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Abstract: An attempt is made in this paper to devise a finite-time adaptive fuzzy back-stepping control 
scheme for a class of multi-input and multi-output (MIMO) coupled nonlinear systems with 
immeasurable states. In view of the uncertainty of the system, adaptive fuzzy logic systems (AFLSs) 
are used to approach the uncertainty of the system, and the unmeasured states of the system are 
estimated by the finite-time extend state observers (FT-ESOs), where the state of the observer is a 
sphere around the state of the system. The accuracy and efficiency of the control effect are ensured by 
combining the back-stepping and finite-time theory. It is proved that all the states of the closed-loop 
adaptive control system are semi-global practical finite-time stability (SGPFS) by the finite-time 
Lyapunov stability theorem, and the tracking errors of the system states converge to a tiny 
neighborhood of the origin in a finite time. The validity of this scheme is demonstrated by a simulation. 

Keywords: coupled nonlinear systems; adaptive fuzzy logic system; extended state observer; back-
stepping; finite time 
 

1. Introduction  

In the past few decades, nonlinear system control methods have attracted the research interest of 
many scholars. Moreover, the systems with complexity, uncertainty and coupling are more challenging 
to control. In order to achieve accurate, stable and rapid control effect, many methods have been 
applied to nonlinear systems, such as adaptive control, fuzzy logic control, neural network control, 
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back-stepping control and so on [1−6]. 
A new function approximator [7] is designed for strict feedback nonlinear systems, in which the 

unknown periodic disturbance system function is modeled by combining Fourier series and fuzzy logic 
systems (FLSs) to propose a tracking control approach of adaptive back-stepping. Whereas, a fuzzy 
adaptive back-stepping control method [8] is established for nonlinear systems with backlash 
hysteresis and time-varying state constraints. In order to solve the issue of differential explosion, the 
technique of dynamic surface control (DSC) is devised to fit a neural control or fuzzy adaptive design 
process for nonlinear systems with uncertain functions [9−12]. A robust adaptive fuzzy DSC is 
suggested for single-input and single-output (SISO) nonlinear systems with uncertainties [9]. The 
design process is simplified by this method while eliminating the explosion of the differential term. 
Moreover, some scholars use neural networks to approximate uncertain nonlinear parts. For a nonlinear 
system with additional interference, an adaptive back-stepping DSC approach on account of radial 
basis function (RBF) neural network is proposed [13]. On the other hand, for a class of uncertain SISO 
nonlinear systems with saturation delay and time-varying delay states, an adaptive back-stepping 
design scheme based on neural network is presented [14]. 

All the aforementioned methods are suggested for the SISO nonlinear systems. However, in the 
physical world, MIMO systems are most commonly used [15−20]. A control method combining FLS 
and back-stepping is advocated for nonlinear MIMO systems with non-measurable states [15]. An 
adaptive back-stepping design scheme which directly combines the output recurrent wavelet neural 
networks (ORWNNs) for MIMO nonlinear undefined non-affinte systems is also reported [16]. A 
fuzzy adaptive back-stepping DSC approach [17] is put forth for MIMO with non-measurable states. 
An adaptive back-stepping tracking control approach using neural network [18] is suggested for 
interconnected mismatched systems. A fuzzy adaptive output feedback DSC are designed for 
stochastic systems with unmeasured states [19]. A neural network adaptive controller based on event 
triggering is designed for MIMO systems [20]. Although, the above studies have exhibited significant 
achievements for nonlinear MIMO systems with uncertainties, there is wide scope for further 
improvement [21−27]. On the basis of an adaptive DSC [26], the system’s uncertain parts are 
approached by the interval type-2 fuzzy neural networks (IT2FNNs). Similarly, a flexible joint’s 
adaptive back-stepping controller based on IT2FNN is also presented [27], where the IT2FNN 
controller has a smoother control surface near the steady state, which helps to improve its robustness 
and the ability to deal with the uncertainty in the system. 

The above research literature belongs to infinite time control, with the relentless march of the 
technology, where the design objectives of control systems are supposed to accomplish in a finite 
time [28−32]. Some industrial control systems still require the controlled target within a finite time, 
and maintain the control effects in the systems of aircraft attitude control, robot control, multi-agent 
control and so on. The long transient response and the low precision performance of infinite time 
control methods cannot achieve such control goals. Therefore, of late, the problems of finite-time 
analysis have attracted the attentions of many scholars [33−39]. 

The finite-time adaptive neural network methods combining back-stepping are proposed for a 
class of uncertain nonlinear systems [33,36,38,39]. In addition, the finite-time fuzzy adaptive 
controllers using back-stepping have also been advocated [34,35]. Furthermore, the design of finite-
time fuzzy adaptive control under event triggered strategy for un-modeled systems is studied [36]. 
Similarly, a finite-time fuzzy adaptive control with command filtering method for non-strict 
feedback systems is studied [37]. However, none of the above methods consider MIMO coupled 
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nonlinear system with unmeasured states. Therefore, in this paper, a finite-time adaptive fuzzy back-
stepping control scheme for a class of MIMO coupled nonlinear systems with immeasurable states 
is devised. The solution of this issue is realized by the combination of fuzzy system, back-stepping 
and finite time theory. 

The main advantages of this study can be summarized as follows: 
1) The finite-time stability of MIMO nonlinear systems with uncertainty and coupling is studied 
by using back-stepping method, the systems are different from the non-coupled MIMO non-strict 
feedback system [35] and the SISO systems [36,37,39]. Since, it solves the problem that is difficult 
to control the non-strict feedback MIMO coupling nonlinear system with unmeasured states. 
2) To solve the issue of the unpredictable system state, a FT-ESO is introduced to estimate the 
unmeasured state which fails to account for in the case where the system has unknown states [33,34,38]. 
Furthermore, the FT-ESO is different from the observers, where the output feedback is difficult to 
apply to MIMO coupling nonlinear systems [35,39]. 

This study not only guarantees that the observation errors converge to the tiny neighborhood of 
the origin in a finite time, but also ensures that the error of the system state and the reference quantity 
converges in a finite time. Through the finite time Lyapunov theory, it finally achieves SGPFS. 

2. Problem formulation and preliminaries 

2.1. System description 

Considering the following nonlinear MIMO non-strict feedback system: 𝑸 = 𝑭(𝑸) + 𝑮(𝑸)(𝑼 + 𝑫)𝒀 = 𝑸                                             (2.1) 

Where, 𝑸 is the vector of the state, 𝑸 = [𝑞  ⋯ 𝑞 ] , 𝑼, and Y mean the input and output variables, 
and 𝑫  is bounded disturbances represented by 𝑼 =  [𝑢  𝑢 ⋯ 𝑢 ]  , 𝑫 = [𝑑  𝑑 ⋯ 𝑑 ]  . 𝑭(𝑸) 
and 𝑮(𝑸) are unknown nonlinear smooth functions with the following structure: 𝑭(𝑸) = [𝑓 (𝑸) 𝑓 (𝑸) ⋯ 𝑓 (𝑸)] , 

𝑮(𝑸) = 𝒈𝟏𝟏(𝑸) ⋯ 𝒈𝟏𝟐(𝑸)⋮ ⋱ ⋮𝒈𝒎𝟏(𝑸) ⋯ 𝒈𝒎𝒎(𝑸) , 

Remark 1: The nonlinear function 𝑭  and 𝑮  of the controlled system (2.1) are completely 
unknown and FLSs are used to approach the uncertainties. 

Assumption 1: The total disturbance 𝑫 is bounded. 
Assumption 2: Considering the assigned reference signals, their first-order and second-order 

derivatives are bounded. 

2.2. Fuzzy approximation theory 

The FLS is a form of nonlinear function and can approximate all nonlinear functions with any 
precision, so it can be applied to all kinds of problems. FLSs are constructed by employing some 
specific inference, fuzzifier and de-fuzzifier strategies and form IF-THEN rules. Consequently, 
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information from human experts in various fields can be integrated into the controller. 
The design of a FLS is divided into four sections namely, the fuzzifier, the knowledge base, the 

fuzzy inference engine and the de-fuzzifier. Assuming that the FLS is composed of N fuzzy rules, the 
jth fuzzy rule can be denoted as: 

If 𝑥  is  𝐹  and ⋯ and  𝑥  is 𝐹 , then y is 𝐵 (𝑗 = 1,2, ⋯ , 𝑁). 

Where, 𝐹 , 𝐵  are the fuzzy sets in R, related to the membership functions. 

After adopting the product Inference Engine, the singleton fuzzifier and the center average 
defuzzification, the FLS’s output is given as: 

𝑦(𝑥) = ∑ ∏ ( )∑ ∏ ( )         (2.2) 

Where, 𝒙 = [𝑥 , 𝑥 , ⋯ 𝑥 ] ∈ 𝑅  , 𝜇 (𝑥 )  is the membership function, 𝜃 = max∈ 𝐵 (𝑦) . Denote 𝜺(𝒙) = [𝜀 (𝒙), 𝜀 (𝒙), ⋯ , 𝜀 (𝒙)]  , 𝜀 (𝒙)  is fuzzy basis function, 𝜀 (𝒙) = ∏ ( )∑ ∏ ( ) . Denote 𝜽 = [𝜃 , 𝜃 , ⋯ , 𝜃 ] , 𝜽 is a parameter vector. Then 𝒚(𝒙) = 𝜺 (𝒙)𝜽. A fuzzy logic system (3.20) can 
be constructed from (2.2) which can consistently approximate nonlinear functions to arbitrary 
precision. 

Lemma 1. According to fuzzy universal approximation theory, if 𝑓(𝑥) is a smooth function, and 
for any arbitrary constant 𝜀 > 0, there is a FLS which satisfies: 𝑠𝑢𝑝∈ |𝑓(𝑥) − 𝑦(𝑥)| ≤ 𝜀. 

2.3. Finite Time 

Lemma 2. For nonlinear systems 𝜉 = 𝑓(𝜉), initial values 𝜉(𝑡) = 𝜉, if there is a constant quantity 𝜀 > 0, and a time function 𝑇(𝜀, 𝜉) < ∞, for all 𝑡 ≥ 𝑡 + 𝑇 , let ξ (t) < ε, then the nonlinear system’s 
equilibrium point 𝜉 = 0 is SGPFS [40, 41]. 

Lemma 3. For arbitrary 𝑧 ∈ 𝑅 ,  𝑖 = 1,2, ⋯ , 𝑛,  and a constant 0 < 𝑞 ≤ 1 , the following 
inequality is present [40,41]: (∑ |𝑧 |) ≤ ∑ |𝑧 | ≤ 𝑛 (∑ |𝑧 |)     (2.3) 

Lemma 4. For positive constants  𝜇, 𝛿, 𝜄, and real variables 𝑧, 𝜁, the inequality is obtained as 
follows [41]: |𝑧| |𝜁| ≤ 𝜄|𝑧| + 𝜄 |𝜁|      (2.4) 

Lemma 5. There is a function 𝑉(𝜉) which is positive-definite, and there are constants 𝑐 > 0, 0 < 𝛽 < 1, 𝜌 > 0, if the nonlinear function 𝜉 = 𝑓(𝜉) satisfies [41]: 𝑉(𝜉) ≤ −𝑐𝑉 (𝜉) + 𝜌, 𝑡 ≥ 0       (2.5) 

Then, the nonlinear function 𝜉 = 𝑓(𝜉) is SGPFS. 
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3. Observer-based finite-time fuzzy adaptive back-stepping design and stability analysis 

This section introduces a FT-ESO to obtain the unmeasured states [42]. Then the observer-based 
finite time adaptive back-stepping controller is proposed. Finally, the system’s stability is verified. 

3.1. Finite-time extended fuzzy state observer design 

Since the state of the system is unpredictable, the extended state observer needs to be designed in 
the following form to estimate immeasurable states: 𝜉 = 𝜉 + 𝛽 (𝑡, 𝑇) × 𝜉 − 𝜉  

𝜉 = 𝜉 + 𝛽 (𝑡, 𝑇) × (𝜉 − 𝜉 )       (3.1) 

𝜉 = 𝜉 + 𝛽 (𝑡, 𝑇) × 𝜉 − 𝜉 + 𝑢 

𝜉 = 𝛽 (𝑡, 𝑇) × (𝜉 − 𝜉 ) 

Where, the time-varying gains 𝛽 (𝑡, 𝑇) are functions of a constant parameter T and the real-time t. 
The convergence time is regulated by select parameter T later. The vector of estimation error is defined 
as: 𝑒 = 𝜉 − 𝜉. The error models are generated as follows: 𝑒 = 𝑒 − 𝛽 × 𝑒  𝑒 = 𝑆 − 𝛽 × 𝑒         (3.2) 

In order to weaken the errors 𝑒  to a tiny area of 0 along with 𝑡 incline to the convergence time 𝑇, the time-varying gains will be given. Considering nonlinear system (2.1) and the observer (3.1), 
which derive the error model (3.2), the extended state observer gains 𝛽  are presented as follows: 𝛽 = 𝐿 + �̅� , (1 − 𝜇 )𝜇 − �̅� , 𝜇 − ∑ �̅� , 𝜇 𝛽 , 𝑖 = 1,2, ⋯ , 𝜌  (3.3) 

𝛽 = 𝐿 + �̅� , (1 − 𝜇 )𝜇 − ∑ �̅� , 𝜇 𝛽     (3.4) 

Where, �̅� ,  for 𝑖 = 1,2, ⋯ , 𝜌 and 𝑗 = 2, ⋯ , 𝜌 + 1 are given as follows: 

�̅� , = 𝛽 , (1 + 𝜇 )𝜇 + �̅� , (1 − 𝜇 )𝜇 + �̅� ,   (3.5) 𝑖 = 2, ⋯ , ρ. 𝑗 = 2, ⋯ , 𝜌 + 1. 

Moreover, �̅� , = �̅� , (1 + 𝜇 )𝜇 + �̅� , (1 − 𝜇 )𝜇    (3.6) 
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Where, �̅� , = 1  and for 𝑖 < 𝑗  one has �̅� , = 0 , 𝜇 (𝑡, 𝑇) =  . The scalar coefficients 𝐿   for 

𝑖 = 1, ⋯ , 𝜌 are chosen such that the (𝜌 + 1) × (𝜌 + 1) matrix 𝛬 = ⎣⎢⎢
⎡ −𝐿 1 ⋯ 0⋮ ⋮ ⋱ 0−𝐿 0 ⋱ 1−𝐿 0 ⋯ 0⎦⎥⎥

⎤
 satisfies Hurwitz. 

The error model (3.2) is stable along with the time T of convergence and the error model (3.2) is 
finite-time input-to-state stable (FT-ISS) for a positive constant 𝜀 > 1, ‖𝑒‖ ≤ 𝑣 𝑆𝑢𝑝‖𝜞(𝑣)‖ 𝜀𝒆𝜦 ‖𝜷(1)‖‖𝒆(0)‖ + 𝒆𝜦( )‖𝑩‖ 𝜇|𝑺|𝑑    (3.7) 

Where, 𝜇(𝑡, 𝑇) = 𝜇 , and 𝑣(𝑡, 𝑇) = 𝜇  are time-varying functions. Moreover, gradually 𝑩 =[0 ⋯ 0 1] , m is an integer design parameter, 𝜷  is a lower triangular matrix. Moreover, 𝜞(𝑣)  is 
defined as 𝜷 . 

The Lyapunov function is chosen as 𝑉 = ∑ 𝑒 , after differentiating, we get the following 

formula: 𝑉 ≤ −𝑐 𝑉 . 
Remark 2: The estimation error is equally bounded in finite time by the scheme without knowing 

the upper bound of the perturbation. Then, using the finite-time Lyapunov function described in the 
next part, a controller is built to maintain the closed-loop system’s stability. 

3.2. Finite-time adaptive back-stepping design and stability analysis 

In this part, a finite-time adaptive fuzzy control approach is proposed by the adaptive back-
stepping technique and the stability analysis is shown through the finite-time Lyapunov function. 

The system is converted as follows to apply back-stepping technique: 𝒙𝟏 = 𝒙𝟐                                                    𝒙𝟐 = 𝑭(𝒙𝟏, 𝒙𝟐) + 𝑮(𝒙𝟏, 𝒙𝟐)(𝑼 + 𝑫)𝒚 = 𝒙𝟏                                                            (3.8) 

Where, 𝒙𝟏 = 𝑸, 𝒙𝟐 = 𝑸. 
ion vector error: Step 1: Define posit 𝒛𝟏 = 𝒙𝟏 − 𝒙𝟏𝒅         (3.9) 

Where, 𝒙𝟏𝒅 is the reference signal. 𝒛𝟏 = 𝒙𝟏 − 𝒙𝟏𝒅         (3.10) 𝒛𝟐 = 𝒙𝟐 − 𝜶𝟏         (3.11) 

Define virtual control quantity 𝜶𝟏 = −𝒄𝟏𝒛𝟏(𝒛𝟏 𝒛𝟏) + 𝒙𝟏𝒅      (3.12) 

Where, 𝒄𝟏 > 𝟎 . For the singularity problem in the subsequent derivation of 𝜶𝟏 , the method of 
obtaining the pseudo-inverse matrix is used to solve it. The differential expression is 𝜶𝟏 =
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−𝒄𝟏𝒛𝟏(𝒛𝟏 𝒛𝟏) ∙( ) − 2𝒄𝟏(𝜷 − 𝟏)𝒛𝟏(𝒛𝟏 𝒛𝟏) ∙( )𝒛𝟏 𝒛𝟏 . When 𝒛𝟏 𝒛𝟏 =0, 0 < 𝛽 < 1 , (𝒛𝟏 𝒛𝟏) ∙( ) has a singularity problem, so the pseudo inverse value needs to be obtained, and then (𝒛𝟏 𝒛𝟏) ∙( )=0. There are similar problems in (𝒛𝟏 𝒛𝟏) ∙( ), therefore, it will not be repeated. 
After the above analysis, the value at the singularity is 𝜶𝟏 = 𝟎. 

For the first subsystem, considering the observer stability and position errors, define Lyapunov 
function as: 𝑽𝟏 = 𝑽𝟎 + 𝒛𝟏 𝒛𝟏        (3.13) 

When the estimation matrix 𝑮 is singular, the above operation is difficult to achieve. In order to 
overcome this disadvantage, we find the generalized inverse of 𝑮. Then, 𝑽𝟏  =  𝒛𝟏 (𝒛𝟐  +  𝜶𝟏  −  𝒙𝟏𝒅) + 𝑽𝟎  =  𝒛𝟏 𝒛𝟐  −  𝒄𝟏𝒛𝟏(𝒛𝟏 𝒛𝟏) 𝟏  +  𝑽𝟎  =  𝒛𝟏𝑻𝒛𝟐  − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷  +  𝑽𝟎        (3.14) 

If 𝒛𝟐 = 0, then 𝑽𝟏 ≤ 0. 
Step 2: Design controller: 𝒛𝟐 = 𝒙𝟐 − 𝜶𝟏 = 𝑭(𝒙𝟏, 𝒙𝟐) + 𝑮(𝒙𝟏, 𝒙𝟐)(𝑼 + 𝑫) − 𝜶𝟏    (3.15) 

For the second subsystem, considering speed errors, define Lyapunov function as 𝑽𝟐 = 𝑽𝟏 + 𝒛𝟐 𝑮 𝒛𝟐       (3.16) 

Then, 𝑽𝟐 = 𝑽𝟎 + 𝑽𝟏 + 𝒛𝟐 𝑮 𝒛𝟐 + 𝒛𝟐 𝑮 𝒛𝟐 + 𝒛𝟐 𝑮 𝒛𝟐 = 𝒛𝟏𝑻𝒛𝟐 −  𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 + 𝒛𝟐𝑻𝑮 𝟏𝒛𝟐 +
𝟏𝟐 𝒛𝟐𝑻𝑮 𝟏𝒛𝟐 +  𝑽𝟎 = 𝒛𝟏𝑻𝒛𝟐 −  𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 + 𝒛𝟐𝑻𝑮 𝟏[𝑭 + 𝑮(𝑼 + 𝑫) − 𝜶𝟏] + 𝟏𝟐 𝒛𝟐𝑻𝑮 𝟏𝒛𝟐 + 𝑽𝟎 =𝒛𝟏𝑻𝒛𝟐 − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 + 𝒛𝟐𝑻(𝑮 𝟏𝑭 + 𝑼 + 𝑫 − 𝑮 𝟏𝜶𝟏) + 𝟏𝟐 𝒛𝟐𝑻𝑮 𝟏𝒛𝟐 +  𝑽𝟎 = 𝒛𝟏𝑻𝒛𝟐 − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 + 𝒛𝟐𝑻(𝑮 𝟏𝑭 + 𝑼 − 𝑮 𝟏𝜶𝟏 + 𝟏𝟐 𝑮 𝟏𝒛𝟐) + 𝒛𝟐𝑻𝑫 + 𝑽𝟎   (3.17) 

Let 𝒇 = 𝑮 𝑭 − 𝑮 𝜶𝟏 + 𝑮 𝒛𝟐. 

It can be seen from the expression of 𝒇, that 𝒇 c contains the model information of the above 
systems. In order to realize the control without model information, FLS is used to approximate 𝒇. 

Based on Lemma 1, we expect that the continuous function 𝒇 can be evaluated by the FLS as 
following 𝜑 (𝒙) = ∑ ∏ ( )∑ [∏ ( )] = 𝜺 𝜽        (3.18) 
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𝜑 (𝒙) = ∑ ∏ ( )∑ [∏ ( )] = 𝜺 𝜽        (3.19) 

Define 𝝋 = 𝜺 (𝒙)𝜽         (3.20) 

Deform the above formula (3.20) into 𝝋 = [𝜑 , 𝜑 ] = 𝜺 00 𝜺 𝜽𝜽 = 𝜺 (𝒙)𝜽     (3.21) 

Where, 𝝋, 𝒙 are the estimation of 𝒇, 𝒙. And 𝜀 (𝑥) = ∏ ( )∑ [∏ ( )]. 
Then, we design control rate as 𝑼 = −𝒄𝟐𝒛𝟐(𝒛𝟐 𝒛𝟐) − 𝒛𝟏 − 𝝋 − 𝒛𝟐     (3.22) 

Substituting (3.18), (3.19) into (3.17), we have 𝑽𝟐 = 𝒛𝟏 𝒛𝟐 −  𝒄𝟏(𝒛𝟏 𝒛𝟏) + 𝒛𝟐 (𝒇 + 𝑼) + 𝒛𝟐 𝑫 + 𝑽𝟎 = − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) +𝒛𝟐𝑻(𝒇 − 𝝋) + 𝒛𝟐𝑻𝑫 − 𝒛𝟐𝑻𝒛𝟐 + 𝑽𝟎 = − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 − 𝒄𝟐(𝒛𝟐𝑻𝒛𝟐)𝜷 + 𝒛𝟐𝑻(𝒇 − 𝜺(𝒙)𝜽) + 𝒛𝟐𝑻𝑫 −𝒛𝟐𝑻𝒛𝟐 + 𝑽𝟎        (3.23) 

 
Step 3: Stability analysis: 𝒇, there is an optimal constant 𝜽∗ that minimizes the approximation error. For smooth function 

Define the optimal constant as 𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∈ 𝑠𝑢𝑝∈ |𝒇 − 𝜺(𝒙)𝜽|       (3.24) 

Where, 𝛺  and 𝛺 is bounded set. 
The approximation constant error is 𝜽 = 𝜽∗ − 𝜽         (3.25) 

Considering the whole system, define Lyapunov function as 𝑽𝟑 = 𝑽𝟐 + 𝜸 𝜽 𝜽        (3.26) 

Where, 𝜸 > 0. Then, 𝑽𝟑 = 𝑽𝟐 − 𝜽 𝜽 = − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 − 𝒄𝟐(𝒛𝟐𝑻𝒛𝟐)𝜷 + 𝒛𝟐𝑻(𝒇 − 𝜺(𝒙)𝜽) + 𝒛𝟐𝑻𝑫 − 𝒛𝟐𝑻𝒛𝟐 − 𝟏𝜸 𝜽𝑻𝜽 + 𝑽𝟎 = − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 − 𝒄𝟐(𝒛𝟐𝑻𝒛𝟐)𝜷 + 𝒛𝟐𝑻(𝒇 − 𝜺(𝒙)𝜽∗) + 𝒛𝟐𝑻(𝜺(𝒙)𝜽∗ − 𝜺(𝒙)𝜽) + 𝒛𝟐𝑻𝑫 − 𝟏𝜸 𝜽𝑻𝜽 −𝒛𝟐𝑻𝒛𝟐 + 𝑽𝟎          (3.27) 

According to the matrix norm inequality, we get ‖𝒛𝟐 (𝒇 − 𝜺(𝒙)𝜽)‖ ≤ ‖𝒛𝟐 ‖ ∙ ‖𝒇 − 𝜺(𝒙)𝜽∗‖, ‖𝒛𝟐 𝑫‖ ≤ ‖𝒛𝟐 ‖ ∙ ‖𝑫‖. Then, transform (3.27) into the following form: 
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𝑽𝟑 ≤ − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) + ‖𝒛𝟐 ‖ ∙ ‖𝒇 − 𝜺(𝒙)𝜽∗‖ + 𝒛𝟐 𝜺(𝒙)𝜽 − 𝜽 𝜽 + ‖𝒛𝟐 ‖ ∙ ‖𝑫‖ −𝒛𝟐𝑻𝒛𝟐 + 𝑽𝟎         (3.28) 

According to Young’s inequality, the transformation of (3.28) is as follows 𝑽𝟑 ≤ − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) + ‖𝒛𝟐 ‖ + 𝝐𝟐 + 𝜽[𝒛𝟐 𝜺(𝒙) − 𝜽] + 𝟏𝟐 ‖𝒛𝟐𝑻‖𝟐 + 𝟏𝟐 ‖𝑫‖𝟐 −𝒛𝟐𝑻𝒛𝟐  +  𝑽𝟎         (3.29) 

Design adaptive law as: 𝜽 = 𝜸(𝒛𝟐 𝜺(𝒙)) − 2𝒌𝜽,       𝜸 ≥ 0     (3.30) 

Substituting (3.29) into (3.30), we have 𝑽𝟑 = −𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) + ‖𝒛𝟐 ‖ + 𝝐 + 𝜽 𝒌𝜽𝜸 + ‖𝑫‖ − 𝒛𝟐 𝒛𝟐 + 𝑽𝟎 ≤−𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 − 𝒄𝟐(𝒛𝟐𝑻𝒛𝟐)𝜷 + 𝒛𝟐𝑻𝒛𝟐 + 𝟏𝟐 𝝐𝟐 + 𝒌𝜸 (𝟐𝜽∗𝑻𝜽 − 𝟐𝜽𝑻𝜽) + 𝟏𝟐 𝑫𝑻𝑫 − 𝒛𝟐𝑻𝒛𝟐 + 𝑽𝟎 (3.31) 

From (𝜽 − 𝜽∗) (𝜽 − 𝜽∗) ≥ 0, we can get 2𝜽∗ 𝜽 − 2𝜽 𝜽 ≤ −𝜽 𝜽 + 𝜽∗ 𝜽      (3.32) 

Take (3.32) into the (3.31) and we get 𝑽𝟑 ≤ − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) + 𝝐 + 𝒌𝜸 (𝜽∗ 𝜽∗ − 𝜽 𝜽) + 𝑫 𝑫 +  𝑽𝟎 ≤ − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏)𝜷 −𝒄𝟐(𝒛𝟐𝑻𝒛𝟐)𝜷 + 𝟏𝟐 𝝐𝟐 − 𝒌𝟐𝜸 𝜽𝑻𝜽 + 𝟐𝒌𝜸 𝜽∗𝑻𝜽∗ + 𝑽𝟎 + 𝟏𝟐 𝑫𝑻𝑫    (3.33) 

From (𝜽 + 𝜽∗) (𝜽 + 𝜽∗) ≥ 0, we can get −𝜽∗ 𝜽 − 𝜽 𝜽∗ ≤ 𝜽 𝜽 + 𝜽∗ 𝜽∗      (3.34) 

Furthermore, we derive −𝜽 𝜽 − 𝜽∗ 𝜽∗ ≤ − 𝜽 𝜽      (3.35) 

Then, substituting (3.35) into (3.33), we have 𝑽𝟑 = − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) − 𝒌𝜸 𝜽 𝜽 + 𝝐 + 𝒌𝜸 𝜽∗ 𝜽∗ + 𝑫 𝑫 + 𝑽𝟎  (3.36) 

In order to deal with terms 𝜽 𝜽, 

𝑽𝟑 = − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝒛𝟐 𝒛𝟐) − 𝒌𝜸 𝜽 𝜽 + 𝒌𝜸 𝜽 𝜽 − 𝒌𝜸 𝜽 𝜽 + 𝟏𝟐 𝝐𝟐 + 𝟐𝒌𝜸 𝜽∗𝑻𝜽∗ +
𝟏𝟐 𝑫𝑻𝑫 +  𝑽𝟎         (3.37) 
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Now, by using Lemma 4, z = 1, select designed parameters as 𝝁 = 𝟏 − 𝜷, 𝜹 = 𝜷, 𝜾 = 𝜷𝟏 , 
respectively, we get the following inequality 𝜽 𝜽 ≤ (𝟏 − 𝜷)𝜾 + 𝜽 𝜽       (3.38) 

Substituting (3.38) into (3.37), we have 𝑽𝟑 ≤ − 𝒄𝟏(𝒛𝟏𝑻𝒛𝟏) − 𝒄𝟐(𝒛𝟐𝑻𝒛𝟐) − 𝒌𝜸 𝜽 𝜽 + 𝒌𝜸 (𝟏 − 𝜷)𝜾 + 𝒌𝜸 𝜽 𝜽 − 𝒌𝜸 𝜽 𝜽 + 𝝐 +𝟐𝒌𝜸 𝜽∗𝑻𝜽∗ + 𝟏𝟐 𝑫𝑻𝑫 +  𝑽𝟎       (3.39) 

Let 𝒛𝟐 𝒛𝟐 ≤ 𝜎𝒛𝟐 𝑮 𝒛𝟐, then we can have 𝑽𝟑 ≤ − 𝒄𝟏(𝒛𝟏 𝒛𝟏) − 𝒄𝟐(𝜎𝒛𝟐 𝑮 𝒛𝟐) − 𝒌𝜸 𝜽 𝜽 + 𝒌𝜸 (𝟏 − 𝜷)𝜾 + 𝝐 + 𝒌𝜸 𝜽∗ 𝜽∗ + 𝑫 𝑫 + 𝑽𝟎 ≤ − 𝒄𝟏𝟐𝜷 𝟏𝟐 𝒛𝟏𝑻𝒛𝟏 𝜷 − 𝒄𝟐𝝈𝜷𝟐𝜷(𝟏𝟐 𝒛𝟐𝑻𝑮 𝟏𝒛𝟐)𝜷 − 𝒌𝟐𝜸 (𝟐𝜸)𝜷 𝟏𝟐𝜸 𝜽𝑻𝜽 𝜷 + 𝒌𝟐𝜸 (𝟏 − 𝜷)𝜾 + 𝟏𝟐 𝝐𝟐 +𝟐𝒌𝜸 𝜽∗𝑻𝜽∗ + 𝟏𝟐 𝑫𝑻𝑫 +  𝑽𝟎        (3.40) 

Then, choosing 𝑨 = 𝑚𝑖𝑛  𝒄𝟏2 , 𝒄𝟐𝝈 2 , 𝒌𝟐𝜸 (2𝜸)   and using Lemma 3, (3.40) can be 

rewritten as: 𝑽𝟑 ≤ −𝑨𝑽𝟑 + 𝑩        (3.41) 

Where, 𝑩 = 𝒌𝜸 (1 − 𝛽)𝜾 + 𝝐 + 𝒌𝜸 𝜽∗ 𝜽∗ + 𝑫 𝑫. 

Now, the design step of the controller is accomplished. The analysis result is shown below: 
Theorem 1: Considering that the system (2.1) and the Lemmas 1−5, closed-loop system signals 

are bounded under the controller (3.22), FT-ESO (3.1), and the intermediate control functions (3.12), 
parameter adaptive laws (3.30). Now we prove it. 

Define the reach time 𝑻𝒓 as 

𝑻𝒓 = 𝑨( ) 𝑽 ϛ(0) − 𝑩𝑨( )      (3.42) 

Where, 𝑽(ϛ(0)) is the initial value. Then, in the light of Lemma 5, 𝑽 (ϛ) ≤ 𝑩( )𝑨, for Ɐ𝑡 ≥ 𝑻𝒓. 

This indicates that all the closed-loop state variables are SGPFS. Furthermore, the following inequality 
shows the tracking error gets into a tiny neighborhood around the origin after the 𝑻𝒓. |𝒚 − 𝒚𝒅| ≤ 2 𝑩𝑨(𝟏 𝜼)        (3.43) 
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Remark 3: The selection of the designed controller parameters is directly related to the capability 
of the dynamic response. Decreasing the neighborhood radius and increasing the convergence speed 
of the state vectors in system (2.1) is accomplished by increasing the parameter values. However, this 
leads to a greater control input that the designed parameters gain through trial-and-error method. We 
should gradually enlarge them from zero until the performance is contented. The structure of the above 
design approach is displayed in Figure 1. 

𝒙𝟏 = 𝒙𝟐𝒙𝟐 = 𝑭(𝒙𝟏, 𝒙𝟐) + 𝑮(𝒙𝟏, 𝒙𝟐)(𝑼 + 𝑫)𝒚 = 𝒙𝟏  

𝑥11 = 𝑥21 + 𝛽1(𝑡, 𝑇) × (𝑥11 − 𝑥11) 𝑥12 = 𝑥22 + 𝛽2(𝑡, 𝑇) × (𝑥11 − 𝑥11) ⋮  𝑥𝜌1 = 𝑥𝜌+1,1 + 𝛽𝜌 (𝑡, 𝑇) × (𝑥11 − 𝑥11)+ 𝑢 𝑥𝜌+1,1 = 𝛽𝜌+1(𝑡, 𝑇) × (𝑥11 − 𝑥11) 

𝜶𝟏 = −𝑐1𝒛𝟏(𝒛𝟏𝑇𝒛𝟏)𝛽−1 + 𝒙𝟏𝒅
𝑼 = −𝑐2𝒛𝟐(𝒛𝟐𝑇𝒛𝟐)𝛽−1 − 𝒛𝟏 − 𝝋 − 𝒛𝟐

𝜽 = 𝛾(𝒛𝟐𝑇𝜺(𝒙))𝑇 − 2𝑘𝜽

𝒙
𝒙

𝜽

𝒚

𝜶𝟏

𝑼 

𝑼

 

Figure 1. Block diagram of the finite-time control strategy. 

4. Simulation study 

In this section, the simulation example is considered to prove the validity of the presented control 
scheme. Dynamic model of the two-joint manipulator system is given as: 𝑞𝑞 = 𝐻 𝐻𝐻 𝐻 𝐶 𝐶𝐶 𝐶 𝑞𝑞 + 𝑢𝑢 + 𝑑𝑑    (4.1) 

Where, 𝐻 = 𝐽 + 𝐽 + 2𝑚 𝑟 𝑙 cos(𝑞 ) , 𝐻 = 𝐻 = 𝐽 + 𝑚 𝑟 𝑙 cos(𝑞 ) , 𝐻 = 𝐽  , 𝐶 =
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−2𝑚 𝑟 𝑙 𝜃 sin(𝜃 ) , 𝐶 = −𝑚 𝑟 𝑙 𝜃 sin(𝜃 ) , 𝐶 = 𝑚 𝑟 𝑙 𝜃 sin(𝜃 ) , 𝐶 = 0 , 𝐽 =𝑚 𝑟 + 𝑚 𝑙 , 𝐽 = 𝑚 𝑟 , 𝑚  is the first link mass, 𝑚  is the second link mass, 𝑙  is the first 

link length, 𝑟 , 𝑟  are the length from the joint to the gravity center of the corresponding link, 𝑞 , 𝑞  are the angle of the first link and second link respectively, 𝑢 , 𝑢  are the input signals of the two 
joints, 𝐽  is the inertia of the first link, 𝐽  is the inertia of the second link respectively. Taking the 
system parameter as 𝑚 = 0.765, 𝑚 = 0.765, 𝑙 = 0.25, 𝑟 = 0.15, 𝑟 = 0.15, 𝑑 = 0.25 sin 𝑡, 𝑑 = 0.25 sin 𝑡. 

The state initial value of the system is 𝑥(0) = [0.2,0.2,0,0]. The designed parameters are 𝑐 = 10, 𝑐 = 15, 𝑘 = 1.5, 𝛾 = 2, 𝑐 = 2, 𝑐 = 2.5, 𝑘 = 1.5, 𝛾 = 2. The desired trajectory is 𝑦 =𝑦 = sin(2𝜋𝑡). 
Three fuzzy sets are selected for each variable therefore there are 12 fuzzy rules in total, choosing 

the following fuzzy membership functions as: 𝜇 = exp [−0.5((𝑥 + 1.25)/0.6) ], 𝜇 = exp [−0.5((𝑥 )/0.6) ], 𝜇 = exp −0.5 .. , 𝑖 =1,2,3,4. 
Based on the system, the FT-ESO is as 𝑥 = 𝑥 + 𝛽 [𝑥 − 𝑥 ] 𝑥 = 𝑥 + 𝛽 [𝑥 − 𝑥 ] 𝑥 = 𝑥 + 𝛽 [𝑥 − 𝑥 ]        (4.2) 𝑥 = 𝑥 + 𝛽 [𝑥 − 𝑥 ] + 𝑢  𝑥 = 𝛽 [𝑥 − 𝑥 ] 𝑥 = 𝛽 [𝑥 − 𝑥 ] 

Where, the time-varying gain factors 𝛽  are proposed as (3.3)−(3.6). 𝛽 = 𝐿 + �̅� , (1 − 𝜇 )𝜇 − �̅� , 𝜇 − ∑ �̅� , 𝜇 𝛽 , 𝑖 =1,2   (4.3) 

𝛽 = 𝐿 + �̅� , (1 − 𝜇 )𝜇 − ∑ �̅� , 𝜇 𝛽     (4.4) 

Where, �̅� ,  for 𝑗 = 2, 3 are expressed as follows: 

�̅� , = �̅� , (5 + 𝜇 − 𝑗(1 + 𝜇 )) + �̅� ,     (4.5) 

�̅� , = �̅� , ⁄ 2 − (1 − 𝜇 ) , 𝑖 = 3    (4.6) 
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Its structure only relies on selecting the gains 𝐿   to induce the matrix 𝛬 = −𝐿 1 0−𝐿 0 1−𝐿 0 0  

Hurwitz, afterwards selecting the designed parameter 𝑇 independently to regulate the convergence time. 
The results of the simulation are displayed in Figures 2−8. In Figure 2, it is seen that the 

state 𝑞  follows the reference input 𝑞 , the estimated state 𝑞  follows 𝑞  and it exhibits the system 
state 𝑞 , the reference signal 𝑞  and the estimated state 𝑞 . Figure 3 indicates that the error 𝑒  for 𝑞  -𝑞   is bounded, the error 𝑒  f or 𝑞  -𝑞   is bounded. Similarly, Figure 4 exhibits that the error 𝑒   for 𝑞  -𝑞   is bounded, and the error 𝑒   for 𝑞  -𝑞   is bounded. Figure 5 indicates that the 
estimated state 𝑑𝑞   follows the system state differential𝑑𝑞  , the estimated state 𝑑𝑞   follows the 
system state differential 𝑑𝑞 . Figure 6 indicates the applied control input signal 𝑢  and 𝑢 . Figure 7 
illustrates that the trajectories of adaptive rate ‖𝜽‖ . In order to compare the difference between the 
finite-time application results and the infinite-time application results, we carried out a comparative 
simulation. The premise is to adjust best, the parameters of the two controllers by the trial-and-error 
method. Figure 8 illustrates that the finite-time methods show better error convergence performance. 

 

(a)          (b) 

Figure 2. The trajectories of 𝒒𝟏, 𝒒𝒓𝟏, 𝒒𝟏 and 𝒒𝟐, 𝒒𝒓𝟐, 𝒒𝟐. 

 

(a)          (b) 

Figure 3. The trajectory of tracking errors 𝒆𝟏𝟏, 𝒆𝟏𝟐. 
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(a)          (b) 

Figure 4. The trajectory of tracking errors 𝒆𝟐𝟏, 𝒆𝟐𝟐. 

 

(a)          (b) 

Figure 5．The trajectories of 𝒅𝒒𝟏, 𝒅𝒒𝟏 and 𝒅𝒒𝟐, 𝒅𝒒𝟐. 

 

(a)          (b) 

Figure 6．The trajectories of control input 𝒖𝟏, 𝒖𝟐. 
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(a)          (b) 

Figure 7．The trajectory of ‖𝜽𝟏‖𝟐, ‖𝜽𝟐‖𝟐. 

  

(a)          (b) 

Figure 8. Tracking errors of link 1 and link 2. 

The results of the simulation clearly show that the finite-time fuzzy adaptive back-stepping 
control strategy based on FT-ESO can guarantee that all the state variables of the system are SGPFS, 
and the tracking error gets into a tiny neighborhood around the origin in a finite time. 

5. Conclusions 

This research proposed a fuzzy adaptive control method for a class of MIMO coupled nonlinear 
systems by combining the back-stepping technique, finite time theory and FT-ESO. The back-stepping 
technique is used by transforming the general form of the coupled nonlinear system. Then the virtual 
control input is introduced and the fuzzy adaptive control rate is designed for the new form of the 
system according to the back-stepping technique. The fuzzy approximation function is included in the 
actual control signal. Furthermore, due to the introduction of FT-ESO, the proposed control approach 
does not need the states of the control systems to be directly measured. The finite-time Lyapunov 
function can ensure the closed-loop systems stability. This method solves the problem of application 
of fuzzy adaptive control, which is difficult to apply to a class of coupled nonlinear systems with 
immeasurable states and uncertainties. The efficacy of the proposed strategy is verified by the 
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simulations. Considering some practical situations, future research will focus on systems with the input 
saturations or dead zones. 
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