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Abstract: Statistical methods are frequently used in numerous healthcare and other related sectors.
One of the possible applications of the statistical methods is to provide the best description of the data
sets in the healthcare sector. Keeping in view the applicability of statistical methods in the medical
sector, numerous models have been introduced. In this paper, we also introduce a novel statistical
method called, a new modified-G family of distributions. Several mathematical properties of the new
modified-G family are derived. Based on the new modified-G method, a new updated version of the
Weibull model called, a new modified-Weibull distribution is introduced. Furthermore, the estimators
of the parameters of the new modified-G distributions are also obtained. Finally, the applicability
of the new modified-Weibull distribution is illustrated by analyzing two medical sets. Using certain
analytical tools, it is observed that the new modified-Weibull distribution is the best choice to deal with
the medical data sets.
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1. Introduction

It is a well-recognized fact that statistical methodologies are effectively used in the analysis of
healthcare data sets. For example, (i) the number of admitted patients to the hospital during a week,
month, or year, (ii) the survival times of the patients, (iii) the death rate of the patients, (iv) the survival
rate of the patients, (v) the recovered rate of the patients, (iv) the number of discharged patients during
a week, month, or year. In the healthcare sector, several studies about the implementation of statistical
methods have appeared. For detailed information, please see El-Morshedy et al. [1], de Villiers et
al. [2], Eliwa et al. [3], Sivaparthipan et al. [4], Urlacher [5], Sandberg et al. [6], Altun et al. [7],
Altaf-Ul-Amin et al. [8], Eliwa et al. [9], Ratnovsky et al. [10], Onchonga et al. [11], El-Morshedy et
al. [12], El-Morshedy et al. [13], and Illescas et al. [14].

Due to the recognized importance of statistical methodologies and models in the healthcare sector,
numerous statistical models have been introduced and implemented. For example, (i) Jones et al. [15]
used a bivariate version of the power generalized Weibull (PG-Wei) distribution for survival analysis,
(ii) Looha et al. [16] introduced a mixture of the Weibull model for analyzing the survival times of
male and female patients, (iii) Kumar et al. [17] used a generalized version of the Log-Weibull (L-
Wei) distribution for modeling the medical data sets. (iv) Liu et al. [18] proposed a new statistical
distribution for analyzing the survival times of the COVID-19 infected patients. (v) Omer et al. [19]
implemented a mixture of the generalized modified Weibull (GM-Wei) distribution for analyzing a
medical data set related to leukemia patients. (vi) Mohammed et al. [20] proposed a new logarithmic
version of the Weibull distribution for analyzing the bladder cancer data, and (vii) Klakattawi [21]
implemented a new extended Weibull (NEx-Wei) distribution for conducting the survival analysis of
the cancer patient’s data set.

To further improve the fitting power of the statistical distributions, numerous approaches have ap-
peared in the literature. For example, (i) a new family of heavy-tailed (NFHT) models introduced by
Arif et al. [22]. (ii) a new generalized-X family studied by Wang et al. [23], (iii) a new extended
alpha power transformed (NEAPTrans) family introduced by Ahmad et al. [24], (iv) a class of claim
distributions of Ahmad et al. [25], and (v) a new flexible exponentiated-X (NFEx-X) family of Arif et
al. [26]. For the latest review about the recent development of statistical methods; see Ahmad et al.
[27]

In this paper, we also introduce a new approach for data modeling in the medical sector. The new
approach is called, a new modified-G (for ‘NModi-G’) family of distributions.

Definition: A random variable Y has the NModi-G family, if its DF G (y;σ,φφφ) is given by

G (y;σ,φφφ) =
F (y;φφφ)
σ

[
σ − 1 + F (y;φφφ)

]
, (1.1)

where σ ≥ 1, σ ≤ −1, y ∈ R, and F (y;φφφ) is a baseline DF. The proofs in Propositions 1 and 2, we show
that G (y;σ,φφφ) is a compact DF.

Proposition 1. Using the DF G (y;σ,φφφ) given in Eq (1.1), we have to prove that limy→−∞G (y;σ,φφφ) = 0
and limy→∞G (y;σ,φφφ) = 1.

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10474–10492.



10476

Proof.

lim
y→−∞

G (y;σ,φφφ) = lim
y→−∞

{
F (y;φφφ)
σ

[
σ − 1 + F (y;φφφ)

]}
,

lim
y→−∞

G (y;σ,φφφ) =
F (−∞;φφφ)

σ

[
σ − 1 + F (−∞;φφφ)

]
,

lim
y→−∞

G (y;σ,φφφ) = 0.

Also, we have

lim
y→∞

G (y;σ,φφφ) = lim
y→∞

{
F (y;φφφ)
σ

[
σ − 1 + F (y;φφφ)

]}
,

lim
y→∞

G (y;σ,φφφ) =
F (∞;φφφ)

σ

[
σ − 1 + F (∞;φφφ)

]
,

lim
y→−∞

G (y;σ,φφφ) = 1.

Proposition 2. The DF G (y;σ,φφφ) in Eq (1.1), is differentiable and right continuous.

Proof.
d
dy

G (y;σ,φφφ) = g (y;σ,φφφ) .

From the mathematical results proved in Propositions 1 and 2, we can see that G (y;σ,φφφ) is a valid
DF.

For y ∈ R,corresponding to G (y;σ,φφφ),the PDF (probability density function) g (y;σ,φφφ), is given by

g (y;σ,φφφ) =
f (y;φφφ)
σ

[
σ − 1 + 2F (y;φφφ)

]
, (1.2)

where d
dy F (y;φφφ) = f (y;φφφ) .

In link to G (y;σ,φφφ) and g (y;σ,φφφ), the SF (survival function) S (y;σ,φφφ) = 1 − G (y;σ,φφφ), HF
(hazard function) h (y;σ,φφφ) =

g(y;σ,φφφ)
1−G(y;σ,φφφ) , and cumulative HF (CHF) H (y;σ,φφφ) = − log

[
1 −G (y;σ,φφφ)

]
,

are given by

S (y;σ,φφφ) = 1 −
F (y;φφφ)
σ

[
σ − 1 + F (y;φφφ)

]
,

h (y;σ,φφφ) =
f (y;φφφ)

[
σ − 1 + 2F (y;φφφ)

]
σ − F (y;φφφ)

[
σ − 1 + F (y;φφφ)

] ,
and

H (y;σ,φφφ) = − log
(
1 −

F (y;φφφ)
σ

[
σ − 1 + F (y;φφφ)

])
,

respectively.
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By implementing the DF G (y;σ,φφφ) in Eq (1.1), we introduce an updated version of the Weibull
distribution, called a NModi-Weibull distribution. The NModi-Weibull distribution can be considered
a special member of the NModi-G family. In Section 2, the expressions for the DF, PDF, SF, HF, and
CHF of the NModi-Weibull distribution are obtained.

2. A NModi-Weibull distribution

Consider the DF F (y;φφφ) of the Weibull distribution is given by

F (y;φφφ) = 1 − e−δy
θ

, y ≥ 0, θ > 0, δ > 0, (2.1)

with PDF f (y;φφφ) given by

f (y;φφφ) = θδyθ−1e−δy
θ

, y > 0, θ > 0, δ > 0, (2.2)

where φφφ = (θ, δ) .

Using Eq (2.1) in Eq (1.1), we get the DF of the NModi-Weibull distribution. Let Y have the
NModi-Weibull distribution with parameters δ > 0, θ > 0, σ ≥ 1, and σ ≤ −1, then, its DF G (y;σ,φφφ)
is given by

G (y;σ,φφφ) =

(
1 − e−δy

θ
)

σ

[
σ − e−δy

θ
]
, y ≥ 0. (2.3)

For y > 0, the PDF of the NModi-Weibull distribution is given by

g (y;σ,φφφ) =
θδyθ−1e−δy

θ

σ

[
σ + 1 − 2e−δy

θ
]
. (2.4)

Different plots of g (y;σ,φφφ) of the NModi-Weibull distribution are provided in Figure 1. The plots
of g (y;σ,φφφ) are obtained for (i) θ = 1.2, δ = 1.8, σ = 1.2 (red curve), (ii) θ = 3.8, δ = 0.1, σ = 1.4
(green curve), (iii) θ = 2.9, δ = 0.3, σ = 3.2 (black curve), and (iv) θ = 0.5, δ = 1.3, σ = 3.4 (blue
curve).

From the plots of g (y;σ,φφφ) in Figure 1, we can see that the shape of g (y;σ,φφφ) of the NModi-Weibull
can be (i) positively skewed (red curve) , (ii) left skewed (green curve), (iii) symmetrical (black curve),
or (iv) decreasing (blue curve).
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Figure 1. Some plots of g (y;σ,φφφ) of the NModi-Weibull distribution.

Furthermore, the SF, HF, and CHF of the NModi-Weibull distribution are given by

S (y;σ,φφφ) = 1 −

(
1 − e−δy

θ
)

σ

[
σ − e−δy

θ
]
,

h (y;σ,φφφ) =
θδyθ−1e−δy

θ
[
σ + 1 − 2e−δy

θ
]

σ −
(
1 − e−δyθ

) [
σ − e−δyθ

] ,
and

H (y;σ,φφφ) = − log

1 −
(
1 − e−δy

θ
)

σ

[
σ − e−δy

θ
] ,

respectively.
Different behaviors of h (y;σ,φφφ) of the NModi-Weibull distribution are shown in Figure 2. The

visual behaviors of h (y;σ,φφφ) are obtained for (i) θ = 1.2, δ = 1.8, σ = 1.2 (blue curve), (ii) θ =

0.5, δ = 1.3, σ = 3.2 (red curve), and (iii) θ = 0.9, δ = 0.6, σ = 1.7 (green curve).
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From the visual behaviors of h (y;σ,φφφ), it can be observed that the shape of the HF of the NModi-
Weibull distribution can be (i) decreasing (blue curve), (ii) increasing (red curve), or (iii) bathtub
shaped (green curve).
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Figure 2. Some plots of h (y;σ,φφφ) of the NModi-Weibull distribution.

3. Mathematical properties

Here, we derive some mathematical properties of the NModi-G distributions. These properties
include (i) the quantile function (QF), (ii) the identifiability property (IP), (iii) the rth moment, and
moment generating function (MGF).

3.1. The quantile function

The QF of the NModi-G distributions can be derived as

y = Q(u) = G−1(u) = F−1(k),

where k is the solution of (σ − 1) k + k2 − σu.

3.2. The identifiability property

This subsection offers the derivation of the identifiability property of the NModi-G distributions us-
ing the additional parameter σ. Suppose that the parameter σ1 has the DF G (y;σ1, φφφ) and the parameter
σ2 has the DF G (y;σ2, φφφ). The parameter σ is said to be identifiable, if σ1 = σ2. Consider

G (y;σ1, φφφ) = G (y;σ2, φφφ) . (3.1)

Using Eq (1.1) in Eq (3.1), we have

F (y;φφφ)
σ1

[
σ1 − 1 + F (y;φφφ)

]
=

F (y;φφφ)
σ2

[
σ2 − 1 + F (y;φφφ)

]
,

σ2F (y;φφφ)
[
σ1 − 1 + F (y;φφφ)

]
= σ1F (y;φφφ)

[
σ2 − 1 + F (y;φφφ)

]
,

σ1σ2F (y;φφφ) − σ2F (y;φφφ) + σ2
[
F (y;φφφ)

]2
= σ1σ2F (y;φφφ) − σ1F (y;φφφ) + σ1

[
F (y;φφφ)

]2 ,

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10474–10492.



10480

σ1F (y;φφφ) − σ2F (y;φφφ) + σ2
[
F (y;φφφ)

]2
− σ1

[
F (y;φφφ)

]2
= 0,

F (y;φφφ) (σ1 − σ2) −
[
F (y;φφφ)

]2 (σ1 − σ2) = 0,

(σ1 − σ2)
(
F (y;φφφ) −

[
F (y;φφφ)

]2
)

= 0,

(σ1 − σ2) = 0,

σ1 = σ2.

3.3. The rth moment

This subsection considers the derivation of the rth moment of the NModi-G distributions. Suppose
Y has the NModi-G distributions, then the rth moment of Y , say µ′r, is derived as

µ′r =

∫
Ω

yrg (y;σ,φφφ) dy. (3.2)

Using Eq (1.2) in Eq (3.2), we get

µ′r =

∫
Ω

yr f (y;φφφ)
σ

[
σ − 1 + 2F (y;φφφ)

]
dy,

µ′r =

(
σ − 1
σ

) ∫
Ω

yr f (y;φφφ) dy +
2
σ

∫
Ω

yr f (y;φφφ) F (y;φφφ) dy,

µ′r =

(
σ − 1
σ

)
∆1 +

2
σ

∆2,

where
∆1 =

∫
Ω

yr f (y;φφφ) dy,

and
∆2 =

∫
Ω

yr f (y;φφφ) F (y;φφφ) dy.

The MGF Mt(y) of the NModi-G distributions is given by

µ′r =

∞∑
r=1

tr

r!

(
σ − 1
σ

)
∆1 +

∞∑
r=1

tr

r!
2
σ

∆2.

4. Estimation and simulation

In this section, we discuss and implement the method of ML (maximum likelihood) to obtain the ML
estimators (MLEs)

(
σ̂MLE, φ̂φφMLE

)
of the parameters (σ,φφφ) of the NModi-G distributions. Furthermore,

the performances of σ̂MLE and φ̂φφMLE are evaluated using a simulation study.
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4.1. Estimation

The method of ML estimation is one of the prominent methods to obtain the MLEs. The estimators
obtained via implementing the ML approach enjoy numerous properties such as (i) efficiency, (ii)
consistency, and (iii) asymptotic normality. Therefore, we use the ML approach to obtain the estimators
of the NModi-G distributions with PDF g (y;σ,φφφ).

Let Y1,Y2, ...,Ys be a collection of random samples, say s, taken from the NModi-G distributions.
Corresponding to g (y;σ,φφφ), the LikF (likelihood function), say λ (σ,φφφ|y1, y2, ..., ys), is given by

λ (σ,φφφ|y1, y2, ..., ys) =

s∏
a=1

g (yi;σ,φφφ) . (4.1)

Using Eq (1.2) in Eq (4.1), we get

λ (σ,φφφ|y1, y2, ..., ys) =

s∏
a=1

f (yi;φφφ)
σ

[
σ − 1 + 2F (yi;φφφ)

]
. (4.2)

Corresponding to λ (σ,φφφ|y1, y2, ..., ys) presented in Eq (4.2), the log LikF, say λ (y1, y2, ..., ys|σ,φφφ), is
given by

λ (σ,φφφ|y1, y2, ..., ys) = −s logσ +

s∑
a=1

log f (yi;φφφ) +

s∑
a=1

log
[
σ − 1 + 2F (yi;φφφ)

]
.

In link to λ (σ,φφφ|y1, y2, ..., ys) , the partial derivates are given by

∂

∂σ
λ (σ,φφφ|y1, y2, ..., ys) = −

s
σ

+

s∑
a=1

1[
σ − 1 + 2F (yi;φφφ)

] ,
and

∂

∂φφφ
λ (σ,φφφ|y1, y2, ..., ys) =

s∑
a=1

∂
∂φφφ

f (yi;φφφ)

f (yi;φφφ)
+ 2

s∑
a=1

∂
∂φφφ

F (yi;φφφ)[
σ − 1 + 2F (yi;φφφ)

] .
By solving ∂

∂σ
λ (σ,φφφ|y1, y2, ..., ys) = 0 and ∂

∂φφφ
λ (σ,φφφ|y1, y2, ..., ys) = 0, we obtain the MLEs

(
σ̂MLE, φ̂φφMLE

)
of the parameters (σ,φφφ).

4.2. Simulation study

A Monte Carlo simulation study (MCSS) is implemented to review/evaluate the performance of the
estimation method. Here, we provide MCSS to evaluate the MLEs σ̂MLE and φ̂φφMLE. To carry out the
MCSS, random samples (RSs) from the PDF g (yi;σ,φφφ) are generated using the formula

y = Q(u) = G−1(u) = F−1(k), (4.3)

where k is the solution of (σ − 1) k + k2 − σu.
The MCSS is conducted for (a) θ = 1.6, δ = 0.5, σ = 1.3, and (b) θ = 1.5, δ = 0.8, σ = 1.2. Using

the function in Eq (4.3) and the above specific values of θ, δ, and σ, RSs of sizes s = 25, 50, 75, ..., 500
are generated for the MCSS.
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Table 1. Simulation results for the GEP-Weibull model.

Set 1: θ = 1.6, δ = 0.5, σ = 1.3.

n parameters MLEs MSEs Biass

θ 2.0264250 0.34424293 0.42642528
25 δ 0.3308959 0.04919103 -0.16910411

σ 3.0607790 6.24781140 1.96077890

θ 1.9068750 0.18418145 0.30687538
50 δ 0.3664297 0.03407172 -0.13357025

σ 2.5546780 4.57668210 1.45467770

θ 1.8398460 0.12796033 0.23984625
75 δ 0.3861830 0.02637042 -0.11381702

σ 2.2494480 3.56365220 1.14944810

θ 1.8022450 0.09987249 0.20224504
100 δ 0.4007103 0.02282122 -0.09928972

σ 2.0751470 2.99863540 0.97514660

θ 1.7642540 0.07597643 0.16425421
150 δ 0.4199996 0.01762115 -0.08000036

σ 1.8684900 2.37178320 0.76848950

θ 1.7198750 0.05149042 0.11987515
200 δ 0.4394083 0.01318933 -0.06059166

σ 1.6652230 1.68975300 0.56522340

θ 1.7109000 0.04665635 0.11089982
250 δ 0.4460993 0.01147129 -0.05390074

σ 1.6108190 1.55819453 0.51081890

θ 1.6837020 0.03669438 0.08370244
300 δ 0.4577645 0.00964167 -0.04223553

σ 1.5188100 1.34898910 0.41881030

θ 1.7011510 0.04038710 0.10115076
350 δ 0.4484196 0.01051719 -0.05158038

σ 1.5852900 1.53231090 0.48529030

θ 1.6654520 0.02587484 0.06545179
400 δ 0.4674469 0.00704898 -0.03255313

σ 1.3942840 0.88039980 0.29428350

θ 1.6390040 0.02636183 0.06900377
450 δ 0.4840139 0.00717385 -0.03598612

σ 1.3522010 0.88759460 0.30220140

θ 1.6136070 0.01555444 0.04360732
500 δ 0.4975956 0.00451764 -0.02240439

σ 1.2923990 0.45577130 0.17239860
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Table 2. Simulation results for the GEP-Weibull model.

Set 2: θ = 1.5, δ = 0.8, σ = 1.2.

n parameters MLEs MSEs Biass

θ 2.0216330 0.42346514 0.52163299
25 δ 0.5268598 0.10444894 -0.27314024

σ 3.0711290 6.50104860 2.05112910

θ 1.8599560 0.22470984 0.35995562
50 δ 0.5787362 0.07833671 -0.22126382

σ 2.6975860 5.59054410 1.67758650

θ 1.7832010 0.15911705 0.28320139
75 δ 0.6200479 0.06027562 -0.17995208

σ 2.3359260 4.28183600 1.31592640

θ 1.7617930 0.13213407 0.26179258
100 δ 0.6318675 0.05207615 -0.16813250

σ 2.1996040 3.84146220 1.17960390

θ 1.7056680 0.08848033 0.20566761
150 δ 0.6625591 0.03944994 -0.13744086

σ 1.9168200 2.92731720 0.89682010

θ 1.6492930 0.06256641 0.14929256
200 δ 0.6994846 0.02682993 -0.10051539

σ 1.6056450 1.77894570 0.58564520

θ 1.6322050 0.05351188 0.13220512
250 δ 0.7095510 0.02370518 -0.09044900

σ 1.5534750 1.63002940 0.53347460

θ 1.6085810 0.03601538 0.10858060
300 δ 0.7255111 0.01709929 -0.07448886

σ 1.4167820 1.16321090 0.39678200

θ 1.5798770 0.02485567 0.07987703
350 δ 0.7456060 0.01108549 -0.05439403

σ 1.2851130 0.72728290 0.26511340

θ 1.5515160 0.02252164 0.08151622
400 δ 0.7679470 0.01058925 -0.05720534

σ 1.2542670 0.59473740 0.23426730

θ 1.5345300 0.01671347 0.06453007
450 δ 0.7857109 0.00806090 -0.04428908

σ 1.1957780 0.41036160 0.17877810

θ 1.5112700 0.01539761 0.06127049
500 δ 0.7976776 0.00717589 -0.04232238

σ 1.1987100 0.36360180 0.15671040
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After obtaining the RSs, two statistical measures, such as (a) MSE (mean square error) and (b) Bias
are selected to evaluate σ̂MLE and φ̂φφMLE. These two quantities are, respectively, computed as

MS E
(
Ξ̂ΞΞ
)

=
1

500

500∑
i=1

(
Ξ̂ΞΞi −ΞΞΞ

)2
,

and

Bias
(
Ξ̂ΞΞ
)

=
1

500

500∑
i=1

(
Ξ̂ΞΞi −ΞΞΞ

)
,

where ΞΞΞ = (σ,φφφ).
Corresponding to (a) θ = 1.6, δ = 0.5, σ = 1.3, and (b) θ = 1.5, δ = 0.8, σ = 1.2, the MCSS

results for the NModo-Weibull model are presented in Tables 1 and 2, respectively. Furthermore,
corresponding to Tables 1 and 2, visual illustrations of the MCSS results are presented in Figures 3 and
4, respectively.
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Figure 3. A visual dispaly for the simulation results of the NModo-Weibull model using
θ = 1.6, δ = 0.5, and σ = 1.3.
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Figure 4. A visual dispaly for the simulation results of the NModo-Weibull model using
θ = 1.5, δ = 0.8, and σ = 1.2.

5. Modeling the medical data sets

This section illustrates the applicability of the NModi-Weibull distribution in the medical sector.
We apply the NModi-Weibull to two medical data sets. The very first data set refers to the bladder
cancer patients’ data; see Lee et al. [28]. While the second data set refers to the lifetimes of leukemia
patients; see El-Gohary et al. [29]. The key measures of the first data set are given by minimum =

0.080, Q1 = 3.348, Q2 = 6.395, Q3 = 11.838, mean/average = 9.366, maximum = 79.050, variance =

110.425, skewness = 3.286569, kurtosis = 18.48308, and range = 8.97. For the second data set, the
key measures are given by Minimum = 1.150, Q1 = 8.025, Q2 = 12.220, Q3 = 15.562, mean/average =

11.370, maximum = 18.520, variance = 23.19414, skewness = -0.4879275, kurtosis = 2.271123, and
range = 17.37. It is important to note that Q1 refers to the 1st quartile, Q2 refers to the 2nd quartile or
median, and Q3 refers to the 3rd quartile.

Using the bladder cancer and leukemia patients’ data sets, the comparison of the NModi-Weibull
distribution is made with the (i) Weibull distribution, (ii) novel exponent power-Weibull (NEPow-
Weibull) distribution, and (iii) an exponential T-X exponentiated exponential (ET-XEE) distribution.
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The DFs of these models are given by

F (y;φφφ) = 1 − e−δy
θ

, y ≥ 0, θ > 0, δ > 0,

F (y; β,φφφ) = 1 −
1 − 1 − e−δy

θ

ee−δyθ

β , y ≥ 0, β > 0, θ > 0, δ > 0,

and

F (y; θ, δ, α) = 1 −
α
[
1 −

(
1 − e−δy

)θ]
α − (1 − e−δy)θ

, y ≥ 0, θ > 0, δ > 0, α > 1,

respectively.
The next step is to choose certain statistical measures to show the best model for the bladder cancer

and leukemia patients’ data sets. To figure out the best model for medical data sets, three statistical
measures (i) Cramer-von Mises (CM), (ii) Anderson-Darling (AD), and (iii) Kolmogorov–Smirnov
(SK) test with the p-value are considered.

After carrying out the numerical analysis using the bladder cancer and leukemia patients’ data sets,
the results of the competing models are presented in Tables 3–6. Tables 3 and 4 offer the MLEs and
statistical measures of the fitted models using the bladder cancer data, respectively. Whereas, Tables 5
and 6 offer the MLEs and statistical measures of the fitted models using the leukemia data, respectively.
From the numerical evaluations presented in Tables 4 and 6, we can see the NModi-Weibull distribution
is the best choice to apply for modeling the medical data sets.

In addition to the numerical evaluation presented in Tables 4 and 6, a visual evaluation of the
NModi-Weibull distribution is also presented; see Figures 5 and 6. From the plots in Figures 5 and
6, we can see that the NModi-Weibull distribution closely follows the fitted PDF, DF, PP (probability-
probability), SF, and QQ (quantile-quantile) functions.

Table 3. The values of θ̂MLE, δ̂MLE, σ̂MLE, β̂MLE, and α̂MLE of the fitted models for data 1.

Models θ δ σ β α

NModi-Weibull 0.75418 0.30260 1.98970 -
Weibull 1.05357 0.09165 - -
NEPow-Weibull 0.91046 0.68725 - 0.22336
ET-XEE 1.147472 0.12483 - - 6.91687

Table 4. The values of the statistical tests and p-value of the fitted models for data 1.

Models CM AD KS P-value

NModi-Weibull 0.05557 0.35149 0.04976 0.90920
Weibull 0.13241 0.79257 0.07429 0.47980
NEPow-Weibull 0.06679 0.41012 0.05615 0.81440
ET-XEE 0.13209 0.78746 0.07982 0.38850
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Figure 5. The fitted PDF, DF, PP, SF, and QQ plots of the NModi-Weibull distribution using
the bladder cancer data.
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Figure 6. The fitted PDF, DF, PP, SF, and QQ plots of the NModi-Weibull distribution using
the leukemia data.
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Table 5. The values of θ̂MLE, δ̂MLE, σ̂MLE, β̂MLE, and α̂MLE of the fitted models for data 2.

Models θ δ σ β α

NModi-Weibull 2.44343 0.00225 4.42298 -
Weibull 2.42921 0.00230 - -
NEPow-Weibull 1.92969 0.12835 - 0.06098
ET-XEE 1.39012 0.32552 - - 1.02808

Table 6. The values of the statistical tests and P-value of the fitted models for data 2.

Models CM AD KS P-value

NModi-Weibull 0.12637 0.82294 0.11752 0.63850
Weibull 0.14137 0.91039 0.16746 0.21190
NEPow-Weibull 0.21028 1.30936 0.14832 0.34230
ET-XEE 0.10453 0.85098 0.12098 0.58690

6. Robust estimation approach

When a dataset is impure with a single or few outliers, it causes a serious problem in estimating the
parameters. To overcome this problem, we use the robust estimation (RoE) method. The RoE is an
important technique for analyzing the data sets that contain outliers.

The robust estimators (RoEs) have a large family such as the least absolute deviation (LAD), the
least quantile of squares, the least median of squares, and M-estimation methods. For a brief discussion
about the RoEs, we refer to Fang et al. [30], Kantar et al. [31], and Almetwally et al. [32].

In this section, we implement the LAD method to obtain the RoEs of the proposed model. Con-
sider a sample of size s from the NModi-Weibull distribution, then, the RoEs of the NModi-Weibull
distribution can be derived as follows

yi = Qi(θ, δ, σ) + ξi, i = 1, 2, ..., n, (6.1)

where Qi(θ, δ, σ) is the quantile function of the NModi-Weibull distribution and ξi is the error term
with mean equals zero and known variance.

For the RoE method, it is necessary to scale the invariant error (ςi) as follows ςi =
ξi
Λ
, where ξi

denotes the ith residual, and Λ =
Median{|ξi−Median(ξi)|}

0.6745 . The constant 0.6745 is chosen so that the RoEs
become asymptotically unbiased for a normal error case. The LAD method is obtained by minimizing
ςi, where LAD(θ, δ, σ) = min |ςi|.

After differentiating Eq (6.1) with respect to the parameters θ, δ and σ, we get three nonlinear
equations that cannot be solved analytically. Hence, iterative procedures like the Newton-Raphson
algorithms can be utilized to solve for the solution of the θ̂LAD, δ̂LAD, and σ̂LAD numerically.

6.1. Robust estimation using the bladder cancer patients data

As we discussed earlier that the RoE methods can be implemented when there are outliers in the
data. In this paper, we have analyzed two data sets; see Section A. The first data set (i.e., the bladder
cancer patients’ data) has some outliers. Whereas, the second data set (i.e., the lifetimes of leukemia
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patients) has no outliers. Therefore, we provide the RoE of the NModi-Weibull distribution using the
bladder cancer patients data set, only.

The initial density shape is listed using the non-parametric kernel density estimation approach in
Figure 7. From Figure 7, we can see that the shape of the density is asymmetric. The normality
condition is checked via the QQ plot; see Figure 7. The outliers can also be spotted using the box plot;
see Figure 7. Henceforth, we can say that there are outliers in the data.
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Figure 7. Some basic non-parametric plots for data set I.

Based on the LAD approach, the RoEs of the NModi-Weibull parameters are θ̂ = 2.3178, δ̂ =

0.00127, and σ̂ = 4.50187 with P-value = 0.71279. It is noted that the LAD approach is the best as
compared to the MLE technique due to its high p-value.

7. Concluding remarks

Statistical distributions have proven great applicability in healthcare-related sectors. For modeling
and describing the medical data sets, numerous statistical distributions have been introduced and im-
plemented. Keeping in view the recognized importance of the statistical methods in the healthcare
sector, a new modified-G family was introduced in this paper. Certain mathematical properties of the
NM-G distributions were derived. A special sub-case of the NM-G distributions by taking the Weibull
distribution as a baseline model was discussed. The special model of the NM-G distributions was
named a NModi-Weibull distribution. A simulation study based on the NModi-Weibull distribution
has also been carried out. At last, the importance of the NModi-Weibull distribution was illustrated
by modeling two data sets (the bladder cancer patient’s data and the lifetimes of leukemia patient’s
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data) taken from the healthcare sector. Using these data sets, it is observed that the NModi-Weibull
distribution was the best competitor for dealing with the medical data sets.
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