ε2 > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D8.

Case (i) If (U,S,A,F,Q) ∈ D9, then by (4.9), we find

LH̄ ≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(F)θ+1 +M1

≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
) 1
ε3(θ+1) +M1.

If we choose a sufficiently small 1/ε3 > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D9.

Case (j) If (U,S,A,F,Q) ∈ D10, then by (4.9), we find

LH̄ ≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
)
(Q)θ+1 +M1

≤ −
1
4

(
c1 −

θ

2
(ρ2

1 ∨ ρ
2
2 ∨ ρ

2
3 ∨ ρ

2
4 ∨ ρ

2
5)
) 1
ε(θ+1) +M1.

If we choose a sufficiently small 1/ε > 0, then we get LH̄ < 0 for each (U,S,A,F,Q) ∈ D10.

As a result of the foregoing explanation, a ε > 0 exists such that LH̄(U,S,A,F,Q) < 0 ∀
(U,S,A,F,Q) ∈ R5

+. The unique ESD of the system (3.2) is predicated on Lemma 4.1. This com-
pletes the proof.
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4.2. Extinction of the model

This part defines the objectives for a virus’s systemic elimination (3.1). Before proving the key
findings, let’s take a closer look at a key premise. Suppose

〈Φ(t̄)〉 =
1
t̄

t̄∫
0

φ(r1)dr1. (4.13)

Theorem 4.3. Suppose there is a solution of the system (3.1) (U(t̄),S(t̄),A(t̄),F(t̄),Q(t̄)) having ICs
lies in R5

+. If

R̃s
0 :=

3(λ1 + λ2)Λ

ς
(
(ν1 +

ρ2
2

2 ) ∧ ((δ − ϕ) +
ρ2

3
2 ) ∧ (ν2 +

ρ2
4

2 )
) < 1

=⇒ lim
t̄7→∞

1
t̄

t̄∫
0

U($)d$ ≤
Λ

ς
, lim

t̄7→∞
S(t̄) = 0, lim

t̄7→∞
A(t̄) = 0, lim

t̄7→∞
F(t̄) = 0

almost surely.

Proof. Under the hypothesis of Theorem 4.1, model (3.2) has non-negative solution,

dU(t̄) ≤ (Λ − ςU)dt̄ + ρ1UdB1(t̄).

Assume the stochastic DE of the aforementioned system

dU1(t̄) ≤ (Λ − ςU1)dt̄ + ρ1U1dB1(t̄), U1(0) = U(0) > 0,

we have lim
t̄7→∞

1
t̄

t̄∫
0

U($)d$ ≤ Λ
ς

(a.s).

Applying the result of [48], gives U(t̄) ≤ U1(t̄) (a.s). Then

lim
t̄7→∞

1
t̄

t̄∫
0

U($)d$ ≤ lim
t̄7→∞

1
t̄

t̄∫
0

U1($)d$ =
Λ

ς
(a.s).

For ϕ < δ and introducing ln(S(t̄) + A(t̄) + F(t̄)) and implement the Itô’s technique, we have

d
(

ln(S(t̄) + A(t̄) + F(t̄))
)

=
1

S(t̄) + A(t̄) + F(t̄)

(
λ1UF
1 + F

+
λ2UA
1 + A

− ν1S − (δ − ϕ)A

−ν2F − ξFQ
)
dt̄ +

ρ2S
S + A + F

dB2(t̄) +
ρ3A

S + A + F
dB3(t̄)

+
ρ4F

S + A + F
dB2(t̄) −

1
2(S + A + F)2 (ρ2

2S2 + ρ2
3A2 + ρ2

4F2)dt̄

≤
ρ2S

S + A + F
dB2(t̄) +

ρ3A
S + A + F

dB3(t̄) +
ρ4F

S + A + F
dB2(t̄)

+(λ1 + λ2)Udt̄ −
1
3

((
(ν1 +

ρ2
2

2
) ∧ ((δ − ϕ) +

ρ2
3

2
) ∧ (ν2 +

ρ2
4

2
)
))

dt̄.

(4.14)
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Applying integration from 0 to t̄ and dividing by t̄, we have

ln
(
S(t̄) + A(t̄) + F(t̄)

)
t̄

−
ln

(
S(0) + A(0) + F(0)

)
t̄

≤
λ1 + λ2

t̄

t̄∫
0

U(%)d% −
1
3

((
(ν1 +

ρ2
2

2
) ∧ ((δ − ϕ) +

ρ2
3

2
) ∧ (ν2 +

ρ2
4

2
)
))

+
ρ2

t̄

t̄∫
0

dB2(%)
S + A + F

+
ρ3

t̄

t̄∫
0

dB3(%)
S + A + F

+
ρ4

t̄

t̄∫
0

dB4(%)
S + A + F

≤
1
3

((
(ν1 +

ρ2
2

2
) ∧ ((δ − ϕ) +

ρ2
3

2
) ∧ (ν2 +

ρ2
4

2
)
))

(R̃s
0 − 1) < 0 (a.s)

that yields lim
t̄7→∞

S(t̄) = 0, lim
t̄7→∞

A(t̄) = 0, lim
t̄ 7→∞

F(t̄) (a.s).

5. Numerical experiment for fractal–fractional system

The modeling framework helps us understand and interpret experimental data on immune responses
against viral infection model (5.1). The role of the fractal-fractional operator in the Atangana-Baleanu
fractional derivative sense and antibodies for the resolution of viral infection is debated by utilizing
the scheme proposed in [52]. Studies of the acute phase of the infection showed that humans who
cleared the virus from their blood developed strong and sustained CTL responses [57]. Here, we
illustrate the fractal-fractional derivative for the classical derivative formulation stated in (3.1). The
fractal-fractional version in the sense of a generalized Mittag-Leffler function is described as

FFM
0 Dα,℘

t̄ U(t̄) =
(
Λ − ςU(t̄) − λ1U(t̄)S(t̄)

1+S(t̄) −
λ2U(t̄)A(t̄)

1+A(t1)

)
dt1 + ρ1G1(t1,U)dB1(t̄),

FFM
0 Dα,℘

t̄ S(t̄) =
(
(1 − φ)

(
λ1U(t̄)S(t̄)

1+S(t̄) +
λ2U(t̄)A(t̄)

1+A(t̄)

)
− (ν1 + σ)S(t̄)

)
dt̄ + ρ2G2(t̄,S)dB2(t̄),

FFM
0 Dα,℘

t̄ A(t̄) =
(
φ
(
λ1U(t̄)S(t̄)

1+S(t̄) +
λ2U(t̄)A(t̄)

1+A(t̄)

)
+ σS(t̄) − δA(t̄)

)
dt̄ + ρ3G3(t̄,A)dB3(t̄),

FFM
0 Dα,℘

t̄ F(t̄) =
(
ϕA(t̄) − ν2F(t̄) − ξF(t̄)Q(t̄)

)
dt̄ + ρ4G4(t̄,F)dB4(t̄),

FFM
0 Dα,℘

t̄ Q(t̄) =
(
χF(t̄)Q(t̄) − ζQ(t̄)

)
dt̄ + ρ5G5(t̄,Q)dB5(t̄).

(5.1)

For tn+1 = (n + 1)∆t̄, then we transform these mappings by their polynomials as follows:

Un+1 = U0 +
(1 − α)

ABC(α)
℘t̄℘−1
n+1


U∗

(
t̄n+1,Up

n+1,A
p
n+1,F

p
n+1

)
+ρ1G1

(
t̄n+1,Up

n+1

)(
B1(t̄n+2) − B1(t̄n+1)

) 
+

α℘

ABC(α)Γ(α)

n−1∑
κ=0




U∗
(
t̄κ+1,Uκ+1,Aκ+1,Fκ+1

)
J

α,℘
1,κ

+
U∗

(
t̄κ+1 ,Uκ+1 ,Aκ+1 ,Fκ+1

)
−U∗

(
t̄κ ,Uκ ,Aκ ,Fκ

)
~

J
α,℘
2,κ

+
U∗

(
t̄κ+1 ,Uκ+1 ,Aκ+1 ,Fκ+1

)
−2U∗

(
t̄κ ,Uκ ,Aκ ,Fκ

)
+U∗

(
t̄κ−1 ,Uκ−1 ,Aκ−1 ,Fκ−1

)
~

J
α,℘
3,κ



+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





ρ1G1
(
t̄κ+1,Uκ+1

)(
B1(t̄κ+1) − B1(t̄κ)

)
J

α,℘
1,κ

+

{
ρ1G1

(
t̄κ+1,Uκ+1

)(
B1(t̄κ+1) − B1(t̄κ)

)
−ρ1G1

(
t̄κ,Uκ

)(
B1(t̄κ) − B1(t̄κ−1)

)}
J

α,℘
2,κ

+

{
ρ1G1

(
t̄κ+1 ,Uκ+1

)(
B1(t̄κ+1)−B1(t̄κ)

)
−2ρ1G1

(
t̄κ ,Uκ

)(
B1(t̄κ)−B1(t̄κ−1)

)
~

−
ρ1G1

(
t̄κ−1 ,Uκ−1

)(
B1(t̄κ−1)−B1(t̄κ−2)

)
~

}
J

α,℘
3,κ


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+
α℘

ABC(α)Γ(α)





U∗
(
t̄n+1,Up

n+1,A
p
n+1,F

p
n+1

)
J

α,℘
1,n

+U∗
(
t̄n+1,Up

n+1,A
p
n+1,F

p
n+1

)
J

α,℘
2,n

−U∗
(
t̄n,Un,An,Fn

)
J

α,℘
2,n

+

{
U∗

(
t̄n+1 ,U

p
n+1 ,A

p
n+1 ,F

p
n+1

)
−2U∗

(
t̄n ,Un ,An ,Fn

)
2~

}
J

α,℘
3,n

+
U∗

(
t̄n−1 ,Un−1 ,An−1 ,Fn−1

)
2~2 J

α,℘
3,n

+ρ1G1
(
t̄n+1,Up1

n+1

)(
B1(t̄n+1) − B1(t̄n)

)
J

α,℘
1,n

+ρ1G1
(
t̄n+1,Up1

n+1

)(
B1(t̄n+1) − B1(t̄n)

)
J

α,℘
2,n

−ρ1G1
(
t̄n,Up1

n

)(
B1(t̄n) − B1(t̄n−1)

)
J

α,℘
2,n

+
ρ1G1

(
t̄n+1 ,U

p1
n+1

)(
B1(t̄n+1)−B1(t̄n)

)
2~ J

α,℘
3,n

−2 ρ1G1
(

t̄n ,U
p1
n

)(
B1(t̄n)−B1(t̄n−1)

)
2~ J

α,℘
3,n

+
ρ1G1

(
t̄n−1 ,U

p1
n−1

)(
B1(t̄n−2)−B1(t̄n−2)

)
2~ J

α,℘
3,n



,

Sn+1 = S0 +
(1 − α)

ABC(α)
℘t̄℘−1
n+1


S∗

(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
+ρ2G2

(
t̄n+1,Sp

n+1

)(
B2(t̄n+2) − B2(t̄n+1)

) 

+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





S∗
(
t̄κ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1

)
J

α,℘
1,κ

+
S∗
(

t̄κ+1 ,Uκ+1 ,Sκ+1 ,Aκ+1 ,Fκ+1
)
−S∗

(
t̄κ ,Uκ ,Sκ ,Aκ ,Fκ

)
~

J
α,℘
2,κ

+

(
S∗
(

t̄κ+1 ,Uκ+1 ,Sκ+1 ,Aκ+1 ,Fκ+1
)
−2S∗

(
t̄κ ,Uκ ,Sκ ,Aκ ,Fκ

)
~

+
S∗
(

t̄κ−1 ,Uκ−1 ,Sκ−1 ,Aκ−1 ,Fκ−1
)

~

)
J

α,℘
3,κ



+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





ρ2G2
(
t̄κ+1,Sκ+1

)(
B2(t̄κ+1) − B2(t̄κ)

)
J

α,℘
1,κ

+

{
ρ2G2

(
t̄κ+1,Sκ+1

)(
B2(t̄κ+1) − B2(t̄κ)

)
−ρ2G2

(
t̄κ,Sκ

)(
B2(t̄κ) − B2(t̄κ−1)

)}
J

α,℘
2,κ

+

{
ρ2G2

(
t̄κ+1 ,Sκ+1

)(
B2(t̄κ+1)−B2(t̄κ)

)
−2ρ2G2

(
t̄κ ,Sκ

)(
B2(t̄κ)−B2(t̄κ−1)

)
~

−
ρ2G2

(
t̄κ−1 ,Sκ−1

)(
B2(t̄κ−1)−B2(t̄κ−2)

)
~

}
J

α,℘
3,κ



+
α℘

ABC(α)Γ(α)





S∗
(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
J

α,℘
1,n

+S∗
(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
J

α,℘
2,n

−S∗
(
t̄n,Un,Sn,An,Fn

)
J

α,℘
2,n

+

{
S∗
(

t̄n+1 ,U
p
n+1 ,S

p
n+1 ,A

p
n+1 ,F

p
n+1

)
−2S∗

(
t̄n ,Un ,Sn ,An ,Fn

)
2~

}
J

α,℘
3,n

+
S∗
(

t̄n−1 ,Un−1 ,Sn−1 ,An−1 ,Fn−1
)

2~2 J
α,℘
3,n

+ρ2G2
(
t̄n+1,Sp1

n+1

)(
B2(t̄n+1) − B2(t̄n)

)
J

α,℘
1,n

+ρ2G2
(
t̄n+1,Sp1

n+1

)(
B2(t̄n+1) − B2(t̄n)

)
J

α,℘
2,n

−ρ2G2
(
t̄n,Sp1

n

)(
B2(t̄n) − B2(t̄n−1)

)
J

α,℘
2,n

+
ρ2G2

(
t̄n+1 ,S

p1
n+1

)(
B2(t̄n+1)−B2(t̄n)

)
2~ J

α,℘
3,n

−2 ρ2G2
(

t̄n ,S
p1
n

)(
B2(t̄n)−B2(t̄n−1)

)
2~ J

α,℘
3,n

+
ρ2G2

(
t̄n−1 ,S

p1
n−1

)(
B2(t̄n−2)−B2(t̄n−2)

)
2~ J

α,℘
3,n



,
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An+1 = A0 +
(1 − α)

ABC(α)
℘t̄℘−1
n+1


A∗

(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
+ρ3G4

(
t̄n+1,Ap

n+1
)(

B3(t̄n+2) − B3(t̄n+1)
) 

+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





A∗
(
t̄κ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1

)
J

α,℘
1,κ

+
A∗
(

t̄κ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1

)
−A∗

(
t̄κ,Uκ,Sκ,Aκ,Fκ

)
~

J
α,℘
2,κ

+

(
A∗
(

t̄κ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1

)
−2A∗

(
t̄κ,Uκ,Sκ,Aκ,Fκ

)
~

+
A∗
(

t̄κ−1,Uκ−1,Sκ−1,Aκ−1,Fκ−1

)
~

)
J

α,℘
3,κ



+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





ρ3G3
(
t̄κ+1,Aκ+1

)(
B3(t̄κ+1) − B3(t̄κ)

)
J

α,℘
1,κ

+

{
ρ3G3

(
t̄κ+1,Aκ+1

)(
B3(t̄κ+1) − B3(t̄κ)

)
−ρ3G3

(
t̄κ,Aκ

)(
B3(t̄κ) − B3(t̄κ−1)

)}
J

α,℘
2,κ

+

{
ρ3G3

(
t̄κ+1,Aκ+1

)(
B3(t̄κ+1)−B3(t̄κ)

)
−2ρ3G3

(
t̄κ,Aκ

)(
B3(t̄κ)−B3(t̄κ−1)

)
~

−
ρ3G3

(
t̄κ−1,Aκ−1

)(
B3(t̄κ−1)−B3(t̄κ−2)

)
~

}
J

α,℘
3,κ



+
α℘

ABC(α)Γ(α)





A∗
(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
J

α,℘
1,n

+A∗
(
t̄n+1,Up

n+1,S
p
n+1,A

p
n+1,F

p
n+1

)
J

α,℘
2,n

−A∗
(
t̄n,Un,Sn,An,Fn

)
J

α,℘
2,n

+

{
A∗
(

t̄n+1,U
p
n+1,S

p
n+1,A

p
n+1,F

p
n+1

)
−2A∗

(
t̄n,Un,Sn,An,Fn

)
2~

}
J

α,℘
3,n

+
A∗
(

t̄n−1,Un−1,An−1,Fn−1

)
2~2 J

α,℘
3,n

+ρ3G3
(
t̄n+1,Ap1

n+1
)(

B3(t̄n+1) − B3(t̄n)
)
J

α,℘
1,n

+ρ3G3
(
t̄n+1,Ap1

n+1
)(

B3(t̄n+1) − B3(t̄n)
)
J

α,℘
2,n

−ρ3G3
(
t̄n,Ap1

n

)(
B3(t̄n) − B3(t̄n−1)

)
J

α,℘
2,n

+
ρ3G3

(
t̄n+1,A

p1
n+1

)(
B3(t̄n+1)−B3(t̄n)

)
2~ J

α,℘
3,n

−2ρ3G3

(
t̄n,A

p1
n

)(
B3(t̄n)−B3(t̄n−1)

)
2~ J

α,℘
3,n

+
ρ3G3

(
t̄n−1,A

p1
n−1

)(
B3(t̄n−2)−B3(t̄n−2)

)
2~ J

α,℘
3,n



,

Fn+1 = F0 +
(1 − α)

ABC(α)
℘t̄℘−1
n+1


F∗

(
t̄n+1,Ap

n+1,F
p
n+1,Q

p
n+1

)
+ρ4G4

(
t̄n+1,Fp

n+1

)(
B4(t̄n+2) − B4(t̄n+1)

) 
+

α℘

ABC(α)Γ(α)

n−1∑
κ=0




F∗
(
t̄κ+1,Aκ+1,Fκ+1,Qκ+1

)
J

α,℘
1,κ

+
F∗
(

t̄κ+1 ,Aκ+1 ,Fκ+1 ,Qκ+1
)
−F∗

(
t̄κ ,Aκ ,Fκ ,Qκ

)
~

J
α,℘
2,κ

+
F∗
(

t̄κ+1 ,Aκ+1 ,Fκ+1 ,Qκ+1
)
−2A∗

(
t̄κ ,Aκ ,Fκ ,Qκ

)
+F∗

(
t̄κ−1 ,Aκ−1 ,Fκ−1 ,Qκ−1

)
~

J
α,℘
3,κ


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+
α℘

ABC(α)Γ(α)

n−1∑
κ=0





ρ4G4
(
t̄κ+1,Fκ+1

)(
B4(t̄κ+1) − B4(t̄κ)

)
J

α,℘
1,κ

+
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~
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~
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F∗
(
t̄n+1,Ap

n+1,F
p
n+1,Q

p
n+1

)
J

α,℘
1,n

+F∗
(
t̄n+1,Ap

n+1,F
p
n+1,Q

p
n+1

)
J

α,℘
2,n

−F∗
(
t̄n,An,Fn,Qn

)
J

α,℘
2,n

+

{
F∗
(

t̄n+1 ,A
p
n+1 ,F

p
n+1 ,Q

p
n+1

)
−2F∗

(
t̄n ,An ,Fn ,Qn

)
2~

}
J

α,℘
3,n
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n
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+
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n+1

)(
B4(t̄n+1)−B4(t̄n)

)
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
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(1 − α)
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n+1


Q∗

(
t̄n+1,Fp
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+
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+
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~
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2,κ

+
Q∗

(
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+Q∗

(
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~
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

+
α℘

ABC(α)Γ(α)

n−1∑
κ=0




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(
t̄κ+1,Qκ+1

)(
B5(t̄κ+1) − B5(t̄κ)

)
J
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1,κ

+

{
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(
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)(
B5(t̄κ+1) − B5(t̄κ)

)
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(
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)(
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J
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2,κ

+

{
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(
t̄κ+1 ,Qκ+1

)(
B5(t̄κ+1)−B5(t̄κ)

)
−2ρ5G5

(
t̄κ ,Qκ

)(
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)
~

−
ρ5G5

(
t̄κ−1 ,Qκ−1

)(
B5(t̄κ−1)−B5(t̄κ−2)

)
~

}
J

α,℘
3,κ



+
α℘

ABC(α)Γ(α)




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t̄n+1,Fp

n+1,Q
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n+1

)
J

α,℘
1,n

+Q∗
(
t̄n+1,Fp

n+1,Q
p
n+1

)
J

α,℘
2,n

−Q∗
(
t̄n,Fn,Qn

)
J

α,℘
2,n

+

{
Q∗

(
t̄n+1 ,F
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n+1 ,Q
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n+1

)
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(
t̄n ,Fn ,Qn

)
2~

}
J

α,℘
3,n

+
Q∗

(
t̄n−1 ,Fn−1 ,Qn−1

)
2~2 J

α,℘
3,n

+ρ5G5
(
t̄n+1,Qp1

n+1

)(
B5(t̄n+1) − B5(t̄n)

)
J

α,℘
1,n

+ρ5G5
(
t̄n+1,Qp1

n+1

)(
B5(t̄n+1) − B5(t̄n)

)
J

α,℘
2,n

−ρ5G5
(
t̄n,Qp1

n

)(
B5(t̄n) − B5(t̄n−1)

)
J

α,℘
2,n

+
ρ5G5

(
t̄n+1 ,Q

p1
n+1

)(
B5(t̄n+1)−B5(t̄n)

)
2~ J

α,℘
3,n

−2 ρ5G5
(

t̄n ,Q
p1
n

)(
B5(t̄n)−B5(t̄n−1)

)
2~ J

α,℘
3,n

+
ρ5G5

(
t̄n−1 ,Q

p1
n−1

)(
B5(t̄n−2)−B5(t̄n−2)

)
2~ J

α,℘
3,n



,
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where

Up1
n+1 = U0 +

1 − α
ABC(α)

℘t̄℘−1
n+1


U∗

(
t̄n,Un,An,Fn

)
+℘ρ1G1

(
t̄n,Un

)(
B1(t̄n) − B1(t̄n−1)

) 
+

α℘

ABC(α)Γ(α)

n∑
κ=0


U∗

(
t̄κ,Uκ,Aκ,Fκ

)
J

α,℘
1,κ

+ρ1G1
(
t̄κ,Uκ

)(
B1(t̄κ) − B1(t̄κ−1)

)
J

α,℘
1,κ

 ,
Sp1
n+1 = S0 +

1 − α
ABC(α)

℘t̄℘−1
n+1


S∗
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t̄n,Un,Sn,An,Fn

)
+℘ρ2G2
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t̄n,Sn

)(
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+

α℘
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n∑
κ=0
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1,κ

 ,
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n+1 = A0 +

1 − α
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)
J

α,℘
1,κ

 ,
Fp1
n+1 = F0 +

1 − α
ABC(α)

℘t̄℘−1
n+1


F∗

(
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)
+℘ρ4G4
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B4(t̄n) − B4(t̄n−1)
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+
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n∑
κ=0


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(
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)
J

α,℘
1,κ

+ρ4G4
(
t̄κ,Fκ
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)
J

α,℘
1,κ

 ,
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n+1 = Q0 +

1 − α
ABC(α)

℘t̄℘−1
n+1
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+
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κ=0
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 .

Also,

J
α,℘
1,κ =

((n + 1)~)α−1

℘


((κ + 1)~)℘ 2F1
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℘, 1 − α

]
,
[
1 + ℘

]
, κ+1
n+1

)
−(κ~)℘ 2F1

([
℘, 1 − α

]
,
[
1 + ℘

]
, κ
n

)  ,

J
α,℘
2,κ =

((n + 1)~)α−1

℘(℘ + 1)




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,
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1 + ℘
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
,
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J
α,℘
3,κ =

((κ + 1)~)α−1

℘(℘ + 1)(℘ + 2)


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]
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(
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2
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,
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, κ
n+1

)
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,
[
3 + ℘

]
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n
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2F1
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]
,
[
1 + ℘

]
, κ
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
.

6. Results and discussion

To exemplify the theoretical outcomes of the suggested framework, numerical computations were
performed in this part. We accomplish this using the stochastic complete numerical technique proposed
by Atangana and Araz [52]. Moreover, we compute the fractal-fractional model (3.2) for Atangana-
Baleanu-Caputo sense when both fractional-order α and fractal-dimension ℘ are distinct.

Figures 3–5 illustrate the effects of uninfected U(t̄), latently infected S(t̄), actively infected A(t̄), free
virus F(t̄), and antibodies Q(t̄) at various fractional-orders and fixed fractal-dimensions. We assign the
following parameter values: Λ = 10, ς = 0.1, λ1 = 2, λ2 = 2, φ = 0.5, ν1 = 0.5, σ = 5, δ =

10, ϕ = 2, ν2 = 10, ξ = 3, χ = 2, ζ = 4. To demonstrate the system’s dynamical behaviour, we input
various white noise levels (5.1). We first take into account the white noise components ρ1 = 0.9, ρ2 =

0.9, ρ3 = 0.7, ρ4 = 0.9 and ρ5 = 0.8, where the distinctive stationary distribution sensitivity criterion
Rs

0 > 1 is attained. As the virus spreads through the community, the class diminishes over time and
eventually affects all other categories in the structure. This classification corresponds rapidly at low
orders and slowly at higher orders, which displays a consistent tendency.
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Figure 3. Graphical display of uninfected cells U(t̄) and latently infected cells S(t̄) of the
model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler ker-
nel and varying fractional-order with fixed fractal-dimension.
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Figure 4. Graphical display of actively infected cells A(t̄) and free virus F(t̄) of the model
(5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and
varying fractional-order with fixed fractal-dimension.
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Figure 5. Graphical display of antibodies Q(t̄) of the model (5.1) considering the fractal-
fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with
fixed fractal-dimension.

Figures 6–8 display the temporal patterns of (U(t̄),S(t̄),A(t̄),F(t̄),Q(t̄)) of the stochastic system
(5.1) involving white noise ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0.7, ρ4 = 0.9 and ρ5 = 0.8, respectively. The
solution varies at white noises, having a corresponding stochastic mean. The affected cells S(t̄) exhibit
a rapid decline in behaviour over time, similar to the behaviour of uninfected cells U(t̄) at various
fractal-fractional orders.
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Figure 6. Graphical display of uninfected cells U(t̄) and latently infected cells S(t̄) of the
model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler ker-
nel and varying both fractional-order with fractal-dimension.
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Figure 7. Graphical display of actively infected cells A(t̄) and free virus F(t̄) of the model
(5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and
varying both fractional-order with fractal-dimension.

Figures 9–11 show the impacts of uninfected U(t̄), latently infected S(t̄), actively infected A(t̄),
free virus F(t̄), and antibodies Q(t̄) at various fractal-dimension and fixed fractional-orders. The cor-
responding attributed values: Λ = 10, ς = 0.1, λ1 = 2, λ2 = 2, φ = 0.5, ν1 = 0.5, σ = 5, δ =

10, ϕ = 2, ν2 = 10, ξ = 3, χ = 2, ζ = 4. Then, by increasing the white noise intensities to
ρ1 = 3.9, ρ2 = 3.7, ρ3 = 3.9, ρ4 = 3.9 and ρ5 = 3.8, we are able to satisfy the elimination criterion
R̃s

0 < 1 in Theorem 4.3 and validate the findings. Figures 9–11 demonstrate that as the white noise
intensity escalates, contaminated lymphocytes S(t̄), productively infested cells A(t̄), and uncontrolled
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pathogen A(t̄) can all perish and settle at a variety of fractal dimensions and fixed fractional-order.
This shows that white noise concentration can effectively eradicate all insidiously, proactively, and
freely virally infested cells, dramatically reduce the quantity of virally affected cells, and prevent the
proliferation of contaminated nuclei.
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Figure 8. Graphical display of antibodies Q(t̄) of the model (5.1) considering the fractal-
fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order
with fractal-dimension.
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Figure 9. Graphical display of uninfected cells U(t̄) and latently infected cells S(t̄) of the
model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler ker-
nel and varying fractal-dimension with fixed fractional-order.

Figures 12–14 predict the behaviour of uninfected U(t̄), latently infected S(t̄), actively infected
A(t̄), free virus F(t̄), and antibodies Q(t̄) at various fractal-dimension and fractional-orders. The cor-
responding attributed values: Λ = 10, ς = 0.1, λ1 = 2, λ2 = 2, φ = 0.5, ν1 = 0.5, σ = 5, δ =
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10, ϕ = 2, ν2 = 10, ξ = 3, χ = 2, ζ = 4. Then, by increasing the white noise intensities to
ρ1 = 3.9, ρ2 = 3.7, ρ3 = 3.9, ρ4 = 3.9 and ρ5 = 3.8, and R̃s

0 < 1. This shows that the stochastic noise
is demonstrated to be suppressed by the massive boom. The infectious populace is disappearing more
significantly when both fractional-order and fractal-dimension are changed simultaneously in an in-
fectious system in comparison to fractional systems, which leads to fascinating and biologically more
plausible findings.
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Figure 10. Graphical display of actively infected cells A(t̄) and free virus F(t̄) of the model
(5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and
varying fractal-dimension with fixed fractional-order.
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Figure 11. Graphical display of antibodies Q(t̄) of the model (5.1) considering the fractal-
fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension
with fixed fractional-order.
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Figure 12. Graphical display of uninfected cells U(t̄) and latently infected cells S(t̄) of
the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler
kernel and both varying fractal-dimension with fractional-order.
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Figure 13. Graphical display of actively infected cells A(t̄) and free virus F(t̄) of the model
(5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and
both varying fractal-dimension with fractional-order.

Figures 15–17 demonstrate the effect of uninfected U(t̄), latently infected S(t̄), actively infected
A(t̄), free virus F(t̄), and antibodies Q(t̄) at fixed fractal-dimension and fractional-orders with and
without control, respectively. Considering an inadequate CTL reaction, we examine how virus replica-
tion affects the patterns of HCV and immunological reactions from acute infection through the chronic
stage. This is accomplished using a mix of analytical and numerical techniques. Since the target cell
restriction prevents the penetration of new viral variations in the case of severe liver damage, virus
development is predicted to come to an end.
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As a result of these pictorial outcomes, we draw the conclusion that by using this novel fractal-
fractional operator concept, it is possible to detect more precise outcomes and to offer a wider insight
of problems that arise in engineering and science as well as in the reality.
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Figure 14. Graphical display of antibodies Q(t̄) of the model (5.1) considering the
fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-
dimension with fractional-order.
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Figure 15. Graphical display of uninfected cells U(t̄) and latently infected cells S(t̄) of
the model (5.1) with and without control when α = 0.98 considering the fractal-fractional
derivative with generalized Mittag-Leffler kernel.
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Figure 16. Graphical display of actively infected cells A(t̄) and free virus F(t̄) of the model
(5.1) with and without control when α = 0.98 considering the fractal-fractional derivative
with generalized Mittag-Leffler kernel.
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Figure 17. Graphical display of antibodies Q(t̄) of the model (5.1) with and without control
when α = 0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler
kernel.

7. Conclusions

In this article, we examined the variations in cellular complexities of a novel randomized fractal-
fractional virus transmission system considering latently diseased tissues and a Holling type II func-
tionality reaction. We discovered the existence of non-negative solutions to the examined system by
accounting for environmental noise and the fractal effects of vaccination. In view of Itô’s technique
and Lyapunov candidate, we established the necessary assumptions of the stochastically permanence of
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the virus transmission scenario and the elimination of chronically diseased, productively contaminated
cells and independent pathogen fragments. Ultimately, in order to create the suggested system, we em-
ployed the F-F calculus notion in the ABC context. Additionally, numerical simulations are provided
to understand the tendencies of our theoretical model’s analysis. We determine that increasing the
noise strength will eventually render the virus obsolete. The illustration analysis shows that the fractal-
fractional notion outperforms the integer-order and classical derivatives in terms of effectiveness and
biological dependability. Upcoming research on viral infections, particularly the novel COVID-19,
monkey pox and lumpy virus can confidently implement the revolutionary modelling methodology
termed as the fractal-fractional operator.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. S. Cassels, S. J. Clark, M. Morris, Mathematical models for HIV trans-
mission dynamics, J. Acquired Immune Defic. Syndr., 47 (2008), S34–S39.
https://doi.org/10.1097/QAI.0b013e3181605da3

2. O. S. Deep, S. Nallamalli, L. N. S. Naik, G. V. SaiTeja, Mathematical model for transmission of
Ebola, Procedia Comput. Sci., 48 (2015), 741–745. https://doi.org/10.1016/j.procs.2015.04.210

3. A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus dis-
ease 2019 (COVID-19) containing isolation class, Biomed. Res. Int., 2020 (2020), 1–7.
https://doi.org/10.1155/2020/3452402

4. M. A. Khan, Dengue infection modeling and its optimal control analysis in East Java, Indonesia,
Heliyon, 7 (2021), e06023. https://doi.org/10.1016/j.heliyon.2021.e06023

5. S. Banerjee, N. Gupta, P. Kodan, A. Mittal, Y. Ray, N. Nischal, et al., Nipah virus
disease: A rare and intractable disease, Intractable Rare Dis. Res., 8 (2019), 1–8.
https://doi.org/10.5582/irdr.2018.01130

6. S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and
its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752.
https://doi.org/10.1093/ije/29.4.744

7. S. Seewaldt, H. E. Thomas, M. Ejrnaes, U. Christen, T. Wolfe, E. Rodrigo, et al., Virus-
induced autoimmune diabetes: Most beta-cells die through inflammatory cytokines and not per-
forin from autoreactive (anti-viral) cytotoxic T-lymphocytes, Diabetes, 49 (2000), 1801–1809.
https://doi.org/10.2337/diabetes.49.11.1801

8. M. Eichelberger, W. Allan, M. Zijlstra, R. Jaenisch, P. C. Doherty, Clearance of influenza virus
respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T
cells, J. Exp. Med., 174 (1994), 875–880. https://doi.org/10.1084/jem.174.4.875

9. D. J. Topham, R. A. Tripp, P. C. Doherty, CD8+ T cells clear influenza virus by perforin or Fas-
dependent processes, J. Immunol., 159 (1997), 5197–5200.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11563–11594.



11591

10. S. Pan, S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a
non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul.,
61 (2018), 180–197. https://doi.org/10.1016/j.cnsns.2018.02.010

11. A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection
models, Int. J. Biomath., 8 (2015), 1550058. https://doi.org/10.1142/S1793524515500588

12. Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a diffusive virus infection model with hu-
moral immunity, cell-to-cell transmission and nonlinear incidence, Physica A, 535 (2019), 122415.
https://doi.org/10.1016/j.physa.2019.122415

13. Y. Wang, M. Lu, D. Jiang, Viral dynamics of a latent HIV infection model with Beddington-
DeAngelis incidence function, B-cell immune response and multiple delays, Math. Biosci. Eng.,
18 (2021), 274–299. https://doi.org/10.3934/mbe.2021014

14. K. Hattaf, Global stability and Hopf bifurcation of a generalized viral infection
model with multi-delays and humoral immunity, Physica A, 545 (2020), 123689.
https://doi.org/10.1016/j.physa.2019.123689

15. C. Rajivganthi, F. A. Rihan, Global dynamics of a stochastic viral infection model with latently
infected cells, Appl. Sci., 11 (2021), 10484. https://doi.org/10.3390/app112110484

16. O. Olaide, A. E. S. Ezugwu, T. Mohamed, L. Abualigah, Ebola optimization search algorithm:
A new nature-inspired metaheuristic optimization algorithm, IEEE Access, 10 (2022), 1–38.
https://doi.org/10.1109/ACCESS.2022.3147821

17. A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization
algorithm, Neural Comput. Appl., 2022 (2022), 1–49. https://doi.org/10.1007/s00521-022-07530-
9

18. J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput.
Methods Appl. Mech. Eng., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570

19. L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. Al-qaness, A. H. Gandom, Aquila opti-
mizer: A novel meta-heuristic optimization algorithm, Reptile Search Algorithm (RSA), Comput.
Ind. Eng., 157 (2021), 107250, https://doi.org/10.1016/j.cie.2021.107250

20. M. E. Omaba, Growth moment, stability and asymptotic behaviours of solution to a class of time-
fractal-fractional stochastic differential equation, Chaos Solitons Fractals, 147 (2021), 110958.
https://doi.org/10.1016/j.chaos.2021.110958

21. M. Gao, D. Jiang, X. Wen, Stationary distribution and extinction for a stochastic two-
compartment model of B-cell chronic lymphocytic leukemia, Int. J. Biomath., 14 (2021), 2150065.
https://doi.org/10.1142/S1793524521500650

22. Q. Liu, D. Jiang, Dynamical behavior of a stochastic multigroup staged-progression HIV model
with saturated incidence rate and higher-order perturbations, Int. J. Biomath., 14 (2021), 2150051.
https://doi.org/10.1142/S1793524521500510

23. C. Gokila, M. Sambath, The threshold for a stochastic within-host CHIKV
virus model with saturated incidence rate, Int. J. Biomath., 14 (2021), 2150042.
https://doi.org/10.1142/S179352452150042X

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11563–11594.



11592

24. L. Abualigah, A. Diabat, P. Sumari, A. H. Gandomi, Applications, deployments,
and integration of internet of drones (IoD), IEEE Sens. J., 99 (2021), 25532–25546.
https://doi.org/10.1109/JSEN.2021.3114266

25. T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-
based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput.
Math., 20 (2021), 160–176.

26. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations, Wiley, 1993.

27. T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and
entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods
Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7310

28. K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial
operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods
Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7954

29. Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy
and solute particles using hybrid nanoparticles by engaging activation energy and chemical
reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119.
https://doi.org/10.3390/fractalfract5030119

30. S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further exten-
sions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026.
https://doi.org/10.1142/S0218348X22400266

31. F. Mainardi, Fractional calculus, in Some Basic Problems in Continuum and Statistical Mechanics,
Springer, Vienna, (1997), 291–348. https://doi.org/10.1007/978-3-662-03425-5 12

32. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

33. W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean
of order −1 in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141.
https://doi.org/10.7153/jmi-2022-16-10

34. T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the nth power-type Toader
mean of n = −1, 1, 3, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-
12

35. T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type Toader mean, J.
Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi- 2022-16-18

36. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog.
Fract. Differ. Appl., 2 (2015), 73–85. https://doi.org/10.18576/pfda/020202

37. C. Li, F. Zeng, Numerical Methods for Fractional Calculus, Chapman & Hall/CRC, Boca Raton,
2019.

38. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory
and application to heat transfer model, preprint, arXiv:1602.03408.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11563–11594.



11593

39. A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus
and fractional calculus to predict complex system, Chaos Solitons Fractals, 396 (2017), 102.
https://doi.org/10.1016/j.chaos.2017.04.027

40. M. Versaci, G. Angiulli, P. Crucitti, D. D. Carlo, F. Laganá, D. Pellicanó, et al., A fuzzy similarity-
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