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Abstract: The efficiency, temperature distribution, and temperature at the tip of straight rectangular,
growing and decaying moving exponential fins are investigated in this article. The influence of inter-
nal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and
radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at
the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that
thermal and thermo-geometric characteristics have a significant impact on the performance, tempera-
ture distribution, and temperature of the fin’s tip.The results show that the temperature distribution of
decaying exponential and rectangular fins is approximately 15 and 7% higher than growing exponential
and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases
by approximately 6% when the porosity parameter is increased from 0.1 to 0.5. It is also observed
that the decay exponential fin has better efficiency compared to growing exponential fin which offers
significant advantages in mechanical engineering.

Keywords: convection; convective boundary conditions; exponential porous fins; mathematical
model; radiation

1. Introduction

There have been many systems designed, ranging from tiny electronic devices to massive industrial
machinery. During operation of these systems, heat is generated. For the system to function properly,
improving the geometry is vital to increase heat transfer and prevent heat loss. In this study, we
investigate which fin geometry is more efficient and easy to install.

The introduction of new technologies has received considerable attention in order to enhance the
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NOMENCLATURE
h Convection heat transfer coefficient (W/m2 K) A Area of fin’s surface (m2)
W width of the fin (m) P fins perimeter (m)
U Speed of moving fin (m/s) N Dimensionless convection parameter
x Direction along x-axis (m) X Dimensionless coordinate
g Gravitational acceleration (m/s2) L Fins length (m)
q Internal heat generation (W) T Dimensional fin temperature (K)
K Porous fins permeability (m2) Ra Rayleigh number

(
g β t3 (Tb − Ta)/λ ν

)
Q Dimensionless internal heat

generation/absorption parameter Ks Solid thermal conductivity (W/m K)
kr Ratio of thermal conductivity (ke f f /ks) Pe Peclet number, dimensionless
Ta Ambient temperature (K) ke f f Effective thermal conductivity (W/m K)
Ts Dimensional surface temperature (K) k f Air thermal conductivity (W/m K)
Tb Base temperature (K) S g Porosity parameter
Cp Specific heat of the material (J/kgK) Nr Dimensionless radiation parameter
Da Darcy number (K/t2) ṁ Mass flow rate (kg/s)
Greek letters
λ Thermal diffusivity of air (m2/s) β Volume expansion coefficient (K−1)
θ Dimensionless local temperature ν Kinematic viscosity of air (m2/s)
ε Surface emissivity ρ density of material (kg/m3)
α∗ Dimensionless fin shape parameter α Fin shape parameter
η Fin efficiency σ Stefane-Boltzmann constant (W/m2K4)
ϕ Porosity of the fin τb Thickness of the fin (m)
θa Dimensionless ambient temperature θs Dimensionless surface temperature
θb Dimensionless base temperature

efficiency of heat transfer from various heating systems such as automobiles, power plants, diesel en-
gines, geothermal energy and other industrialized heat-generating systems. According to researchers
even with modern engine technologies, 30–40% of the energy is still misspend through the exhaust sys-
tem and approximately 15–30% of the energy is converted to useful works [1]. However, it is observed
that the production of internal combustion engines (ICEs) is rapidly increasing, raising concerns about
the potential for an increase in dangerous greenhouse gases (GHG). As a result, scientists are moti-
vated to use methods to recycle heat from waste sources in engines, which often decreases the need
for energy production, but also reduces GHG emissions and improvements in energy efficiency [2].
However, because the exhaust heat exchanger can produce a pressure loss and affect engine output,
its design plays an imperative role. To choose an effective heat exchanger design, first, consider the
limitations of each heat exchanger model. Although costs of production are the most significant factor,
temperature ranges, thermal efficiency, pressure limits, fluid flow capability, pressure drop, mainte-
nance, clean-ability, materials, and so on are also significant. The use of fins is one of the most efficient
methods for transferring heat [3]. Therefore, scientists and engineers are searching for more effective
and economical means to enhance the amount of heat transfer while cooling down the equipment of
current advancement [4].
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Fins are one of the most effective tools to optimize cost and space in modern technology. A fin is an
enlarged surface that is designed to promote heat transmission from a warm surface to the surrounding
fluid. Fins are primarily used to increase the heat exchange rate. Fins are also extensively used in the
cooling of pipelines carrying oil that are hundreds of miles long. Furthermore, electronic chips cannot
work properly without fins to dissipate heat. The fin’s heat transfer mechanism is to transfer heat from
its base to its surface and then transfer this heat through radiation and convection to the surrounding
medium. In addition to conventional applications of heat transfer such as internal combustion engines,
heat evaporators, and compressors, fins are also powerful tools used in space vehicles, computer pro-
cessor cooling, and other electronic components for heat dissipation [5]. The car radiator, refrigerator
compressor, and air conditioner radiators are the most common applications of fins surfaces [6].

A moving type of exponential fin is studied here, along with heat generation and absorption sources.
By the moving fin, we mean that the heat transfer from the hot exterior to the ambient medium occurs
in continuous motion. Currently, the study of heat transfer from fins reveals that moving exponential
fins of various geometries are essential when these fins are available to a heat-generating medium [7,8].
There are several industrial processes, such as glass fiber drawing, extrusion, casting, and hot rolling,
which was modelled on the moving fins [9].

Several studies have been performed to analyze heat transfer from exponential fin and observed
that growing exponential fin is more efficient than rectangular fin [10–12]. Numerical investigation of
conjugate heat dissipation in a double-tube using DGFEM with fins of the exponential profile was
performed and observed that efficiency of the exponential fin is higher up to 15% than triangular
fin [13]. Temperature distribution of circular convective fins of different profiles is studied using the
least square method (LSM) [3]. The Differential transform method (DTM) has been applied to analyze
exponential fin [14, 15].

Fins phenomena and their interesting features can be studied using a variety of mathematical tech-
niques, such as integral equation method [16], Homotopy perturbation [17], Homotopy analysis [18],
and Adomian decomposition method (ADM) [19]. These methods are used to exchange heat from
a convective-conductive and radiative moving fin as well as a convective-radiative fin with variable
thermal conductivity. A uni-dimensional convective-radiative fin having temperature-dependent con-
ductivity was analysed by [20]. They developed a novel approach for transforming the nonlinear ODEs
into an algebraic equation using the first-order Taylor’s expansion. The heat transfer rate and fin per-
formance of a straight fin having variable convective heat transfer coefficient and thermal conductivity
were calculated analytically by [21]. Similarly, analytic solutions for rectangular straight fins were
obtained to study the efficiency and technique of mass transfer in terms of heat transfer [22]. The heat
transfer performance in the finned heat pipe framework used in the central processing unit (CPU) has
also been studied [23]. It has been concluded that the ideal direction for cooling the pipe system letting
to remove maximum heat is the thermo-siphon position that allows eliminating heat as high as 150W
if one considers that the CPU works securely with a constant temperature lower than 90C◦.

The effect of thermal conductivity and thermo-geometric parameters on the productivity and effi-
ciency of straight convective fins has been investigated in [24]. A fin cluster in radiation-conduction in
a non-active source or the mechanics of heat exchange in one-dimensional transmitting fins and space
radiators are examined in a broad manner [25, 26]. Using the surface temperature response in a radial
porous fin, an inverse methodology is used to study both internal heat generation and magnetic field
strength at the same time [27, 28]. Heat exchange from a T shape porous fin was analyzed by [29]
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applying Adomian decomposition method and observed that heat transfer increases by increasing the
base temperature while increasing the surrounding temperature show reverse effect. The performance
and design of porous fin have been studied by [30,31] an effort has been made to construct an analytic
model for evaluating the effectiveness and optimal dimensions of porous fins while taking into account
various prediction models. Every finding has been described in a comparable manner so that the worth
of the models may be easily recognized. A cylindrical porous fin is studied by using Runge-Kutta
method and inverse, and an inverse problem is solved for estimating unknown parameters. It is found
that the hybrid method performs better and yields relatively faster convergence than the individual
methods [32, 33]. Recently [34] analyzed the porous radial, spin and longitudinal fin with multiple
nonlinearities and compared the analysis of the porous fin with the solid fin. And concluded that, de-
pending on the value of the porosity and natural convection involved in designing the porous fin, it can
perform better than the solid fin. In a similar manner, the entropy generation in the convective porous
fin of rectangular profile as well as a minimum shape of the porous fin with temperature-dependent
thermal conductivity have been analyzed analytically [35, 36]. As a result, the enactment of the fin
increases with radiation. Based on the analytical study, it was determined that the highest efficiency
can be achieved by using an exponential fin geometry that plays a critical role in enhancing heat trans-
fer [37–39].

The distribution of temperature in a porous fin material, that is, Aluminum (Al) and Silicon nitride
(S i3N4) were studied numerically by considering temperature depending on heat generation [40]. It
was assumed that fins made of porous aluminum transmit more heat than the Silicon nitride (S i3N4)
compound. Similarly, the practical uses of porous fins to improve refrigeration efficiency have been ex-
plored for the micro-tube heat sink, and for ceramic-based materials [41]. Furthermore, a wet loading
condition was presented to execute effective heat exchange over the fins of an exponential profile [42].
Exponential fins systems are designed and analyzed mathematically by [43] and concluded that the
thermal competence of the exponential fin is lower than those of parabolic and triangular fins. More-
over, it is observed that exponential fins may transmit more heat than the fin of rectangular profiles.
Heat exchange between a moving exponential fin exposed to heat has been studied analytically [44–46].
A heat exchanger with curved rectangular fins is investigated for its convection heat transfer in turbu-
lent flow by [47] and concluded that a double phase heat exchanger without a fin has a heat transfer
coefficient 81% lower than one with a rectangular fin. An effective thermal conductivity model is used
to analyze the microstructure and inertial characteristics of Ferro fluid over a stretching sheet [48, 49].
Electro-osmotic flow in a nanochannel via semi analytical method is solved by using (HPM) and con-
cluded that the (HPM) is accurate, reliable and easy to use [50].

According to [51], exponential fins can replace conventional rectangular fins for improved heat
transfer rates and better fin efficiency in industrial applications compared to straight rectangular fins
commonly used. In light of this perspective, it is imperative to investigate the combined impact of
motion of the fin, loss of heat through convection and radiation, heat generation/absorption by deriving
the associated governing heat equation, and to study the analytical as well as the numerical solutions
with the supposition of constant heat transfer coefficient h and constant thermo-physical behaviour.

Problem statement

We study temperature distribution, the temperature at the fin’s tip and the efficiency of exponential
fins. In this study, both numerical and semi-analytical methods are used to investigate the heat transfer.
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Various types of exponential fins for convection-conduction number, radiation-conduction number,
ambient and surface temperatures, Peclet number and internal heat are compared.

2. Problem description

Here, we consider the heat exchange in the longitudinal exponential fins of length L together with
both convection and radiation parameters. The physical parameters involved in the model are S g poros-
ity, h heat transfer coefficient, Ta ambient temperature, Tb temperature of the fin base, Ts the surface
temperature, ρ density of the fin material, h heat transfer coefficient, T temperature distribution. The
specific heat of the exponential fin is Cp, the emissivity of the material is ε, and the Stefan-Boltzmann
constant is Σ. It should be noted that the thermal conductivity k and heat transfer coefficient h of the
fin are considered to be fixed. The convection heat transfer coefficient h is constant and uniform over
the entire surface of the fin for convenience in the analysis. A moving fin emits radiation only from its
surface, with no visible absorption of radiation from its surroundings; therefore, its thermal emissivity
is considered to be constant.

1) Porous fins are assumed to have a steady state heat transfer.

2) It is assumed that the fin’s thickness is significantly smaller than all other dimensions, so the tem-
perature is significantly affected only in the longitudinal direction.

3) Fluid is assumed to be homogeneous, isotropic and single phase in porous media.

4) It is assumed that Darcy’s law governs fluid-solid interactions.

5) A uniform temperature is maintained at the fin’s base without any contact resistance.

6) Fluids and solids are in thermal equilibrium locally.

Let us consider that the fin is moving at a velocity U. This means that the heat loss from the hot
surface to the adjacent fluid occurs in continuous motion, and x is the distance from the fin’s base. The
governing equation has been extensively studied before for straight porous fins after an energy balance.
The local formation of the fin having exponential geometry can be represented by [52]

f (x) = τb eα
∗x, (2.1)

where α∗ is dimensional shape parameter of fin [39] and τb is semi-fin thickness. Without loss of
generality, the thickness at the base of fin is fixed to 1. Although the results are for this specific
fin thickness at the base of fin base, it should be noticed that by allowing for variable thickness, an
optimum thickness can be achieved. It is discovered that α∗ = 0 represents a straight rectangular fin,
but |α∗| > 0 represents a growing and decaying type of exponential fin as shown in Figure 1. The
governing equation of the moving fin with exponential shape together with heat generation source,
porous parameter, and heat exchange through radiation and convection is given by [51]

d
dx

[
f (x)

dT
dx

]
+

[
U (ρCp)e f f

ke f f

dT
dx

+
q

ke f f

]
f (x) −

h (1 − ϕ) P
A ke f f

[
T − Ta

]
− ṁ Cp

[
T − Ta

]
−
εσ P
A ke f f

[
T 4 − T 4

s

]
= 0. (2.2)
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Figure 1. Schematic diagram of rectangular fin, decay and growing exponential fin.

The mass flow rate ṁ of the air flowing through the porous medium is represented by

ṁ = ρ vw ϕW 4x, (2.3)

where ϕ represent porosity of the fin. the value of ϕ ranges from 0 to 1 for a solid medium ϕ = 0 and
if ϕ = 1 there will be no solid portion. Vw represent the Darcy formula defined as [53]

vw =
β g K
ν

[
T − Ta

]
. (2.4)

The enthalpy flux In case of porous materials can be stated as (ρCp)e f f U dT
dx [34] where

(ρCp)e f f = (1 − ϕ) ρs Cps + ϕ ρ f Cp f . (2.5)

We further define an effective thermal conductivity

ke f f = ϕ k f +
[
1 − ϕ

]
ks. (2.6)

Here ke f f represent effective thermal conductivity and ϕ fin’s porosity. Using Eqs (2.3)–(2.6), and
simplifying, Eq (2.2) we obtain

d
dx

[
f (x)

dT
dx

]
+

[U
λ

dT
dx

+
q

ke f f

]
f (x) −

h (1 − ϕ) P
A ke f f

[
T − Ta

]
−
ρ β g Cp K ϕW

ν ke f f

[
T − Ta

]2

−
εσ P
A ke f f

[
T 4 − T 4

s

]
= 0, (2.7)

where λ = ke f f /(ρCp)e f f is thermal diffusivity of the fin’s material. To non-dimensionalize the above
equation, we consider

α∗ =
α

L
, X =

x
L
, θ =

T
Tb
, θa =

Ta

Tb
, θs =

Ts

Tb
, S g =

Da Ra (L/t)2

kr
, Da =

ϕK
t2 ,

Ra =
g β t3

[
Tb − Ta

]
λ ν

, Pe =
U L
λ
, Q =

q L2

Tb ke f f
, Nr =

εσ P L2T 3
b

A ke f f
, N2 =

h (1 − ϕ) P L2

A ke f f
.
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After simplification, Eq (2.7) gives

eαX d2θ

dX2 + eαX
[
α + Pe

] dθ
dX
− N2

[
θ − θa

]
− S g

[
θ − θa

]2
+ Q eαX − Nr

[
θ4 − θ4

s

]
= 0, (2.8)

which demonstrate that distribution of temperature of the fin depends on Peclet number, Pe,
convection-conduction parameter, N, temperature ratios, θa and θs, radiation-conduction parameter Nr,
Porosity parameter S g, and interior heat absorption/generation parameter Q. Rearranging the above
equation, we obtain

eαX d2θ

dX2 + A eαX dθ
dX
− B θ − S g θ

2 − Nr θ
4 + C + Q eαX = 0, (2.9)

where

A = 2α − Pe, B = N2 − 2 S g θa, C = N2 θa + Nr θ4
s − S g θ

2
a.

We will study fins with adiabatic boundary conditions. Most of the time, in practice, the fin tip is thin
enough that the rear-end heat transfer can be neglected, and a solution can be obtained by assuming the
fin tip is insulated. We consider that at base (X = 1) the fin’s temperature is Tb . By adiabatic boundary
condition, we mean that no heat transfer from the tip of the fin.

T
∣∣∣∣
x=L

= Tb, and
dT
dx

∣∣∣∣
x=0

= 0.

By making dimensionless the boundary conditions, we obtain

θ(1) = 1,
dθ
dX

∣∣∣∣
X=0

= 0. (2.10)

The efficiency η of the fin is the ratio of the total heat transfer from a fin to its utmost heat exchange if
the whole fin is placed at equal temperature as its base temperature. For an exponential fin’s efficiency
is defined as [54]

η =

∫ 1

0

[
N (θ − θa) + S g (θ − θa)2 + Nr (θ4 − θ4

s)
]
dX

Nc (1 − θa) + S g (1 − θa)2 + Nr (1 − θ4
s)

. (2.11)

3. Mathematical formulation

In this section, we use differential Transform Method (DTM) to calculate analytically Eq (2). The
DTM is a semi-analytic technique based on Taylor expansion. Here, we use the proposed technique
to calculate the analytical solution of the considered model. By using the DTM technique, it should
be noted that the considered problem is transformed into algebraic equations and then coefficients are
calculated. The differential transform method (DTM) exhibits the advantage of being able to solve
nonlinear differential equations directly, eliminating the need to linearize or discretize Let θ(y) be
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analytic at a domain D, and let y = y0 symbolize any point in D. The function θ(y) can be represented
as a power series whose centre is located at y0

φ(k) =
1
k!

[
dk

dxk θ(y)
]

y=y0

, (3.1)

where φ(k) for k ∈ Z+ is a transformed function while θ(x) is primary function. The inverse differential
transformation of φ(k) can be defined as

θ(y) =

∞∑
k=0

(y − y0)kφ(k). (3.2)

By combining Eqs (3.1) and (3.2), we obtain

θ(y) =

∞∑
k=0

(y − y0)k 1
k!

[
dk

dxkφ(k)
]

x=x0

, (3.3)

which is Taylor series expansion of θ(y) at y = y0. Mathematical operation executed by DTM are
presented in Table 1 The value of the function φ(k) for different values of k are discrete. Applying

Table 1. The fundamental concept of DTM.

S.No regional function Transformed function

1 θ(y) = α f (t) ± βg(t) φ(k) = αF(k) ± βG(k)

2 θ(y) =
d f (t)

dt
φ(k) = (k + 1)F(k + 1)

3 θ(y) =
d2 f (t)

dt2 φ(k) = (k + 2)(k + 1)F(k + 2)

4 θ(y) = eγt φ(k) =
γk

k!
5 θ(y) = f (t) g(t) φ(k) =

∑k
j=0 F( j)G(k − j)

6 θ(y) = f (t) g(t) h(t) φ(k) =
∑k

l=0
∑l

j=0

[
F( j) G(l − j) H(k − l)

]
7 θ(y) = tn φ(k) = δ(k − n)

DTM to Eq (2), we obtain

k∑
j=0

α j

j!
(k − j + 1)(k − j + 2)φ(k − j + 2) + A

k∑
j=0

α j

j!
(k − j + 1)φ(k − j + 1) − Bφ(k)

−S g

k∑
j=0

[
φ( j) φ(k − j)

]
− Nr

m∑
l=0

l∑
k=0

k∑
j=0

φ( j)φ(k − j)φ(l − k)φ(m − l)

+Q ·
αk

k!
+ C · δ(k − 0) = 0. (3.4)

Here δ(k − n) is Dirac delta function define as

δ(k − n) =

{
0, k , n,
1, k = n.

(3.5)
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Applying the differential transformation on the boundary conditions given in Eq (2.10) at X = 0, we
considers

φ(1) = 0.0, φ(0) = a, (3.6)

where a is a constant and will be determine in light of the second boundary condition in Eq (2.10).
Further, solving Eq (3.4) for different value of k, we obtain

φ(2) =
1
2

(
Nr a4 + S g a2 + B a − A + C − Q

)
,

φ(3) =
1
3

[
− A φ(2) +

1
2

B (− aα + 1) +
1
2

a S g (−aα + 1) +
1
2

a3 Nr (−aα + 4) −
1
2
αC

]
,

φ(4) = −
1
4

A φ(3) +
1

12
B

[
φ(2) − α +

1
2
α2 a

]
+

1
12

S g

[
2 a φ(2) − 2 aα + 1 + 2α2 a2

]
+

1
12

Nr

[
4 a3 φ(2) − 4α a3 + 6 a2 +

1
2
α2 a4

]
+

1
24

C α2,

φ(5) = −
1
5

Aφ(4) +
1

20
B
[
φ(3) − αφ(2) −

1
2
α2 −

1
6
α3a

]
+

1
20

S g

[
2 a φ(3) − 2 φ(2) − 2α a φ(2) − α + α2 a −

1
6

a2 α3
]

+
1

20
Nr

[
4a3 φ(3) + 12 a2 φ(2) − 4α a3 φ(2) − 6α a2 + 4 a + 2α2 a3 −

1
6

a4 α3
]
−

1
120

Cα3.

Other terms can be calculated in the similar way. The final solution can be presented in the form of
algebraic equation as

θ(X) = a +

∞∑
i=1

φ(i) Xi. (3.7)

To calculate the value of a, we put the the second boundary condition from Eq (2.10) in Eq (3.7) which
gives

θ(1) = a +

∞∑
i=1

φ(i) = 1. (3.8)

The final solution is presented in Taylor series form as

θ(x) = 0.6128 + 0.2X + φ(2)X2 + φ(3)X3 + φ(4)X4 + φ(5)X5 + φ(6)X6 + φ(7)X7 + φ(8)X8 + ... (3.9)

Table 2. The error analysis between the numerical and DTM solutions.

x Numerical DTM | Numerical-DTM| x Numerical DTM | Numerical-DTM|

0 0.61240 0.61379 0.0014 0.1 0.63298 0.63673 0.0038
0.2 0.65501 0.66239 0.0074 0.3 0.67905 0.6903 0.0112
0.4 0.70577 0.71906 0.0133 0.5 0.73608 0.75211 0.0160
0.6 0.77115 0.78855 0.0174 0.7 0.81252 0.83095 0.0184
0.8 0.87805 0.87820 1.5 × 10−4 0.9 0.93454 0.93498 4.4 × 10−4
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Figure 2. Comparison between the numerical solution of the governing model and the ana-
lytical approximation obtained by using DTM method for decay exponential porous fin for
N = 0.5, S g = 0.5, θs = 0.4, θa = Pe = Q = Nr = 0.2.

In the case of decay exponential fin the result of numerical solution and differential transform solution
are compared. From Figure 2, one can see that the numerical solution and an approximation obtained
by DTM gives a good agreement.

4. Results and discussion

In this section, we study the heat transfer from the moving exponential fins numerically, where
convective and radiation heat exchange parameters along with porosity and thermal conductivity are
considered. The dimensionless temperature distribution drop-down over the length of a fin is discussed
for a variety of values.

Decay exponential fin Growing exponential finRectangular fin

X
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Q = 0
Q = 0.1

θ(Χ)

X
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0.7
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0.9

1
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θ = 0.2
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θ(Χ)
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0 0.25 0.5 0.75 1
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0.6
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0.8

0.9

1

b

θ = 0.3
θ = 0.5

s

s

θ(Χ)

Figure 3. The above figures show the temperature distribution for a variety of fins under (a)
The effect of internal heat generation Q, with θa = 0.2, θs = 0.4. (b) The effect of θa, with
Q = 0.2, θs = 0.4. (c) The effect of θs, with Q = θa = 0.2. The values of other parameters are
given as N = 0.5, S g = 0.5, Pe = Nr = 0.2.
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In Figure 3(a),(b), one can see that, with the enhancement of ambient and surface temperatures, the
rate of temperature distribution decreases. Actually, as θa and θs grows, the convective heat dispersal
from the surface of the moving fin decreases and thereby holds higher temperatures at the fin’s exterior.
The effect of heat generation Q, internally in the fins on the temperature distribution is given in Figure
3(c), which show that by increasing the internal heat generation parameter the temperature distribution
increases as the temperature difference between the fin and the surrounding fluid increases. It should be
noted that other parameters are kept invariant as mentioned in the caption of Figure 3. In conclusion,
from Figure 3, we discovered that the temperature enhances rapidly when enhancing the value of
internal heat generation Q, surrounding temperature θa and surface temperature θs.
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Figure 4. Comparison of temperature distribution for a variety of fins under (a) The effects
of Thermo-geometric parameter N with Pe = 0.2,Nr = 0.2. (b) The effect of Thermo-
geometric parameter Nr with Pe = 0.2,N = 0.5. (c)The effects of Peclet number Pe with
N = 0.5,Nr = 0.2. The other parameters are considered as S g = 0.5,Q = θa = 0.2, θs = 0.4.

In Figure 4(a),(b), the influence of increasing the convection-conduction number N and radiation-
conduction number Nr are studied. Since N is the convection-to-conduction ratio, a rise in N indicates
that more heat is transferred by convection, while less is transferred by conduction. The cooling process
increases by 15% when N is increased from 0.5 to 0.6. There is a significant temperature drop along
the rod by 5% due to the dissipated heat of the hot fin rising from 0.1 to 0.5. The influence of Pe on
temperature profile is presented in Figure 4(c), which demonstrate the drop of temperature by rising
the value of Pe. As the value of Pe rises the time for which the material is uncovered to the atmosphere
gets shorter as well as the losing heat form fin exterior increases, causing the fin temperature to fall.
When Pe = 0, indicating a static fin, cooling takes longer, as demonstrated by higher temperatures,
when compared to a moving fin. Consequently, where cooling is required, a larger Peclet number is
preferable.

From the results, it is deduced that the ratio of convection to conduction heat transfer coefficient has
an incredible impact on fin’s efficiency, temperature distribution and the rate of heat exchange at the
fin’s base.
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Figure 5. The effect of porosity parameter S g on temperature distribution for N = 0.5, θa =

0.2, θs = 0.4,Q = Pe = Nr = 0.2.

In Figure 5, we present the influence of porosity parameter on temperature distribution. The temper-
ature of the fin drop-down is observed with the enhancement in the porosity parameter. It is estimated
that the temperature distribution of the fin increases by approximately 6% when the porosity parameter
is increased from 0.1 to 0.5. A larger porosity parameter enhances the permeability of the porous fin
as a result a higher temperature transfer occurs due to which temperature along with the fin surface
decrease. Moreover, it is observed that in all the cases the temperature distribution from the growing
exponential is lower than the rectangular fin which is lower than the decay exponential fin.
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Figure 6. Comparison of fin’s tip temperature for a variety of fins against the convection-
conduction number (a) The effects of porosity parameter for Pe = 0.2,Q = 0.2. (b) The
effects of internal heat generation for S g = 0.5, Pe = 0.2 (c)The effects of Peclet number for
S g = 0.5,Q = 0.2. The other parameter are considered as Nr = θa = 0.2, θs = 0.4.
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Figure 7. Comparison of fin’s tip temperature for a variety of fins against the convection-
conduction number (a) The effects of surface temperature for Nr = 0.2, θa = 0.2. (b)The
effects of radiation conduction number for θa = 0.2, θs = 0.4. (c) The effects of ambient
temperature for Nr = 0.2, θs = 0.4. The other parameter are considered as S g = 0.5,Q =

Pe = 0.2.

In Figures 6 and 7, we study the connection of the temperature distribution of the fin’s tip against
convection-conduction parameter N. The effect of porosity parameter S g along with the convection-
conduction parameter N on the temperature of the tip of the fin is represented in Figure 6(a). From
this figure, one can see that, when N approaches zero, the temperature on the fin’s tip decreases by
increasing the value of porosity parameter S g. But, when the value of N increases, the effect of the S g

on the tip temperature decreases. The effect of an internal heat generation is given in Figure 6(b). It
should be noted that as Q increases from 0 to 0.2 we obtain the maximum value of the temperature for
the minimum N on the fin’s tip and the differences of the fin tip temperature decreases as N increases.
The influence of Pe on fin’s tip temperature is expressed in Figure 6(c). When the value of the Peclet
number is small enough, that is, Pe = 0, the fin’s tip temperature is increasing at a small value of N,
relative to the larger value of the Peclet number while the influence of Pe on the temperature of the
fin’s tip declines with the increase of thermo-geometric parameter.

In Figure 7(a), we see that the temperature of the fin’s tip decreases as the significance of surface
temperature increases for a small value of N (convection-conduction number) and become closer to
each other as N increases. Similarly, Figure 7(b), shows that at a small value of convection-conduction
number N, the fin’s tip temperature decreases as we increase radiation-conduction number Nr and when
the value of N increases from 2, the fin’s tip temperature become equal. We conclude that, in Figures
6(a) and 7(b), the temperature of fin’s tip decreases for the growing value of N, due to heat drop from
the surface through convection and radiation. Further, the effect of the surrounding temperature on the
fin’s tip is represented in Figure 7(c). This figure demonstrates that when the surrounding temperature
rises along with the N, the temperature on the fin’s tip increases rapidly. This increase is due to the
decrease of convection from the fin to the surrounding.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11491–11511.



11504

Decay exponential fin Rectangular fin Growing exponential fin

S
g

θ
(0

)

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N = 0.4
N = 0.6

a

S
g

θ
(0

)

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Q = 0.0
Q = 0.3

b

S
g

θ
(0

)

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Pe = 0.0
Pe = 0.5

c
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Figure 9. Comparison of fin’s tip temperature for a variety of fins against the porosity pa-
rameter (a) The effects of surface temperature for Nr = 0.2, θa = 0.2. (b)The effects of
radiation conduction number for θa = 0.2, θs = 0.4. (c) The effects of ambient temperature
for Nr = 0.2, θs = 0.4. The other parameter are considered as N = 0.5,Q = Pe = 0.2.

In Figures 8 and 9, we study the connection of the temperature distribution of the fin’s tip against
porosity parameter S g. The effect of convection-conduction number along with the porosity parameter
on fin’s tip temperature is represented in Figure 8(a). From this figure, one can see that, when N
increases, the temperature on the fin’s tip drop-down by increasing the value of porosity S g. The effect
of an internal heat generation is given in Figure 8(b). It should be noted that, for the minimum S g, we
obtain the maximum value of the tip temperature. The outcome of Pe on fin’s tip temperature is shown
in Figure 8(c). When the value of the Pe is increasing, the fin’s tip temperature is increasing slightly.
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In Figure 9(a), we note that the tip temperature grows as surface temperature increases. Similarly,
Figure 9(b), shows that a small value of porosity parameter S g, the fin’s tip temperature decreases as we
increase radiation-conduction number Nr and when the value of S g increases, the fin’s tip temperature
come closer to each other. The result of the surrounding temperature on the tip of the fin is represented
in Figure 9(c). This plot shows that as the surrounding temperature rises along with the porosity
parameter, the temperature on the fin’s tip increases slightly.
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are considered as Nr = Q = Pe = θa = 0.2, N = 0.5, θs = 0.4, S g = 0.2.

In Figures 10 and 11, we demonstrate the influence of the radiation-conduction parameter Nr, Peclet
number Pe and internal heat generation Q on the efficiency η together with the thermal conductivity
parameter Nr, Pe,Q, S g, θa, and θs for a variety of fins. From Figure 10(a), it is noted that, the fin
efficiency is decreasing as Nr goes from 0 to 1. The impact of the Pe can be observed in Figure 10(b),
which shows that the efficiency increases by increasing the Peclet number. From Figure 10(c), one can
observe that fin’s efficiency is decreasing for a large value of Q.
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The influence of S g on efficiency is expressed in Figure 11(a) shows that the fin’s efficiency dimin-
ishes as the value of the porosity parameter increases. Figure 11(b) present that the fin’s efficiency
improve slightly as the surface temperature increases from θs = 0 to θa = 0.75 and increases rapidly as
θs increases from 0.75. In Figure 11(c), we discuss the effect of convection-conduction number, which
presents that increasing the value of N, the efficiency of the fin increases up to 0.25 and decreases as
N rises from 0.25. In conclusion, it is observed that the efficiency of growing exponential fin is higher
than a rectangular fin, while the efficiency of the rectangular fin is greater than a decay exponential fin
as shown in Figures 10 and 11.

We conclude that the present work leads us to the conclusion that the straight fins frequently used in
the industry can be replaced by the exponential fin of growing form to obtain a better convective heat
exchange rate.

5. Conclusions

We have investigated the joint effect of convection, porosity and radiation on moving exponential fin
under the influence of internal heat generation with convective boundary conditions. Three physically
important parameters, efficiency, temperature distribution and fin’s tip temperature are considered. It
has been observed that the temperature distribution decreases by increasing heat generation, surround-
ing fluid’s temperatures, the temperature of the fin surface, Peclet number, porosity parameter and
increases by increasing convection-conduction and radiation-conduction number. It is also noticed that
when the Peclet number increases, so do the local temperature, convection heat transfer, and surface
heat loss, but the base heat conduction decreases. It is noted that the rectangular fins have lesser tem-
perature distribution than exponential fins of decay exponential profile and greater value than growing
exponential fins. When the surrounding temperature is increased by 50%, the efficiency of the fin
decreases by approximately 30%. Increasing internal heat generation from 0.3 to 0.4 results in a 7%
decrease in efficiency. The results demonstrate that the efficiency of the decay exponential fins is better
than the fins of rectangular geometry. The existence of heat absorption supports the efficiency of the
fin. Therefore, the fin’s of the straight rectangular profile which is used widely in industries may be
replaced with the decaying type of exponential for better performance as discussed in this article.It is
possible to extend this research to analyze heat transfer from different fin types when a magnetic field
is present. A single fin connected to the prime surface is the subject of this study. The research can
incorporate an array of fins.
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