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Abstract: A stochastic SIRS epidemic model with vaccination is discussed. A new stochastic
threshold Rs

0 is determined. When the noise is very low (Rs
0 < 1), the disease becomes extinct, and if

Rs
0 > 1, the disease persists. Furthermore, we show that the solution of the stochastic model oscillates

around the endemic equilibrium point and the intensity of the fluctuation is proportional to the intensity
of the white noise. Computer simulations are used to support our findings.
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1. Introduction

An infectious disease is a disease that can spread widely from person to person or from person to
animal, passing through various channels to another person or species [1]. The disease can usually
be transmitted through direct contact with infected individuals, bodily fluids and faeces of infected
persons, objects contaminated by infected persons, through air, water, food, contact, soil, vertical
transmission (mother-to-child transmission), bodily fluids, fecal-oral transmission, etc [2–4]. With
the high integration of the global economy and the increasingly frequent exchanges between countries,
international tourism creates convenient conditions for the spread and prevalence of infectious diseases
in the world [5, 6]. Whenever an infectious disease breaks out in any part of the world today, it can
quickly spread to neighboring areas or spread to other parts of the world [7]. At the same time, due
to the continuous deterioration of the environment and the abuse of antibiotics, the drug resistance and
pathogenicity of some viruses are increasing, so that some patients with infectious diseases are re-
infected due to the re-activation of pathogens after recovery, leading to the recurrence of the disease.
These phenomena make it more and more difficult to control and prevent diseases. In recent years,
many mathematicians have devoted themselves to the study of infectious diseases [8–10]. Accurate
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research on the mechanism of disease outbreak, spread and epidemic, and targeted prevention and
control measures can effectively reduce the harm caused by the disease.

The dynamic model of infectious disease, which divides the total population into different
compartments according to different stages and states, is an important tool to study the spread and
transmission mechanism of epidemic diseases. Kermack and McKendrick put forward the famous
SIR model [11] and SIS model [12] in 1927 and 1932 respectively, and obtained the threshold theory
for determining the prevalence of diseases. The basic regeneration number is used as the threshold to
judge the extinction and persistence of infectious diseases, which lays a foundation for studying the
dynamics of infectious diseases. Since then, many scholars have established various infectious
disease models (such as SIS [13, 14], SIR [15, 16], SIRS [17, 18], SEIR [19, 20], SIQ [21], SIQS [22],
etc.) to study the spread of the disease and put forward methods to control the disease [23–25].
Vaccination has become an important and commonly used strategy to eliminate infectious diseases,
which can effectively reduce the infection of infectious diseases. Jin et al. [26] studied the following
SIRS epidemic model with vaccination

dS
dt

= bN − λ
S I
N

+ θI + eR − (µ + p) S ,

dI
dt

= λ
S I
N
− (µ + ε + c + θ) I,

dR
dt

= cI + pS − (µ + e) R,

(1.1)

with S (0) = S 0 ≥ 0, I (0) = I0 ≥ 0,R (0) = R0 ≥ 0, where S , I and R respectively represent the number
of susceptible, infected and removed individuals at time t, S + I +R = N, represents the number of total
population at time t, b is the natural birth rate, λ is the transmission rate of the disease, θ is the transfer
rate from I to S , c represents the treatment rate, e represents the loss of immunity rate, µ represents the
natural death rate, ε represents the disease-related death rate, p represents vaccination rate. From [26],
the basic regeneration number of model (1.1) is as follows:

R0 =
λ

b + ε + c + θ
×

b + e
b + e + p

. (1.2)

Model (1.1) has the following dynamical properties:
(i) If R0 < 1, then E0

(
b+e

b+e+p , 0,
p

b+e+p

)
is globally asymptotically stable.

(ii) If R0 > 1, then E0 is unstable and model (1.1) has a unique endemic equilibrium point E∗ which
is globally asymptotically stable.

However, the use of deterministic methods to study the transmission of infectious diseases has
certain limitations. The spread of diseases is not only affected by biological properties such as virulence
and drug resistance, social factors such as people’s prevention and control strategies and media reports,
but also by random factors such as environmental noise. In the real world, infectious disease models are
always subjected to random interference from the external environment, which makes the parameters
in the model (such as exposure rate, mortality rate, recovery rate, etc.) show random fluctuations.
In addition, in the early stage of the spread of an infectious disease or when it is about to disappear,
the number of infected people is small and the number of individuals involved is not very large, which
leads to a large impact of random interference on the spread of the disease. At this time, it is not always
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ideal to use deterministic infectious disease model to describe and predict the development process
and infectious law of the disease, so it has more practical significance to study the dynamic properties
of infectious disease model under the influence of random factors. In discussing the influence of
environmental noise on infectious disease system, three kinds of noise are mainly studied: white noise,
telegraph noise and Lévy noise. White noise refers to some subtle disturbances in the environment,
such as changes in air humidity and temperature, which can be described by the formal derivative
of Brown motion. At present, the most common method to introduce white noise is to perturb the
parameters in the model. For example, Gray et al. [27] assumed that some random environmetnal factor
is acting simultaneously on each individual in the population. In this case, a random ambient white
noise perturbation of incidence causes β to change as a random variable β̃, that is, β̃dt = βdt + σdB(t).
They established the following SIS epidemic model with environmental random disturbancedS =

[
µN − βS I + γI − µS

]
dt − σS IdB(t),

dI =
[
βS I − (µ + γ) I

]
dt + σS IdB(t),

where σ2 > 0 is white noise intensity, B(t) is a standard Brownian motion. The authors then proved
that the model has a unique global positive solution and established conditions for the extinction and
persistence of the disease. They found that the amount of white noise had a significant effect on the
presence and extinction of the disease. The authors [28] studied the dynamics of a stochastic SIRS
infectious disease model with saturated incidence. When the noise was low, the authors obtained a
threshold for the stochastic system that determines the extinction and persistence of infectious
diseases. They found that loud noise suppressed the spread of the disease. Article [29] studied a
periodic stochastic SIVS epidemic model with nonlinear incidence and vaccination. By constructing a
new random Lyapunov function and using a new technique, the threshold conditions for the existence
of the random positive periodic solution and the disappearance of the disease were established. The
authors [30] studied the asymptotic properties of a class of stochastic delayed SIR infectious disease
models with temporary immunity. Sufficient conditions were established for the extinction and
persistence of epidemics. A threshold between the persistence and extinction of the epidemic was
obtained. Compared with the deterministic model, the influence threshold of white noise was smaller
than that of deterministic system. The authors [31] analyzed a time-delay SIQR infectious disease
model with mixed inoculation and elimination strategies under white noise disturbance. The existence
and uniqueness of positive solutions were proved. A random threshold was established to study the
extinction and persistence of random infectious diseases. Then the existence of stationary distribution
of stochastic model with time delay was studied.

In this paper, inspired by the above literature, random white noise disturbance is introduced to
establish a deterministic SIRS model (1.1) corresponding to SIRS infectious disease model with
random disturbance, the specific form is as follows:


dS = [bN − λ

S I
N

+ θI + eR − (µ + p) S ]dt − σ
S I
N

dB (t) ,

dI = [λ
S I
N
− (µ + ε + c + θ) I]dt + σ

S I
N

dB (t) ,

dR = [cI + pS − (µ + e) R]dt.

(1.3)
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According to (1.3), the equation of the total population N is as follows:

dN =
[
(b − µ) N − εI

]
dt. (1.4)

Let x = S
N , y = I

N , z = R
N , then model (1.3) becomes the following system

dx =
[
b − (b + p) x + ez + θy − (λ − ε) xy

]
dt − σxydB (t) ,

dy =
[
− (b + ε + c + θ) y + λxy + εy2

]
dt + σxydB (t) ,

dz =
[
− (b + e) z + cy + px + εyz

]
dt.

(1.5)

On account of the relation x + y + z = 1, we can simplify the model (1.5) to discuss the following
problem dy =

[
− (b + ε + c + θ − λ) y − λzy + (ε − λ) y2

]
dt + σ (1 − y − z) ydB (t) ,

dz =
[
p − (b + e + p) z + (c − p) y + εyz

]
dt,

(1.6)

with (y (0) , z (0)) ∈ R2
+ and y (0) + z (0) < 1.

The specific research work of this paper is as follows: Section 2 proves that model (1.5) has a unique
global positive solution. Section 3 deduces the conditions leading to death from disease. Section 4
gives the conditions for the persistence of the disease. In Section 5, we deduce that the solution of
model (1.6) vibrates around the endemic equilibrium point and that the intensity of the fluctuation
is proportional to the magnitude of the white noise. The key to solve this problem is to choose an
appropriate Lyapunov function. Section 6 gives a brief conclusion. This paper verifies the rationality
of relevant theorems through several examples. In addition, numerical simulations are used to support
our results.

2. Existence and uniqueness of positive solution

Here we give the existence and uniqueness theorem of global positive solution for model (1.5).
Feasibility region

Γ∗ = {(x, y, z) : x > 0, y > 0, z > 0, x + y + z = 1}

is the positive invariant set of model (1.5) with probability one.

Theorem 1. For any given (x(0), y(0), z(0)) ∈ Γ∗, model (1.5) has a unique positive solution
(x(t), y(t), z(t)) (∀t ≥ 0). The solution is still in Γ∗ with probability one, i.e., (x(t), y(t), z(t)) ∈ Γ∗

(∀t ≥ 0) almost surely (briefly a.s.).

Proof Obviously, model (1.5) satisfies the local Lipschitz condition. Therefore, for any given
(x(0), y(0), z(0)) ∈ R3

+, model (1.5) has a unique local solution (x(t), y(t), z(t)) on t ∈ [0, τe), where τe is
the explosion time. The following proves that τe = ∞ a.s. Let k0 > 1 be large enough so that
(x(0), y(0), z(0)) ∈

[
1
k0
, 1

]3
. For each integer k ≥ k0, the stopping time is defined by

τk = inf
{

t ∈ [0, τe) : min {x(t), y(t), z(t)} ≤
1
k

}
,
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where inf φ = ∞. By the above definition, τk is increasing as k → ∞. Let τ∞ = lim
k→∞

τk, thus τ∞ ≤ τe a.s.
If it can be proved that τ∞ = ∞ a.s., then τe = ∞ a.s. The following proves that τ∞ = ∞ a.s. By
contradiction, there exist T > 0, ε ∈ (0, 1), making P {τ∞ ≤ T } > ε. Hence, there is an integer k1 ≥ k0

such that
P {τk ≤ T } ≥ ε, ∀k ≥ k1. (2.1)

Define a C2-function V : R3
+ → R+ as follows:

V(x, y, z) = ln xyz.

Apply Itô formula [32] to obtain the following formula

dV (x, y, z) = LVdt + σ (x − y) dB (t) , (2.2)

where
LV =

1
x
[
b − (b + p) x + ez + θy − (λ − ε) xy

]
+

1
y

[
− (b + ε + c + θ) y + λxy + εy2

]
+

1
z
[
− (b + e) z + cy + px + εyz

]
−

1
2
σ2

(
x2 + y2

)
≥ − (3b + p + e + ε + c + θ) + (3ε − λ) y + λx −

1
2
σ2

(
x2 + y2

)
∆
=h (x, y, z) .

Because h is continuous and x + y + z = 1, there exists H < 0, so that h(x, y, z) ≥ H for (x, y, z) ∈ Γ∗.
So, for ∀k ≥ k1, we get

EV (x (τk ∧ T ) , y (τk ∧ T ) , z (τk ∧ T )) − V (x (0) , y (0) , z (0))

≥ E
∫ τk∧T

0
LV (x (s) , y (s) , z (s))ds ≥ HT > −∞.

(2.3)

Let Ωk = {τk ≤ T } for k ≥ k1. Set IΩk be an index function of Ωk, then P(Ωk) ≥ ε. On the other side,
we have

EV (x (τk ∧ T ) , y (τk ∧ T ) , z (τk ∧ T ))

≤E [ln x (τk ∧ T )] ≤ E [I ln x (τk, ω)] ≤ ε ln
1
k
.

(2.4)

Let k → ∞, (2.3) and (2.4) produce a contradiction −∞ > HT > −∞. Hence, τ∞ = ∞ a.s.

3. Extinction of the disease

Here we present sufficient conditions for disease extinction in model (1.6).

Theorem 2. Let (y(t), z(t)) be the solution of model (1.6) with (y(0), z(0)) ∈ R2
+ and y(0) + z(0) < 1.

(i) If σ2 > max
{

(λ−ε)2

2(b+c+θ) , λ − ε
}
, then

lim sup
t→∞

ln y (t)
t
≤ −(b + c + θ) +

(λ − ε)2

2σ2 < 0 a.s. (3.1)
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(ii) If λ − ε < 0, then

lim sup
t→∞

ln y (t)
t
≤ −(b + c + θ) < 0 a.s. (3.2)

(iii) If Rs
0 < 1 and 2(b+c+θ+ε)p

b+e < σ2 ≤ λ − ε, then

lim sup
t→∞

ln y (t)
t
≤

(b + c + θ + ε) (b + e + p)
b + e

(
Rs

0 − 1
)
< 0 a.s. (3.3)

where

Rs
0 =

(
2λ − σ2

)
(b + e) + 2 (b + c + θ + ε) p

2 (b + c + θ + ε) (b + e + p)
= R0 −

σ2 (b + e) − 2 (b + c + θ + ε) p
2 (b + c + θ + ε) (b + e + p)

. (3.4)

R0 =
λ

b + ε + c + θ
×

b + e
b + e + p

.

That is, y(t) tends to zero exponentially a.s., i.e., the probability of extinction is one.

Proof Define a C-function V : R+ → R by V = ln y. Apply Itô formula [32] to obtain the following
formula

dV =d (ln y) =
∂V
∂y

dy +
1
2
∂2V
∂y2 dydy

=
1
y

{[
− (b + ε + c + θ − λ) y − λzy + (ε − λ) y2

]
dt

+σ (1 − y − z) ydB (t)} +
1
2

(
−

1
y2

)
σ2(1 − y − z)2y2dt

=
[
− (b + ε + c + θ) + λ (1 − y − z) + εy

−
1
2
σ2(1 − y − z)2

]
dt + σ (1 − y − z) dB (t)

=
[
− (b + ε + c + θ) + (λ − ε) (1 − y − z) + ε (1 − z)

−
1
2
σ2(1 − y − z)2

]
dt + σ (1 − y − z) dB (t)

=
[
− (b + c + θ) + (λ − ε) (1 − y − z) − εz

−
1
2
σ2(1 − y − z)2

]
dt + σ (1 − y − z) dB (t)

≤
[
− (b + c + θ) + (λ − ε) (1 − y − z)

−
1
2
σ2(1 − y − z)2

]
dt + σ (1 − y − z) dB (t)

=

[
− (b + c + θ) + (λ − ε) x −

1
2
σ2x2

]
dt + σ (1 − y − z) dB (t)

= f (x) dt + σ (1 − y − z) dB (t) ,

(3.5)
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where f : (0, 1)→ R is defined as follows:

f (x) = − (b + c + θ) + (λ − ε) x −
1
2
σ2x2

= −
1
2
σ2

(
x −

λ − ε

σ2

)2

− (b + c + θ) +
(λ − ε)2

2σ2 ,

(3.6)

where x = 1 − y − z ∈ (0, 1) . Integrating this from 0 to t and dividing by t on (3.5) of both sides, we
have

ln y (t)
t
≤

ln y (0)
t

+
1
t

∫ t

0
f (x (s)) ds +

1
t

∫ t

0
σ (1 − y (s) − z (s)) dB (s). (3.7)

Case 1.

f (x) = −
1
2
σ2

(
x −

λ − ε

σ2

)2

− (b + c + θ) +
(λ − ε)2

2σ2

≤ − (b + c + θ) +
(λ − ε)2

2σ2 ,

(3.8)

which is negative by the condition σ2 > max
{

(λ−ε)2

2(b+c+θ) , λ − ε
}
. By (3.7), (3.8), we have

ln y (t)
t
≤

ln y (0)
t

+

[
− (b + c + θ) +

(λ − ε)2

2σ2

]
+

M1 (t)
t

, (3.9)

where M1 (t) := σ
∫ t

0
(1 − y − z) dB (s). According to Martingale’s large number theorem,

lim
t→∞

M1 (t)
t

= 0 a.s. (3.10)

Taking the superior limit on both sides of (3.9), we can get

lim sup
t→∞

ln y (t)
t
≤ −(b + c + θ) +

(λ − ε)2

2σ2 < 0 a.s. (3.11)

Case 2. If λ − ε < 0, according to (3.6), one has f (x) ≤ f (0) = − (b + c + θ) . By (3.7), we have

ln y (t)
t
≤

ln y (0)
t
− (b + c + θ) +

M1 (t)
t

.

Similar to Case 1, we can get

lim sup
t→∞

ln y (t)
t
≤ −(b + c + θ) < 0 a.s. (3.12)

Case 3. From (3.8) and σ2 ≤ λ − ε, we get x∗ = λ−ε
σ2 ≥ 1. Then by taking the maximum value of

f (x), we can get

fM = f (1) = λ − (b + c + θ + ε) −
1
2
σ2

=
(b + c + θ + ε) (b + e + p)

b + e
(
Rs

0 − 1
)
.

(3.13)
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By (3.7), (3.13), one has

ln y (t)
t
≤

ln y (0)
t

+
(b + c + θ + ε) (b + e + p)

b + e
(
Rs

0 − 1
)

+
M1 (t)

t
.

If Rs
0 < 1, then

lim sup
t→∞

ln y (t)
t
≤

(b + c + θ + ε) (b + e + p)
b + e

(
Rs

0 − 1
)
< 0 a.s. (3.14)

Cases 1–3, Eqs (3.11), (3.12) and (3.14) mean lim
t→∞

y (t) = 0 a.s.

It is useful to observe that in the classical deterministic model (when σ = 0 in model (1.6)), y(t)
tends to 0 if and only if R0 < 1, while in the stochastic model (1.6), y(t) tends to 0 if and only if
Rs

0 = R0 −
σ2(b+e)−2(b+c+θ+ε)p

2(b+c+θ+ε)(b+e+p) < 1 and 2(b+c+θ+ε)p
b+e < σ2 ≤ λ − ε. In other words, the conditions for y(t)

to become extinct in the stochastic model are weaker than in the classical deterministic model. The
following example illustrates this result more explicitly.

Example 1. This paper assumes that the time unit is one day and the population size is one million.
For model (1.6), the parameters are selected as follows:

b = 0.2, λ = 0.6, ε = 0.1, e = 0.14, p = 0.06, c = 0.15, θ = 0.05, σ = 0.65.

After calculation, we have Rs
0 = 0.811 < 1 and

0.17647 =
2 (b + c + θ + ε) p

b + e
< σ2 = 0.4225 ≤ λ − ε = 0.5.

According to Case (iii) of Theorem 2, the solution (y(t), z(t)) of (1.6) satisfies the following
inequality:

lim sup
t→∞

ln y (t)
t
≤

(b + c + θ + ε) (b + e + p)
b + e

(
Rs

0 − 1
) .

= −0.11125 < 0 a.s.

That is, y(t) will tend to zero exponentially with probability one. This shows that the disease is
extinct.

For the corresponding deterministic model, one has R0 = 1.02 > 1. So (y∗, z∗) is globally
asymptotically stable in Γ0 = Γ −

{(
b+e

b+e+p , 0,
p

b+e+p

)}
, where Γ = {x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 1}, and

the disease persists. Using the Euler-Maruyama (EM) method [33], we give the simulations shown in
Figure 1 to support our results.
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t

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
 the Stochastic Model

y(t)

z(t)

t

0 50 100 150 200 250
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
 the Deterministic Model

y(t)

z(t)

Figure 1. Computer simulation of the path y(t), z(t) for model (1.6) and its corresponding
deterministic model, using the Euler-Maruyama (EM) method [33] with step size ∆t = 0.25
and initial value y(0) = 0.2, z(0) = 0.05.

Example 2. The values of the parameters except σ = 0.8 are the same as those in Example 1. It is
easy to verify that the system parameters obey the condition of Case (i) of Theorem 2, as

σ2 = 0.64 > max
{

(λ − ε)2

2(b + c + θ)
, λ − ε

}
= 0.5.

So, by Case (i) of Theorem 2, we have

lim sup
t→∞

ln y (t)
t
≤ −(b + c + θ) +

(λ − ε)2

2σ2
.
= −0.2047 < 0 a.s.

That is, y(t) will tend to zero exponentially with probability one. The computer simulation shown
in Figure 2 clearly supports this result, showing the extinction of the disease.

t

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
 the Stochastic Model

y(t)

z(t)

Figure 2. Computer simulation of the path y(t), z(t) for model (6), using the EM method with
step size ∆t = 0.25 and initial value y(0) = 0.2, z(0) = 0.05.
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4. Persistence in the mean of the disease

Definition 1. If the following conditions are true

lim inf
t→∞

∫ t

0
y (s) ds

t
> 0, lim inf

t→∞

∫ t

0
z (s) ds

t
> 0 a.s.

Then model (1.6) is persistent.

For convenience, we define 〈x (t)〉 as follows:

〈x (t)〉 =

∫ t

0
x (s) ds

t
.

Theorem 3. For ∀(y(0), z(0)) ∈ R2
+, y(0) + z(0) < 1, if Rs

0 > 1, then the solution (y(t), z(t)) of model
(1.6) satisfies

lim inf
t→∞

〈y (t)〉 ≥ y∗, lim inf
t→∞

〈z (t)〉 ≥
c − p

b + e + p
y∗ +

p
b + e + p

a.s.

where

y∗ =
b + e + p + c + ε

2ε
+
−pλ − (b + θ) ε − (b + e + p)

√
∆′

2ε (λ − ε)
< 1

and

∆′ =

{
(λ − ε) +

(c − p) λ
b + e + p

+
ε [λ − (b + ε + c + θ)]

b + e + p

}2

−
4ε (λ − ε)
b + e + p

[
λ −

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)]
.

Proof Integrating both sides of model (1.6) from 0 to t and dividing by t, we get

y (t) − y (0)
t

= − (b + ε + c + θ − λ) 〈y(t)〉 − λ 〈z(t)y(t)〉

− (λ − ε)
〈
y(t)2

〉
+
σ

t

∫ t

0
(1 − y − z) ydB (s),

z (t) − z (0)
t

= p − (b + e + p) 〈z(t)〉 + (c − p) 〈y(t)〉 + ε 〈y(t)z(t)〉 .

(4.1)

By (4.1), one has

ε ·
y (t) − y (0)

t
+ λ ·

z (t) − z (0)
t

= {(c − p) λ + ε [λ − (b + ε + c + θ)]} 〈y(t)〉

+ ε (ε − λ)
〈
y(t)2

〉
+
εσ

t

∫ t

0
(1 − y − z) ydB (s)

+ pλ − (b + e + p) λ 〈z(t)〉 .
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After calculation, we can get

〈z(t)〉 =

{
c − p

b + e + p
+
ε [λ − (b + ε + c + θ)]

(b + e + p) λ

}
〈y(t)〉

−
ε (λ − ε)

(b + e + p) λ

〈
y(t)2

〉
+

p
b + e + p

− ϕ (t) ,
(4.2)

where

ϕ (t) =
ε (y (t) − y (0))
(b + e + p) λt

+
λ (z (t) − z (0))
(b + e + p) λt

−
εσ

∫ t

0
(1 − y − z) ydB (s)

(b + e + p) λt
.

Considering that 0 < x(t), y(t), z(t) < 1 and x + y + z = 1, according to Martingale’s large number
theorem, we can obtain

lim
t→∞

y(t)
t

= 0, lim
t→∞

z(t)
t

= 0, lim
t→∞

∫ t

0
x (s) y (s) dB (s)

t
= 0 a.s.

Then, it is obvious that
lim
t→∞

ϕ (t) = 0 a.s. (4.3)

According to Itô formula, one has

d (ln y) =
[
− (b + ε + c + θ) + λ (1 − y − z) + εy

−
σ2(1 − y − z)2

2

]
dt + σ (1 − y − z) dB (t) .

(4.4)

Integrating both sides of Eq (4.4) from 0 to t and dividing by t, we get

ln y (t) − ln y (0)
t

=λ − (b + ε + c + θ) − (λ − ε) 〈y(t)〉

− λ 〈z(t)〉 −
σ2

〈
(1 − y(t) − z(t))2

〉
2

+
M1 (t)

t

≥λ − (b + ε + c + θ) − (λ − ε) 〈y(t)〉 − λ 〈z(t)〉 −
σ2

2
+

M1 (t)
t

.

(4.5)

By (4.2) and Schwarz inequality, one has

ln y (t) − ln y (0)
t

≥

[
λ −

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)]
− π0 〈y(t)〉 +

ε (λ − ε)
b + e + p

〈y(t)〉2 + λϕ (t) +
M1 (t)

t
,

(4.6)

where π0 = (λ − ε) +
(c−p)λ+ε[λ−(b+ε+c+θ)]

b+e+p . Thus,

ε (λ − ε)
b + e + p

〈y(t)〉2 − π0 〈y(t)〉 +
[
λ −

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)]
≤ Φ (t) ,
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where Φ (t) =
ln y(t)−ln y(0)

t − λϕ (t) − M1(t)
t . By Eqs (3.10) and (4.3), combined with −∞ < ln y (t) < 0

(0 < y(t) < 1), we have
lim
t→∞

Φ (t) = 0 a.s.

Then for arbitrary ∀0 < ε < 1, there exists a set Ωε such that P (Ωε) ≥ 1 − ε and a random variable
T = T (ω) > 0 such that for any ω ∈ Ωε and any t ≥ T (ω), then Φ (t) ≤ ε. Hence, we get

ε (λ − ε)
b + e + p

〈y(t)〉2 − π0 〈y(t)〉 +
[
λ −

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)
− ε

]
≤ 0. (4.7)

For the sake of discussion, let’s write (4.7) as π1〈y(t)〉2 + π2 〈y(t)〉 + π3 ≤ 0, where π1 =
ε(λ−ε)
b+e+p ,

π2 = −π0, π3 = λ −
(
b + ε + c + θ + σ2

2 +
λp

b+e+p

)
− ε. If Rs

0 > 1, then

∆ =π2
2 − 4π1π3

=π2
0 −

4ε (λ − ε)
b + e + p

[λ − ε

−

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)]
=

{
(λ − ε) +

(c − p) λ − ε [λ − (b + ε + c + θ)]
b + e + p

}2

+
4 (c − p) ελ [λ − (b + ε + c + θ)]

(b + e + p)2

+
(λ − ε) ε

[
4λp

b+e+p + 2σ2 + 4ε
]

b + e + p
> 0.

(4.8)

If ε < λ −
(
b + ε + c + θ + σ2

2 +
λp

b+e+p

)
, then by (4.7), one has

yε1 ≤ 〈y(t)〉 ≤ yε2, t ≥ T (ω) , ω ∈ Ωε , (4.9)

where

yε1 =
(λ − ε) (b + e + p) + {(c − p) λ + ε [λ − (b + ε + c + θ)]} − (b + e + p)

√
∆

2 (λ − ε) ε
,

yε2 =
(λ − ε) (b + e + p) + {(c − p) λ + ε [λ − (b + ε + c + θ)]} + (b + e + p)

√
∆

2 (λ − ε) ε
.

The following will prove that

0 < yε1 <
λ − (b + ε + c + θ)

λ − ε
< 1. (4.10)

From (4.8), we can get

λ − ε +
(c − p) λ − ε [λ − (b + ε + c + θ)]

b + e + p
<
√

∆.
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By calculation, we can get

(λ − ε) (b + e + p) + (c − p) λ + ε [λ − (b + ε + c + θ)] − (b + e + p)
√

∆

<2ε [λ − (b + ε + c + θ)] ,

thus
yε1 <

2ε [λ − (b + ε + c + θ)]
2ε (λ − ε)

=
λ − (b + ε + c + θ)

λ − ε
< 1.

Therefore, (4.10) is true. By (4.9), we have lim inf
t→∞

〈y (t)〉 ≥ yε1 a.s. Letting ε → 0, one has

lim inf
t→∞

〈y (t)〉 ≥
(b + e + p)

(
π0 −

√
∆′

)
2ε (λ − ε)

:= y∗ a.s.,

where

∆′ := π2
0 −

4ε (λ − ε)
b + e + p

[
λ −

(
b + ε + c + θ +

σ2

2
+

λp
b + e + p

)]
and

0 < y∗ ≤
λ − (b + ε + c + θ)

λ − ε
< 1.

Last, from the last equation of (4.1), we have

z (t) − z (0)
t

= p − (b + e + p) 〈z(t)〉 + (c − p) 〈y(t)〉 + ε 〈y(t)z(t)〉

≥ p − (b + e + p) 〈z(t)〉 + (c − p) 〈y(t)〉 ,

so
〈z(t)〉 ≥

(c − p) 〈y(t)〉
b + e + p

+
p

b + e + p
−

z (t) − z (0)
t (b + e + p)

.

Hence,
lim inf

t→∞
〈z (t)〉 ≥

c − p
b + e + p

y∗ +
p

b + e + p
a.s.

Remark 1. According to Theorems 2 and 3, when the noise is small enough, if Rs
0 > 1 or Rs

0 < 1, the
disease will persist or disappear. Hence, we consider Rs

0 as the threshold for model (1.6).

Example 3. The values of the parameters except σ = 0.1 are the same as those in Example 1. In this
case, a simple calculation yields

Rs
0 =

(
2λ − σ2

)
(b + e) + 2 (b + c + θ + ε) p

2 (b + c + θ + ε) (b + e + p)
= 1.1615 > 1.

Thus for ∀(y(0), z(0)) ∈ (0, 1) × (0, 1), by Theorem 3, we have

lim inf
t→∞

〈y (t)〉 ≥ y∗ .= 0.1514, lim inf
t→∞

〈z (t)〉 ≥
c − p

b + e + p
y∗ +

p
b + e + p

.
= 0.0423 a.s.

In other words, the disease persists. The computer simulations shown in Figure 3 support our
results. They confirm the persistence of the disease.
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Figure 3. Computer simulation of the path y(t), z(t) for model (1.6) and its corresponding
deterministic model, using the EM method with step size ∆t = 0.1 and initial value y(0) =

0.2, z(0) = 0.05.

5. Asymptotic behavior on endemic equilibrium

This section discusses the impact of stochastic fluctuations of environment on endemic equilibrium
E∗(y∗, z∗) of corresponding deterministic systems.

Theorem 4. If R0 > 1, ε2 <
4[p+(c−p)y∗](c−p)(λ−ε)

λz∗ , then for ∀ (y (0) , z (0)) ∈ R2
+, y (0) + z (0) < 1, the

solution (y(t), z(t)) of model (1.6) satisfies the following properties:

lim sup
t→∞

∫ t

0

[(
λ − ε − ελρ

2(c−p)

)
(y (τ) − y∗)2 + λ

c−p

(
p+(c−p)y∗

z∗ − ε
2ρ

)
(z (τ) − z∗)2

]
dτ

t
≤
σ2y∗

2
a.s. (5.1)

where the positive constant ρ satisfies εz∗

2[p+(c−p)y∗] < ρ <
2(c−p)(λ−ε)

ελ
.

Proof Because E∗(y∗, z∗) is the endemic equilibrium point of the deterministic model corresponding
to model (1.6), one has

b + ε + c + θ − λ = −λz∗ + (ε − λ) y∗, (5.2)

p + (c − p) y∗ + εy∗z∗ = (b + e + p) z∗. (5.3)

The C2-function V : (0, 1) × (0, 1)→ R+ is defined as follows:

V (y, z) =

(
y − y∗ − y∗ ln

y
y∗

)
+

λ

c − p
(z − z∗)2

2
:= V1 +

λ

c − p
V2, (5.4)

where V1 = y − y∗ − y∗ ln y
y∗ , V2 =

(z−z∗)2

2 . It is easy to see that the function V is non-negative. Let the
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operator L be the generating operator of model (1.6). By (5.2), we have

LV1 =
[
− (b + ε + c + θ − λ) − λz + (ε − λ) y

]
(y − y∗) +

1
2
σ2(1 − y − z)2y∗

=
[
λ (z∗ − z) − (ε − λ) (y∗ − y)

]
(y − y∗) +

1
2
σ2(1 − y − z)2y∗

= −λ (y − y∗) (z − z∗) − (λ − ε) (y − y∗)2
+

1
2
σ2(1 − y − z)2y∗

≤ −λ (y − y∗) (z − z∗) − (λ − ε) (y − y∗)2
+

1
2
σ2y∗.

(5.5)

By (5.3), one has

LV2 = (z − z∗)
[
p − (b + e + p) z + (c − p) y + εyz

]
= (z − z∗)

{
(c − p + εz) (y − y∗) +

[
εy∗ − (b + e + p)

]
(z − z∗)

}
= (z − z∗)

{
(c − p + εz) (y − y∗) −

[
p
z∗

+ (c − p)
y∗

z∗

]
(z − z∗)

}
= (c − p + εz) (y − y∗) (z − z∗) −

[
p
z∗

+ (c − p)
y∗

z∗

]
(z − z∗)2.

(5.6)

By (5.4)–(5.6) and Young’s inequality, we obtain

LV =LV1 +
λ

c − p
LV2

≤ − (λ − ε) (y − y∗)2
+
ελz (y − y∗) (z − z∗)

c − p

−
λ
[
p + (c − p) y∗

]
(c − p) z∗

(z − z∗)2
+

1
2
σ2y∗

≤ − (λ − ε) (y − y∗)2
+
ελ |y − y∗| |z − z∗|

c − p

−
λ
[
p + (c − p) y∗

]
(c − p) z∗

(z − z∗)2
+

1
2
σ2y∗

≤ −

(
λ − ε −

ελρ

2 (c − p)

)
(y − y∗)2

−
λ

c − p
×[

p + (c − p) y∗

z∗
−
ε

2ρ

]
(z − z∗)2

+
1
2
σ2y∗ := H,

(5.7)

where ρ is defined in Theorem 4. If ε2 <
4[p+(c−p)y∗](c−p)(λ−ε)

λz∗ , then λ − ε − ελρ

2(c−p) > 0, p+(c−p)y∗

z∗ − ε
2ρ > 0.

Thus,
dV ≤ (1.6)dt + σ (1 − y − z) (y − y∗) dB (t) .

Integrating from 0 to t of the above inequality, we can obtain

V (t) − V (0) ≤
∫ t

0
H (τ) dτ +

∫ t

0
σ (1 − y − z) (y − y∗) dB (τ). (5.8)
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Let M2 (t) :=
∫ t

0
σ (1 − y − z) (y − y∗) dB (τ). According to Martingale’s large number theorem, we

can get lim
t→∞

M2(t)
t = 0 a.s., this together with (5.8) shows

lim sup
t→∞

∫ t

0
H (τ) dτ

t
≥ 0 a.s.

Hence,

lim sup
t→∞

∫ t

0

[(
λ − ε − ελρ

2(c−p)

)
(y (τ) − y∗)2 + λ

c−p

(
p+(c−p)y∗

z∗ − ε
2ρ

)
(z (τ) − z∗)2

]
dτ

t
≤
σ2y∗

2
a.s.

Example 4. The values of the parameters except σ are the same as those in Example 1. In this
case, by a simple calculation, we can get R0 = 1.02 > 1. By Theorem 4, we get that the difference
between disturbance solutions (y(t), z(t)) of model (1.6) and E∗(y∗, z∗) is only related to white noise
level. By using the EM method, we show that computer simulations support our results. As expected,
the solution oscillates around the endemic equilibrium E∗ for a long time (see Figure 4). Specifically,
the following images use the same parameters, but the intensity of white noise σ is different, that is,
the first image uses σ = 0.05, the second image uses σ = 0.01. We observe that as the white noise
becomes weaker, the fluctuation around E∗ becomes smaller, which supports the result of Theorem 4.
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Figure 4. Computer simulation of the path y(t), z(t) for model (1.6). The graphs use different
white noise, the left graph with σ = 0.05 and the right grapg with σ = 0.01. Using the EM
method with step size ∆t = 0.1 and initial value y(0) = 0.2, z(0) = 0.05.

6. Discussion and conclusions

The objective of this study is to investigate the transmission dynamics of a stochastic epidemic
model with vaccination. A new stochastic threshold Rs

0 is determined. By using stochastic Lyapunov
function theory, the existence and uniqueness of global positive solutions of the model are proved (see
Theorem 1). Next, the extinction of disease (see Theorem 2) and persistence conditions (see Theorem
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3) are established. When the noise is very low (Rs
0 < 1), the disease becomes extinct, and if Rs

0 > 1,
the disease persists. We also show that if the conditions of Theorem 4 are true, the solution of the
model oscillates around the endemic equilibrium point of the deterministic system and the intensity of
the fluctuation is proportional to the intensity of the white noise. In this paper, several examples are
used to verify the rationality of the relevant theorems, and numerical simulations are used to support
our research results. The results show that the extinction and persistence of the disease depended on
the intensity of white noise, i.e., the higher the intensity of white noise, the higher the extinction rate
of the disease; the lower the intensity of white noise, the more persistent the disease. Our study shows
that stochastic epidemic models based on virus dynamics are more realistic. This theory can provide a
solid foundation for the study of similar diseases and has a wide range of applications in the biomedical
field. For example, a stochastic delayed infectious disease model can be considered to study the effect
of incubation periods on disease dynamics. In addition, our proposed theory can also be used to study
other infectious diseases, such as HIV, COIVD-19, tuberculosis and so on.
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