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Abstract: Ultrasound Elastography is a late-model Ultrasound imaging technique mainly used to 
diagnose tumors and diffusion diseases that can’t be detected by traditional Ultrasound imaging. 
However, artifact noise, speckle noise, low contrast and low signal-to-noise ratio in images make disease 
diagnosing a challenging task. Medical images denoising, as the first step in the follow-up processing of 
medical images, has been concerned by many people. With the widespread use of deep learning 
technique in the research field, dictionary learning method are once again receiving attention. Dictionary 
learning, as a traditional machine learning method, requires less sample size, has high training efficiency, 
and can describe images well. In this work, we present a novel strategy based on K-clustering with 
singular value decomposition (K-SVD) and principal component analysis (PCA) to reduce noise in 
Ultrasound Elastography images. At this stage of dictionary training, we implement a PCA method to 
transform the way dictionary atoms are updated in K-SVD. Finally, we reconstructed the image based on 
the dictionary atoms and sparse coefficients to obtain the denoised image. We applied the presented 
method on datasets of clinical Ultrasound Elastography images of lung cancer from Nanjing First 
Hospital, and compared the results of the presented method and the original method. The experimental 
results of subjective and objective evaluation demonstrated that presented approach reached a satisfactory 
denoising effect and this research provides a new technical reference for computer aided diagnosis. 
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1. Introduction 

Elasticity is a physical parameter that corresponds to the expression of the doctor’s tactile 
sensation in clinical diagnosis. However, determing the softness and hardness of the tissue by 
palpation is subjective, and powerless to the size and depth of the tissue. The advent of Ultrasound 
Elastography can provide physicians with information about tissue elasticity, offering a new way to 
diagnose disease. In the process of medical imaging diagnosis, the requirements for imaging quality 
are very high; lower image quality would affect the diagnosis of diseases. The noise in traditional 
Ultrasound images is often dominated by speckle noise. However, because the imaging mechanism 
of Ultrasound Elastography is different from that of conventional Ultrasound imaging, the noise 
generated by Ultrasound Elastography mainly comes from the motion artifacts after compression and 
deformation of tissue [1]. We generally believe that these noises in the ultrasonic image have a 
negative impact on the image recognition. Although there are many studies on medical images 
denoising, many common smoothing algorithms lead to blurred images or edge distortion. Therefore, 
seeking an algorithm that preserves edge information and removes image noise has always been the 
aim of scientific research. The ideal denoising results are necessary preprocessing for subsequent 
segmentation, extraction, recognition, etc. At present, in the field of image processing with a focus 
on deep learning, we classify denoising methods mainly into deep learning-based denoising methods 
and other traditional denoising methods. He et al. [2] proposed a deep learning-based 
joint-filtering-framework. This work consists of a pre-training network and fine-tuning the last two 
convolution layers of the network. Likewise, Liu et al. [3] proposed an innovative GA-based method 
to construct CNN structures for medical image analysis automatically. Krull et al. [4], Green et al. [5], 
Tao et al. [6], and Wu et al. [7] all adopted the deep neural network as the main network combined 
with prior information, structural information, etc. to construct various denoising models. 

However, deep learning methods have their own limitations; they either only be used in specific 
environments or require large and standard dataset labels, while traditional methods are completely 
different. In recent years, more and more research scholars have turned their attention to the field of 
traditional methods. Traditional denoising methods include spatial domain filtering methods, 
variational denoising methods, no-local regularization, sparse representation etc. Wavelets denoising 
techniques were demonstrated the usefulness of wavelet denoising for visual enhancement of images 
by Ouahabi [8,9], but not suitable for high intensity noise. Jomaa et al. [10] proposed a new 
framework of noise reduction in dynamic PET sequences of small animal heart-based procedures on 
multi-scale and non-local means methods; these methods take into consideration temporal 
correlations between images. Gupta et al. [11] combined two conventional filters, i.e., non-local 
mean filter and bilateral filter into an improved non-local mean filter for suppression of speckle noise 
in Ultrasound images. Also, Baselice et al. [12] used a statistical criterion based on the 
Kolmogorov-Smirnov distance for detecting similar pixels across the image. Xu et al. [13] employed 
a PDE algorithm to depict the local self-similarity of images. On the basis of a nonlinear, spatial, 
fractional, anisotropic diffusion equation, Wang et al. [14] proposed a feature-preserving, fractional 
PDE algorithm. In addition, some studies integrate denoising into other image processing stages and 
comprehensively consider noise suppression [15–17]. 

Unlike the above methods, sparse representation is using the linear combination of elements in 
the dictionary to represent the test sample. To address this problem, Valiollahzadeh et al. [18] 
oversaw a local approach into the account and split the noisy observed image into several blocks; a 
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learning dictionary was used over these blocks and to find the best possible sparse representation of 
each block with this dictionary. Shahdoosti et al. [19] presented an approach based on compressive 
sensing and sparse and redundant representations over trained dictionaries. Haq et al. [20] considered 
and implemented two versions with different adaptation steps for the shape parameter: Half-Adapt 
and Mean-Norm in the dictionary denoising approach. Nasser et al. [21] presented a novel model for 
detecting cells based on a sparse representation model, which achieved good results. Furthermore, 
based on the signal properties of images, the compressing sensing method widespread used in 
communication area is also applied in image denosing. The primary principle of compressing sensing 
denoising is to represent signal sparsely to deduct noise by reconstruct images, similar to the dictionary 
learning techniques presented in this paper by Haneche et al. [22] and Mahdaoui et al. [23]. The 
artifact noise in Ultrasound Elastography images has an obvious negative impact on disease 
diagnosis, and there are fewer methods suitable for such denoising. Therefore, this paper focuses on 
the construction of a sparse dictionary based on dictionary learning methods to eliminate outliers, 
and avoid destructing useful information such as target edges while removing noise. On the basis of 
the previous work, we combined the PCA algorithm [24] to make some improvements to the 
dictionary learning algorithm, which improves the update method of dictionary atoms and provides 
new options for denoising methods in the future work. 

The rest of the paper is organized as follows. The methodology consists of the outline of the 
presented work; sparse model and sparse dictionary with PCA denoising models are presented in 
Section 2. The experimental results and analysis are shown in Section 3. Finally, the summary and 
prospect are exposited in Section 4. 

2. Materials and methods 

2.1. Overview of this method 

In this paper, sparse dictionary learning method is used for Ultrasound Elastography images 
denoising. Sparse representation of images is particularly popular in the field of image feature 
extraction, which regards the image as a collection of various image blocks and obtains the key 
image features of the image through feature extraction. Like this, the principle of dictionary 
learning-based image denoising is to construct dictionary atom of the training image using the 
feature that noise has a small component and high frequency in the image, and recover the image 
information using sparse coefficients to remove noise. 

The presented sparse dictionary method is implemented as described by Nasser et al. [21]; we 
replace the K-SVD method with the feature vectors corresponding to the Max-Eigen of PCA to 
update the dictionary atoms and the specific stages are described below. Firstly, the denoised image 
as input is partitioned into a number of overlapping patches, which are represented as sparse linear 
combinations in the dictionary. The next key problem is to find the representation of the dictionary 
and the corresponding sparse coefficients to represent the image. At the dictionary training stage, we 
adopt the PCA method to improve the update speed of dictionary atoms. Finally, the estimated 
images are reconstructed by combining the sparse dictionary and sparse coefficients to obtain the 
denoising result. The dictionary learning-based denoised method is summarized in Figure 1. 
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Figure 1. Flowchart of the presented approach. 

2.2. Sparse representations about images 

Sparse representation is a concept in the field of signal processing, and we often use concepts 
and methods from the field of signal processing, where the generation, storage, and transmission of 
an image are often accompanied by high-frequency noise. The existence of noise as a high-frequency 
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component has always been a problem that plagues images. Taking the advantage of the signal 
sparsity, we can conduct specific processing on the image to separate its high-frequency information 
from low-frequency information. Since the amount of noise information is small and high-frequency 
information tends to zero, the high-frequency information is discarded as noise information, and the 
denoised image is obtained by recovering the low-frequency information, where the process of 
recovering the image using sparse coefficients is called reconstruction. 

We represent the image model with noise as follows: 

y x n                                       (1) 

where n denotes the noise that we try to extract from the noised image y to obtain the target image x. 
Assuming there is a certain dictionary D and a series of sparse coefficients α, we can use it to restore 
the image x, which is expressed as follows: 

x D                                       (2) 

where m nD R  , if n > m, which means D is an overcomplete dictionary, each column represents an 
atom, and the next problem becomes how to find a coefficient matrix α. Then, the image x is 
represented by Dα. We want α to be as sparse as possible, i.e., there are as few non-zero elements in 

the matrix as possible. Therefore, 
0

0
 should be minimized, thus 

2 2

2
min y D          s.t. 

0

0
L                     (3) 

where,   is the error between the original image and its sparse representation, and n
i R  is the 

presentation vector. L is a predetermined sparse coefficient threshold. 

2.3. Dictionary learning 

At the image processing stage, to obtain the dictionary D, we segment original image into 
multiple overlapping image patches with size of m m , where patches overlap one pixel with 

each other. Then we arrange patches like a dictionary into column vectors x, m
ix R , where i 

indicates a vector of the i-th column in the image. The image is represented as a linear sparse 
combination of multiple atoms according to the given Eq (3). The ultimate result indicates that Dα is 
approximately equal to x. 

There are many strategies to solve the above problems, such as the notable MP algorithm and 
OMP (orthogonal matching pursuit algorithm) algorithm, using l0–norm minimization, and BP 
algorithm, using 1–norm minimization to optimize the model. In order to solve Eq (3), D is assumed 
to be fixed and the sparse matrix is obtained using the OMP algorithm. For dictionary training, in 
addition to initialization operations such as initializing the required dictionary patch size and 
initializing the overlap step size, iterative updates are required for each dictionary. K-SVD is an 
update dictionary selection based on a K-cluster standard for unsupervised learning. 1 2[ , ... ]nd d d and 

1 2[ , ... ]m   are acquired by training 1 2, ... my y y . 
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Dictionary learning-based denoising algorithm in detail:  

1. Dictionary initialization. Initialize the number of dictionary atoms, the number of iterations, the 
number of non-zero elements, and the size of blocks etc. 
2. Sparse coefficients extraction. Based on the dictionary initialization and training dataset, the OMP 
algorithm is applied to obtain a sparse coefficient matrix α. 
3. Dictionary training and update dictionary atoms. Update the objective function as follows,  

for I = 1, 2,…., n 
22

2 2

i
i iy D E d    , where iE denotes error matrix. 

The i-th atom in the dictionary is updated column by column. 
4. Reconstruct the denoised image. 

Next, at the reconstruction stage, we reconstruct the denoised image using the dictionary and 
sparse coefficients obtained from the training to obtain the final pure image. 

2 2

2 2 0
. .x y x D s t L                             (4) 

where denotes regularization coefficients. 

2.4. Dictionary learning denoising with PCA 

The K-SVD method is a singular value decomposition of the error and updates the sparse 
coefficient matrix with the maximum singular value. This process is an approximate reduction of the 
error term. However, the error between the approximated error and the true error still exists. The 
inaccurate estimation of the error affects the extraction of the dictionary and the extraction of sparse 
coefficients. Therefore, we introduce the powerful feature extraction capability of PCA into the 
K-SVD algorithm and combine dictionary extraction and feature extraction to obtain the optimal 
dictionary and sparse coefficients matrix of the noising image. Our specific approach is to use the PCA 
algorithm to extract the feature of the error term, and the maximum eigenvalue is used as the basis for 
updating the dictionary atoms. We decentralize the error matrix iE , calculate the covariance matrix of 

the error matrix, solve the eigenvalues and corresponding eigenvectors of the error matrix, and then 
take the eigenvector corresponding to the largest eigenvalue to update the dictionary atom. This is 
shown in the following: 

i ( )T T
iE E P P                                       (5) 

where P  denotes the principle matrix, T represents the “transpose” operator, and  denotes 
eigenvalue value. 

3. Results 

3.1. Datasets 

To address the problem of artifact noise inherent in Ultrasound Elastography, we focused on 
applying the presented approach in this paper to Ultrasound Elastography image denoising, where 
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only a few strategies are applied to this type of medical image. The presented method has been 
evaluated on 233 datasets of Ultrasound Elastography of lung cancer with pressure index of 3 
provided by Nanjing First Hospital; each sample provides images from different regions and different 
perspectives. The overall size of the Ultrasound Elastography image is 580  500 around. In order to 
improve the computational efficiency, we pre-segment each dataset to remove most of the background 
information from the original datasets. 

3.2. The experimental results 

 

 

 

Figure 2. A comparison of denoising result between the K-SVD method and our 
presented method in lung cancer dataset. The first row represents the original noise 
image, the second row shows the denoised result obtained by the K-SVD algorithm, 
and the third row expresses the denoising result obtained by the method proposed in 
this paper. 

In this project, the algorithm is developed based on matlab (matlab 2018b) and runs successfully 
in a Windows system (Inter core i7, 3.07 Hz and 32 GB RAM). In the experiment, after the dictionary 
is initialized and the dictionary is trained using the revised method, the sparse representation 
dictionary can represent the image block expressed on the dictionary atoms. On the basis of multiple 
experiments, we initialize the dictionary with number of iterations of 20, and a blocksize of 15  15. 
Different iterations, patch size, and dictionary size will have a specific impact on the denoising results. 
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After repeated verifications in this experiment, the denoised results can satisfy the needs of clinical 
localization and observation of lesions, and the denoised results of the improved method have been 
improved to some extent in clinical observation. The results and comparison are shown in the 
following Figure 2, where the left column represents the original noise images, the middle column 
shows the denoised results obtained by the K-SVD algorithm, and the right column expresses the 
denoised results obtained by the method proposed in this paper. 

To quantify the denoising results using the proposed strategy, we randomly selected 10 images 
from the dataset and added different levels of Gaussian noise to them. The following Figure 3 illustrates 
the results of noise addition and denoised results using our Ultrasound Elastography denoising model, 
from a macroscopic point of view, our method is effective in removing noise. Figure 4 shows the 
transformation of SNR improved after 1500 iterations by using the presented method. Experimental 
results reveal that our denoising model not only satisfy the application in both objective evaluation and 
subjective evaluation. 

Results the method of dictionary learning-based denoising has been evaluated performed well 
with the scientific combination of both subjective evaluation and the objective evaluation. 

 

Figure 3. Image added artificially and denoised results. 

 

Figure 4. Variation of SNR. 
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4. Conclusions and discussion 

According to the principle of ultrasonic Elastography, when the equipment acquires data such as 
elastic coefficient and displacement within tissues, there will be a certain amount of noise inherent in 
elastography due to the limitations of its own equipment and impurities in the ultrasonic echo signal. 
The existence of these noises will affect the image quality and interfere with the judgment of clinicians 
and radiologists on the lesion tissue. For the reason that Ultrasound Elastography is a novel imaging 
technique, there are fewer studies on the denoising of such images. In terms of clinical application, we 
abandoned deep learning techniques that require large datasets using lightweight algorithms in clinical 
applications, although deep learning is prevalent indeed. We adopt the traditional feature extraction 
method of sparse dictionary representation by dividing the image into a number of overlapping patches 
in a specific size; the Ultrasound elasticity image is trained to obtain the dictionary atoms and sparse 
coefficients. In the whole process, the PCA method is utilized to improve how the dictionary atoms in 
K-SVD are updated, and finally the image is reconstructed according to the dictionary and sparse 
coefficients obtained through training the denoised image. Throughout the process, the PCA method is 
implemented to improve the updating of dictionary atoms in K-SVD. Ultimately, the image is 
reconstructed based on the dictionary and sparse coefficients obtained from the training to obtain the 
denoised image. By analyzing our denoised results attentively, clinicians have given positive 
evaluation on a certain degree of Ultrasound Elastography quality improvement. From a technical 
standpoint, the method presented in this paper provides an alternative preprocessing method for 
subsequent image analysis such as lesion extraction or lesion identification. 
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