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Abstract: The clinical data of 76 severe illness patients with novel coronavirus SARS-CoV-2 from
July to August, 2020 admitted to the ICU Intensive Care Unit ward in a hospital in Urumqi were
collected in the paper. By using the Laplace approximation parameter estimation method based on
maximum likelihood estimation, the generalized linear mixed effect model (GLMM) was established
to analyze the characteristics of clinical indicators in critical patients, and to screen the main influencing
factors of COVID-19 critical patients’ inability to be transferred out of the ICU in a short time: age,
C-reactive protein, serum creatinine and lactate dehydrogenase.
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1. Introduction

SARS-CoV-2, a novel coronavirus pneumonia, was discovered in Wuhan, China, in December 2019
[1,2], and it spread fast to other parts of the world. The World Committee on Virus Classification
gave it the formal designation SARS-CoV-2 [3], and the World Health Organization designated the
virus-caused illness COVID-19 [4]. The People’s Republic of China’s Law on the Prevention and
Control of Infectious Diseases has classified COVID-19 as a category B infectious disease since it is a
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highly contagious acute respiratory infectious disease, and it is treated as such [5]. Serious COVID-19
instances can cause severe pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ
failure that can result in death, but mild cases only cause typical respiratory system infection symptoms
[6]. The majority of COVID-19-infected patients some of whom may be asymptomatic are the source
of the virus. According to available data, COVID-19 can spread from person to person by respiratory
droplets, direct touch, and even fecal-oral transmission [7]. Additionally, it can be spread through
aerosolization if exposed to a high aerosol concentration for an extended period of time. Generally
speaking, the SARS-CoV-2 virus can infect people of any age [8].

There might not yet be a treatment for COVID-19 that works. Numerous techniques are required to
stop and limit the epidemic’s progress. On the one hand, prioritizing strong source control, personal
protection measures, early diagnosis, and isolation. On the other hand, a focus on symptomatic treat-
ment is also crucial to raise the disease’s cure rate and lower the mortality rate. As a result, treating
COVID-19 patients who are severely ill and in critical condition is very vital and challenging. Clinical
traits of COVID-19 patients have been published so far [9,10].

Patients with COVID-19 can be categorized into severe and non-severe groups based on their clin-
ical symptoms. Older age, male sex, and comorbidities are risk factors for COVID-19, according to a
number of retrospective cohort studies from Wuhan [11–13]. There have also been reports of cohorts
from other nations [14,15]. Although all survivors were pooled together in the majority of studies
that evaluated risk factors, there were notable disparities between survivors of non-severe and severe
groups.

Severe and critical subgroups could be created from the severe group. Patients who are considered
severe or critical must be transferred to the ICU for treatment because they have a quickly progressing
course and may experience multiple organ dysfunction, including respiratory failure [16].

However, some COVID-19 patients cannot be transferred out of the ICU in a short time after effec-
tive treatment. By using the Laplace approximation parameter estimation method based on maximum
likelihood estimation, the generalized linear mixed effect model (GLMM) was established to analyze
the characteristics of clinical indicators in critical patients, and to screen the main influencing factors
of COVID-19 critical patients’s inability to be transferred out of the ICU in a short time.

2. Material and methods

2.1. Study design and period

An institution-based, two-month retrospective follow-up study was conducted among COVID-19
critical patients admitted to the ICU to start treatment in Urumqi, Xinjiang Uygur Autonomous Region
between July 10, 2020 and August 31, 2020.

2.2. Inclusion criteria

According to the Diagnostic Criteria of COVID-19 Diagnosis and Treatment Protocol (Trial Edi-
tion 8) issued by the National Health Committee of the People’s Republic of China on August 19,
2020, the confirmed cases must conform to the clinical manifestations in the diagnosis and treatment
protocol, and the pathogenic or serological test is positive [17]. Common type: having fever, respi-
ratory symptoms, etc., and imaging findings of pneumonia. Adult-severe: Adults meeting any of the
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following conditions: shortness of breath, Respiration Rate (RR) ≥ 30 beats/min; In the resting state,
finger oxygen saturation ≤ 93% when inhaling air; The arterial oxygen partial pressure (PaO2)/oxygen
concentration (FiO2) ≤ 300 mmHg (1 mmHg = 0.133 kPa); In areas with high altitude (over 1000 m
above sea level), PaO2/FiO2 should be corrected according to the following formula: PaO2/FiO2×[760/

mmHg)]; Progressive worsening of clinical symptoms and significant progression of lesions greater
than 50% within 24 to 48 hours on lung imaging are managed as severe cases. Critical type: patients
meeting one of the following conditions: respiratory failure requiring mechanical ventilation; shock;
combined with other organ failure requiring ICU monitoring and treatment.

2.3. Data

The demographic characteristics, epidemiological data, complications, clinical manifestations and
laboratory examinations of 76 patients with COVID-19 admitted to the ICU ward of a hospital in
Urumqi, Xinjiang Uygur Autonomous Region from July to August, 2020 were collected.

Longitudinal data refers to the data obtained by tracking the evolution of a series of test individuals
over time. In this study, after COVID-19 critically ill patients were transferred to the ICU, they should
undergo regular laboratory examinations to measure their clinical indicators for better treatment. The
changes of clinical indicators of 76 COVID-19 patients during their transfer to ICU were recorded in
this study. The number of test times per COVID-19 patient ranged from 10 to 25 times, and a total of
1097 data could be used. Figure 1 shows the changes of clinical indicators of one COVID-19 patient
over time within 39 days after being transferred to the ICU.
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Figure 1. Changes of clinical indicators over time in one COVID-19 patient within 39 days
of transfer to the ICU.
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2.4. Descriptive statistics

For the description of baseline characteristics, count data in this data included Sex and Previous
Underlying Diseases, and descriptive statistics were performed using frequency and composition ratios
for count data. The measurement data included Age and Laboratory Examination Data, and the mean ±
standard deviation was used to statistically describe the measurement data that conformed to a normal
distribution. The results of the baseline characteristics were described as follows.

Among them, there were 38 males (50%) and 38 females (50%), whose age ranged from 24 to 83,
with an average age of 61. There were 12 mild-to-moderate cases, 53 severe cases and 11 critical cases.
See Table 1 for the composition of the patients with previous underlying diseases.

Table 1. Composition of previous underlying diseases in 76 COVID-19 patients [n (%)].
Items Mild to Moderate Severe Critical Total

(n = 12) (n = 53) (n = 11) (n = 76)
Sex

Male 9 (75.0%) 22 (41.5%) 7 (63.6%) 38 (50%)
Female 3 (25.0%) 31 (58.5%) 4 (36.4%) 38 (50%)

Previous Underlying Diseases
Hypertension 7 (58.3%) 27 (50.9%) 7 (63.6%) 41 (53.9%)
Diabetes 4 (33.3%) 14 (26.4%) 4 (36.4%) 22 (28.9%)
Chronic bronchitis 0 14 (26.4%) 2 (18.2%) 16 (21.1%)
Coronary heart disease 0 9 (17.0%) 5 (45.5%) 14 (18.4%)
Cerebrovascular disease 0 3 (5.7%) 2 (18.2%) 5 (6.6%)
Chronic obstructive pulmonary disease 0 3 (5.7%) 1 (9.1%) 4 (5.3%)
Asthma 0 1 (1.9%) 0 1 (1.3%)

Clinical symptoms include fever, cough, expectoration, chest tightness, shortness of breath, muscle
soreness, sore throat, dry mouth, headache, fatigue, anorexia, diarrhea, frequent micturition, weak con-
sciousness, nausea and vomiting, etc. Laboratory examinations include routine blood, liver and kidney
function, electrolyte, myocardial enzyme spectrum, inflammation indicators, and etiology detection.
The laboratory examination data at the time of initial transfer to the ICU are shown in Table 2.

2.5. Variable selection

The traditional methods of variable selection are the forward introduction method, the backward
elimination method, and the stepwise regression method based on test statistics [18,19]. Usually, these
three methods yield the desired model, but still have shortcomings. Tibshiranilea [20] pointed out that
the variable selection process of these three methods is a discrete process, and there is a large variability
in the selected models, i.e., small changes in the data may lead to the selection of a different model. He
combined the advantages of the subset selection method and ridge regression and proposed the Lasso
selection method, which accomplishes the selection of variables while continuously compressing the
coefficients. In order to improve the accuracy of the model in this study, the Lasso selection method
was also used in the process of variable selection in this study.

2.6. Generalized linear mixed effect model (GLMM)

Generalized linear mixed effect model (GLMM) has a great application prospect in the medical
field, which is obtained by adding random effect expansion to the fixed effect of generalized linear
model, (GLM). Since the response variable of the generalized linear mixed effect model is the condi-
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Table 2. Laboratory examination data of 76 COVID-19 patients at the time of initial transfer
to the ICU (X±S).
Items Mild to Moderate Severe Critical Total
Age 56.25 ± 13.61 60.79 ± 16.09 66.91 ± 10.36 60.76 ± 15.30
PCT(ng/mL) 0.76 ± 2.11 1.85 ± 10.47 0.20 ± 0.30 1.45 ± 8.86
CD3+ 845.00 ± 411.00 761.00 ± 346.00 515.00 ± 182.00 738.00 ± 348.00
CD4+ 505.00 ± 257.00 454.00 ± 200.00 265.00 ± 128.00 434.00 ± 211.00
CD8+ 325.00 ± 165.00 298.00 ± 158.00 217.00 ± 87.00 290.00 ± 152.00
IgG(mg/mL) 0.24 ± 0.65 18.72 ± 62.65 3.54 ± 10.37 13.84 ± 53.36
IgM(mg/mL) 3.96 ± 8.88 27.29 ± 88.79 8.71 ± 17.55 21.22 ± 75.60
WBC(×109/L) 4.97 ± 1.33 5.84 ± 2.54 18.96 ± 35.53 7.61 ± 13.97
LY(×109/L) 1.31 ± 0.54 1.25 ± 0.66 0.99 ± 0.36 1.22 ± 0.61
CRP(mg/L) 13.89 ± 14.28 39.99 ± 48.46 63.75 ± 52.96 39.65 ± 47.36
ALT(U/L) 36.00 ± 21.00 37.00 ± 38.00 32.00 ± 25.00 36.00 ± 34.00
AST(U/L) 26.00 ± 15.00 38.00 ± 36.00 33.00 ± 20.00 36.00 ± 32.00
Cr(µmol/L) 84.00 ± 18.00 91.00 ± 36.00 90.00 ± 17.00 90.00 ± 32.00
LDH(U/L) 231.24 ± 39.94 302.35 ± 171.58 442.67 ± 289.88 312.37 ± 189.07
CK-MB(U/L) 13.33 ± 4.23 18.80 ± 22.76 20.87 ± 22.21 18.31 ± 20.95

Note: PCT: procalcitonin; CD3+: mature T lymphocytes; CD4+: helper T lymphocytes; CD8+: inhibitory T lymphocytes; IgG:
immunoglobulin G; IgM: immunoglobulin M; WBC: white blood cells; LY: lymphocyte count; CRP: C-reactive protein; ALT:
alanine aminotransferase; AST: aspartate aminotransferase; Cr: serum creatinine; LDH: lactate dehydrogenase; CK-MB: creatine
kinase isoenzyme.

tional mean function under the condition of the given environmental variable X random effect u, it can
be obtained as follows:

η = g(E(y)) = Xβ + Zu (1)

In Eq (1), g(y) is the Link Function; β is the Fixed Effects; u is the Random Effects.

2.7. Parameter estimation

The parameter estimation and performance of the generalized linear mixed effect model have at-
tracted much attention, whose parameter estimation can be calculated by the maximum likelihood
method, and whose likelihood function can be obtained according to the maximum likelihood method:

L(β, θ, y) =

∫
f (y|u)p(u)du (2)

In Eq (2), f (y|u) is the density function of response variable under the condition of random effect
u, and p(u) is the density function of random effect u. Due to the nonlinear relationship between
response variables and independent variables and the existence of random effect u in the model, it is
necessary to solve the problem of high-dimensional integration of random effect u. Many approximate
inference methods by maximizing likelihood function have been proposed accordingly. At present, the
commonly used methods are: Penalized Quasi-Likelihood (PQL) [21] method, Laplace approximation
method and Gauss-Hermite Quadrature (GHQ) method.

In this study, Laplace approximation method based on maximum likelihood estimation is adopted,
which is commonly used to estimate high calculus. Breslow and Lin (1995) used fourth-order Laplace
approximation to establish a random effect model with only one random effect in each cluster. Rau-
denbush et al. (2000) extended this method to higher-order approximation and models with multiple
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related random effects in each cluster (repeated measurements for each patient) [22,23]. When using
R software, the glmer function in package “lme4” [24] takes Laplace Approximation as the default
method for regression analysis of generalized linear mixed effects model, but the glmer function will
not converge when random effects are added into explanatory variables. At this time, the glmmTMB
function in “glmmTMB” [25] package can be called to solve this problem, or the GLMM can be
calculated by Laplace approximation.

2.8. Intra-class correlation coefficient (ICC)

In GLMM multilayer statistical analysis model, another important concept is ICC (intra-class cor-
relation coefficient) internal correlation coefficient, or called as intra-group correlation coefficient. Ac-
cording to the classical definition (Shrout & Fleiss, 1979) [26], ICC is defined as the ratio of inter-group
variance to total variance:

ICC =
σ2

t

σ2
h + σ2

t
(3)

In Eq (3), σ2
t represents inter-group; σ2

h represents intra-group; (σ2
h + σ2

t )is the total variance.
In this study, since the response variable is whether COVID-19 critical patients are transferred out

of ICU, and the response variable is the two-class discrete variable with (0, 1) distribution, and the fixed
effect obeys logistic distribution, the intra-group variance σ2

hcan be expressed as π2/3, and the inter-
group variance σ2

t can be expressed by the random effect σ2
u. Therefore, the intra-group correlation

coefficient of response variable measurement in this study is as follows [27]:

ICC =
σ2

u

π2/3 + σ2
u

(4)

Since ICC reflects the correlation degree among individuals in random effects, if ICC = 0, it means
that there is no hierarchical structure among individuals in random effects, the random effects can
be ignored and simplified to the traditional single-layer model; if ICC > 0, it means that there is a
hierarchical structure among individuals in random effects. If the random effect part is added, the
mixed effect model can be used for analysis.

2.9. Time-dependent covariates cox-proportional-hazard model

As a complement to the GLMM results and to test the stability of the GLMM model, , we also
developed the Time-Dependent Covariates Cox-Proportional-Hazard model. A time-dependent Cox
model is a Cox regression model with time-dependent covariates, also known as an extended Cox
model. In a general Cox model, the covariates are fixed and do not change over time; a time-dependent
Cox model takes into account the dynamics of the covariates over time and allows analysis of the case
where the covariates are panel data.

The Cox model presented can be extended to handle exogenous time-dependent covariates using the
counting process formulation investigated in detail by Andersen and Gill [28] and presented in greater
detail in Fleming and Harrington [29] and Andersen et al. [30]. The time-dependent Cox regression
model is an implementation that views the occurrence of an event as a very slow Poisson process. In
counting process notation, the event process for subject i is written as {Ni(t),Ri(t)}, where Ni(t) denotes
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the number of events for subject i before time t, and Ri(t) is a left-sided continuous risk process with
Ri(t) = 1 if subject i is at risk at time t and Ri(t) = 0 otherwise. The time-dependent Cox regression
model is written as

hi (t|Yi(t), ωi) = h0(t)Ri(t) exp
{
γ>ωi + αyi(t)

}
(5)

where, in Eq (5),ωi denotes a vector of baseline covariates, and Yi(t) denotes a vector of time-dependent
covariates. Moreover, note that since Yi(t) is time-dependent, model no longer assumes that the hazard
ratio is constant in time.

Estimation of γ and α is based on the corresponding partial log-likelihood function that can be
written as

p`(γ) =

n∑
i=1

∫ ∞

0

{
Ri(t) exp{γ>ωi + α>yi(t)} − log

[∑
j

R j(t) exp{γ>ω j + αy j(t)}
]}

dNi(t). (6)

3. Model determination and result analysis

3.1. Variable selection results

In this study, a total of 76 COVID-19 patients were recorded for changes in a total of 15 clinical
indicators over time during their transfer to ICU. To improve the reliability and validity of our model,
Lasso analysis was performed on 15 variables (Figure 2). Using the λ with the Minimum Mean Stan-
dard Error (Log(λ) = -4.025) method of Lasso analysis, 5 variables Age, CD8+, CRP, Cr, and LDH
were finally selected for inclusion in the model for subsequent modeling, and their coefficients are
shown in Table 3.
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Figure 2. Lasso analysis was performed, calculating the minimum criteria.
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Table 3. The coefficients of the five variables selected.
Items Coefficients
Age -0.02848
CD8+ 0.00083
CRP -0.01006
Cr 0.00807
LDH -0.00339

3.2. Model determination

Using R (4.0.5) software, the glmmTMB function in “glmmTMB” [25] package was called to esti-
mate the parameters of the generalized linear mixed effect model and analyze the fitting effect. In order
to better screen the influencing factors of the transfer of COVID-19 critical patients out of ICU, it was
necessary to determine an optimal model, and the following four steps could be carried out:

Step 1: Fit models with only random effects to calculate ICC, thereby determining whether the
response variable could be analyzed using a generalized linear mixed-effects model.

ηi j = g(E(yi j)) = u0 j (7)

In Eq (7), ηi j was the response variable, and u0 j was the random effect. Wherein, the response
variable was the (0, 1) distribution variable of whether to transfer out of the ICU, and the random
effects were COVID-19 critical patients in each state of transferring to and out of ICU. The parameter
estimation results were obtained through the analysis of glmmTMB function of R software. Since the
ICC value could not be calculated by glmmTMB function, the ICC function in “performance” [31]
package was called to calculate the ICC value, and finally ICC = 0.24 was obtained.

From the obtained ICC value > 0, it could be concluded that individuals in random effects had
hierarchical structure, and GLMM model could be adopted.

Step 2: On the basis of Step 1, add explanatory variables to the fixed effect to obtain the random
intercept Model 1:

ηi j = g(E(yi j|X, u0 j)) = β0 + β1x1i j + β2x2i j + · · · + u0 j (8)

In Eq (8), β0 + β1x1i j + β2x2i j + · · · was the fixed effect part added with explanatory variables. After
Lasso Cox analysis, the final fixed effect part included 5 variables, i.e., Age; CD8+; CRP; Cr and LDH.
See Table 4 for the calculation results of the fixed effect by software glmmTMB function.

Table 4. Fixed effect calculation results by glmmTMB function of R software.
Items Estimated value Standard error Z value Pr(> |z|)
(Intercept) 2.325 0.686 3.386 0.000709 ***
Age -0.046 0.009 -5.216 1.83e-07 ***
CD8+ 0.001 0.001 1.539 0.123834
CRP -0.014 0.002 -5.848 4.98e-09 ***
Cr 0.021 0.004 5.951 2.66e-09 ***
LDH 0.006 0.001 -6.469 9.88e-11 ***

*Note: *** : P < 0.001; ** : P < 0.01; * : P < 0.05.

Step 3: On the basis of Step 2, add explanatory variables to the random effect to obtain the random
slope and random intercept Model 2:
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ηi j = g(E(yi j|X, u0 j, u1 j)) = β0 + β1x1i j + β2x2i j + · · · + (u0 j + u1 jx1i j) (9)

In Eq (9), u1 jx1i j was the explanatory variable added to the random effect, and the explanatory
variable added in this study was obstime (July 10, 2020 as the observation start date and August 31,
2020 as the ending date, obstime is the time difference between the time of each measurement and the
observation start date after the patient is admitted to the ICU until the end of the observation period).
Since obstime was the time in each state of each COVID-19 critically patient’s transferring to and out
of ICU, and one patient corresponded to multiple times, it is included in the explanatory variable of
the random effect. See Table 5 for the calculation results of random effects of Models 1 and 2 by the
glmmTMB function of R software.

Table 5. Calculation results of random effects of Models 1 and 2 by glmmTMB function of
R software.

Models Items Variance Standard Correlation
deviation coefficient

Model 1 Intercept 0.644 0.8025
Model 2 Intercept 10.82970 3.2909

obstime 0.0165 0.12870 -0.97

Step 4: Compare Model 1 with Model 2 to determine the optimal model and test.
The ANOVA function of R software was called to compare whether Model 2 with the addition of

random effects is better than Model 1 without the addition of random effects. After performing Anova
analysis on the two models, the AIC (Akaike Information Criterion) [32] of the Anova results were
compared to select the optimal model. The results are shown in Table 6.

Table 6. Comparison results of Models 1 and 2.
Model Df Akaike Bayesian Logarithmic Chi-square Degree of Probability

Degree Information information likelihood test values freedom of value of
of Freedom Criterion criterion maximum chi-square test chi-square test
(Df) (AIC) (BIC) (logLik) (Chisq) (Chisq Df) (Pr(>Chisq))

Model 1 7 1037.6 1072.6 -51180
Model 2 9 1018.3 1063.3 -500.16 23.286 2 8.781e-06 ***

*Note: *** : P < 0.001.

As can be seen from Table 6, when Models 1 and 2 differ by 2 degrees of freedom, the probability
value of chi-square test is P < 0.001, which is statistically significant. It can be considered that there is
a significant difference between the two models. Since the AIC value of Model 2 is smaller than that
of Model 1, it can be determined that Model 2 (Eq 9) is the best model, that is, the data can be better
fitted after the random effect is added to the explanatory variables.

3.3. Superiority test and stability test of the GLMM model

After the model was determined, the residual analysis of the model (Figure 3) and the normality
test of random effects (Figure 4) were carried out by calling the binnedplot function in the “arm” [33]
package and the qqplot function in the “car” [34] package in R software. As can be seen from Figure
3, the average residual value basically has a constant and uniform diffusion within the expected value
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range in a symmetrical mode, indicating that the overall fitting effect of the model is good. Figure 4
shows that both the random effects and the added explanatory variables obey normality.
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In order to test the stability of the GLMM model, we also built the Time-Dependent Covariates Cox-
Proportional-Hazard model using the “coxph” function in the “survival” [35] package. By comparing
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the AIC of these two models, we can see that the AIC of the GLMM model (AIC = 1018.3) is smaller
than that of the Time-Dependent Covariates Cox-Proportional-Hazard model (AIC = 2147.3), so the
GLMM model is better.

In addition, by comparing the results of these two models, it can be seen that the results of the
GLMM model (Table 7) are similar to those of the Time-Dependent Covariates Cox-Proportional-
Hazard model (Table 8), which indicates that the stability of the GLMM model is good.

Table 7. Impact factor analysis results.
Items Odds Ratio 95%CI Estimated value Standard error Z values Pr(> |z|)
(Intercept) 15.096 3.306-68.931 2.714 0.775 3.503 0.00046 ***
Age 0.949 0.930-0.968 -0.052 0.010 -5.141 2.73e-07 ***
CD8+ 1.000 0.999-1.002 0.0003 0.001 0.323 0.74689
CRP 0.984 0.978-0.989 -0.017 0.003 -6.013 1.82e-09 ***
Cr 1.02 1.018-1.035 0.026 0.004 6.149 7.82e-10 ***
LDH 0.993 0.991-0.996 -0.007 0.001 -6.017 1.78e-09 ***

*Note: *** : P < 0.001; ** : P < 0.01; * : P < 0.05.

Table 8. Time-Dependent Covariates Cox-Proportional-Hazard model analysis results.
Items β Standard error Z values Pr(> |z|) Hazard Ratio(95%CI)
Age -0.0195 0.0040 -4.0130 6e-05*** 0.9807(0.9714–0.9901)
CD8+ 0.0013 0.0004 2.4490 0.014335* 1.0013(1.0003–1.0024)
CRP -0.0067 0.0017 -3.4910 0.000481*** 0.9933(0.9896–0.9971)
Cr 0.0084 0.0020 3.6010 0.000317*** 1.0085(1.0038–1.0131)
LDH -0.0028 0.0006 -3.6770 0.000236*** 0.9972(0.9958–0.9987)

Note: *** : P < 0.001; ** : P < 0.01; * : P < 0.05.

3.4. Result analysis

In our data collection process, each patient was clinically tested every day after he/she was admitted
to the ICU, and the data of each clinical index was collected, and the value of “whether to transfer out
of ICU” was 0 until the value of “whether to transfer out of ICU” became 1 after he/she was transferred
out of the ICU. So the 0 means not to transfer out of ICU, and 1 means to transfer out of ICU.

Through the analysis of GLMM model 2, the results of influencing factors that affect COVID-19
severe illness patients can’t be transferred out of intensive care unit in a short time are obtained, as
shown in Table 7. From Table 7, it can be seen that there are four influencing factors with p-values
less than 0.05: Age, CRP, Cr and LDH, among which Age, CRP and LDH have OR values less than 1,
indicating that these three factors are protective factors, and the estimated values of these three factors
are negative. On the contrary, Cr is the risk factors with OR value greater than 1, which indicates that
with the increase of this factor, the probability of COVID-19 critically ill patients being transferred out
of the intensive care unit in a short time is greater (Figure 5).

4. Discussion

During the preliminary data collection, it was found that COVID-19 patients who were admitted to
ICU were relatively older, with an average age of 62. This is because the immunity of middle-aged
and elderly people was weak, and as shown in Table 1, that more than half of these elderly patients
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factors

Age 

CD8+

CRP 

Cr

LDH

Odds Ratio [95%CI]

0.949(0.930−0.968)

1(0.999−1.002)

0.984(0.978−0.989)

1.027(1.018−1.035)

0.993(0.991−0.996)

0.92 1 1.05
OR [95% CI]

Figure 5. Factors associated with serious risk of failure to transfer patients with COVID-19
out of the ICU within a short period of time.

were accompanied by chronic basic diseases. Studies show that about 39.0–40.8% of elderly COVID-
2019 patients suffer from hypertension, 16.0–17.7% suffering from diabetes, 4.4–15.7% suffering from
cardiovascular diseases, 4.4–6.2% suffering from chronic basic diseases of liver and kidney, and 2.2–
6.2% suffering from chronic obstructive pulmonary disease [36–38]. Therefore, after novel coronavirus
infection, the human body’s functional load is heavy and the immune function is weak, which leads to
the aggravation of the disease, and further admission to the intensive care unit. The results also reveal
that the younger the age, the greater the probability of being transferred out of ICU. The results still
suggest that the inflammatory factors and immune function of COVID-19 patients need close attention
during the treatment in ICU, such as the increase of C-reactive protein index indicates a relatively high
inflammatory response; the decrease of lymphocyte count indicates possible immunosuppression [39].
Therefore, the changes of COVID-19 patient’s condition during the treatment in ICU should be closely
observed, especially the elderly patients. As the influencing factors, CRP, Cr, LDH and other indicators
need to be paid close attention to, and active treatment should be taken to make the condition better,
thereby transferring out of the ICU more quickly.

In addition, according to the results of the study, Cr is risk factor, indicating that as the levels of this
factor increased, the probability of transferring patients with COVID-19 intensive care unit within a
short period of time increased. Three factors, namely, “Age”, “CRP”, “LDH”, were protective factors,
and the estimated values of these three factors were negative values, indicating that as the levels of
these three factors decrease, the greater the probability of transferring COVID-19 critically ill patients
out of the intensive care unit within a short period of time. In the process of transferring COVID-
19 patients to the ICU for treatment, clinicians can analyze the causes of decreasing Cr indexes and
increasing Age, CRP, and LDH indexes in patients, and then can quickly diagnose the causes and treat
them, so that patients can be transferred out of the ICU within a short period of time.

This study also has some limitations in that we did not collect Covid-19 death-cases admitted to
ICU during data collection. Because there were no deaths in Urumqi during this outbreak according
to the relevant reports of the Health Commission of Xinjiang Uygur Autonomous Region from July to
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August 2020, this resulted in missing information on death-cases admitted to ICU with Covid-19. The
absence of death information may lead to some bias in the results, and in further studies later in this
study, we will collect more data containing information on deceased patients to further improve the
applicability of the model.

To sum up, this study mainly introduces the theoretical framework of generalized linear mixed
effect model (GLMM), the method of parameter estimation, and the steps to realize and determine the
optimal model by R (4.0.5) software. By analyzing and screening the factors influencing COVID-19
critical patients’ inability to be transferred out of the ICU in a short time, the generalized linear mixed
effect model is applied to the medical field for analysis. Since mutually independent data are often
encountered in the research of medical field, the GLMM model is constructed to address the limitation
of data independence required by the generalized linear model and the linear mixed model. The GLMM
model can better analyze broader data types such as longitudinal data, time autocorrelation data and
the like in the medical domain and thereby has a very good application prospect in the medical research
field.
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