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Abstract: In clinical decision support, argumentation plays a key role while alternative reasons may be 
available to explain a given set of signs and symptoms, or alternative plans to treat a diagnosed disease. 
In literature, this key notion usually has closed boundary across approaches and lacks of openness and 
interoperability in Clinical Decision Support Systems (CDSSs) been built. In this paper, we propose a 
systematic approach for the representation of argumentation, their interpretation towards 
recommendation, and finally explanation in clinical decision support. A generic argumentation and 
recommendation scheme lays the foundation of the approach. On the basis of this, argumentation rules 
are represented using Resource Description Framework (RDF) for clinical guidelines, a rule engine 
developed for their interpretation, and recommendation rules represented using Semantic Web Rule 
Language (SWRL). A pair of proof knowledge graphs are made available in an integrated clinical 
decision environment to explain the argumentation and recommendation rationale, so that decision 
makers are informed of not just what are recommended but also why. A case study of triple assessment, 
a common procedure in the National Health Service of UK for women suspected of breast cancer, is 
used to demonstrate the feasibility of the approach. In conducting hypothesis testing, we evaluate the 
metrics of accuracy, variation, adherence, time, satisfaction, confidence, learning, and integration of the 
prototype CDSS developed for the case study in comparison with a conventional CDSS and also 
human clinicians without CDSS. The results are presented and discussed. 

Keywords: clinical decision support; clinical guideline; RDF-based argumentation rule; 
recommendation graph; SWRL; triple assessment of breast cancer 
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1. Introduction 

Evidence-based medicine promotes conscious and explicit use of the best evidence for clinical 
decision-making [1]. Clinical Decision Support Systems (CDSSs) can be developed that match 
evidence-based guidelines to patient conditions and generates customized recommendations. As 
alternative reasons may explain a given set of signs and symptoms, and alternative plans may treat a 
diagnosed disease, a key component in CDSSs is actually argumentation. The goal of argumentation 
is generating the most appropriate recommendations and better still, convincing the decision makers 
what has been recommended. It is therefore crucial that argumentation has its representation in 
compliance with clinical evidence, interpretation in an automatic manner, and explanation readily 
available in the very decision-making context. 

The representation of argumentation shall suit clinical decision support, and encapsulate the 
decision rationale as described in clinical evidence. However, the majority of the existing clinical 
decision languages such as Arden syntax [2], Guideline Interchange Format (GLIF) [3], PROforma [4], 
and even agent-oriented paradigm of Goal-Norm-Agreement-Plan-Belief (GNAPB) [5] remain 
independent and proprietary in their nature. This results in their closed boundary and lack of 
openness and interoperability in CDSSs been built. Thus, in the past, numerous difficulties have been 
encountered in their integration with local environments such as Electronic Health Record (EHR) 
systems, or in joining external knowledge exchange processes when required. The lack of semantic 
interoperation inevitably hinders the adoption of CDSSs and eventually leads to their failure. In 
addition, explanation is also important to CDSSs but which is, sadly, often missing in the literature. 
The result is that, there are often rare opportunities for decision makers to fully exploit the decision 
options and the underlying recommendation rationale in the due process of decision-making. They 
may feel hesitate in committing to appropriate decisions. 

It has been increasingly realized that issues such as interoperability and explain-ability place a 
tremendous burden upon local advocators and potential users, and it may lead to the reluctance of the 
use of CDSSs. In this work, an investigation of argumentation-centered decision support is carried 
out. We propose an approach for the representation of RDF-based argumentation rules, in an attempt 
to address the interoperability issue. A generic rule engine is developed to support their interpretation. 
The decision recommendation processes are accompanied by proof knowledge graphs, addressing 
the explain-ability issue. A prototype is built as a demonstration of the approach, using a case study 
of the triple assessment of women suspected of breast cancer. 

1.1. Overview of argumentation approaches 

Argumentation is an activity that puts forward propositions to justify or refute standpoints prior to 
reaching a rational judgment [6]. Argumentation systems can help to capture and model the discussions 
involved in meetings or conversations whereas decisions need to be made. Early in the 60s, an 
argumentation-based approach of Issue Based Information System (IBIS) [7] was invented. It is 
designed to solve what Rittel has defined as the “wicked problems” [8]—problems that exist in the 
real world and could not be solved by formal models. Since the middle of 2000s, IBIS-related 
approaches have increasingly gained popularity, as they have been applied in developing various 
kinds of computer-based systems for collaborative problem solving. Of special note are systems 
using a “Dialogue Mapping” [9] technique, which can be employed to facilitate with translating 
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participants’ comments into the IBIS scheme, with key notations of Questions, Ideas, Pros and Cons. 
First, a Question or a problem-to-solve is raised, shown as a question mark in a diagram. Then, a 
number of responding Ideas or possible solutions to the problem are proposed, shown as bulb marks 
and pointed to the question. Finally, under each Idea, the Pros and Cons or the arguments support or 
object to the corresponding solution are put forward, shown as plus and minus marks and pointed to 
the idea. Any of these can be further questioned and this makes a growing tree structure. Eventually, 
a decision is chosen as one of the Ideas on the root Question. The contributions of participants are 
represented progressively and informally using free-text labeled nodes and edges in an 
argumentation diagram. 

In the 2010s, major institutions such as MIT Centre for Collective Intelligence advocate the use of 
IBIS argumentation scheme, as opposed to collocated meetings which are impractical, expensive, and 
with limited breadth of interaction, as well as social media which are unsystematic, poorly-organized, 
and with a wide range of quality [11]. Some techniques and tools are developed to support the scheme. 
Compendium augments human dialogue and shared cognition in organizations [12], hence facilitating 
Computer-Supported Collaborative Argumentation (CSCA). Deliberatorium uses attention mediation 
metrics to enhance argumentation effectiveness [13], via the synthesis of human communities’ 
creativity and computer systems’ data analysis productivity. Such kind of fusion has been considered 
as an important part of what is envisioned as “programming the global brain” [14] or building up the 
“superminds” [15]. The idea is that networked humans and computers will bring together collective 
intelligence in the emergent era. 

However, all above studies have the disadvantages in those human users and their experience are 
the primary concern. An argument map is central to the design, and it has a simple and systematic 
structure that encourages clarity and reduces redundancy. Nevertheless, they are left in a form just 
for human comprehension and will gradually lose value since they are not automatically interpretable 
by machine or put in an integrated decision support environment. More importantly, as argument 
maps will inevitably evolve, it will be more and more difficult to maintain the link between the 
argument structures and their implications in the real world continuously. 

It is only around 2010s till this day that the propositions of representing arguments in a way that 
both semantically rich and computationally enabled are put forward. Initiatives such as the Argument 
Web [16–18] are aimed at the storage, visualisation, and sharing of argument structures, using an 
Argument Interchange Format (AIF) [19]. While largely written in natural language, the AIF 
description can be specified in OWL and RDF, thus facilitating argument exchange across domains. 

1.2. Argumentation in clinical decision support 

In the clinical domain, argumentation is helpful in formalizing human cognition and reasoning 
about the best clinical decisions to make. One notable model is logic of argument (LA) [10], 
developed in the 2000s, which underpins the guideline representation language of PROforma. LA 
includes three parts of an argument: claim, grounds, and confidence. Claims can be alternative 
clinical options to believe such as diagnosis or treatment. Grounds and confidence can be built up, 
e.g., via judging symptoms in support or oppose a certain diagnosis, etc. In fact, the model shares 
some similarities with the IBIS scheme, whereas Questions are the decisions to make, Ideas are the 
decision options, Pros and Cons are the arguments. LA is also closely related with Toulmin’s 
influential, yet more generic argumentation scheme [29] that establishes formal theoretical ground to 
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argue about certain claims to believe, e.g., decision options to commit to. 
LA and other approaches were designed at the time that decision support systems are mostly 

proprietary, with closed boundary and limited request of interoperability. Unfortunately, the lack of a 
counterpart open argument structure as AIF in the clinical domain results in the adoption of 
traditional CDSSs increasingly difficult. It has been well recognized that the semantic integration of 
argumentation in clinical decision support as well as the underlying clinical datasets should be made 
straightforward to enable knowledge sharing and reasoning across clinical domains and boundaries. 
In fact, the triple structure of RDF is a natural candidate for representing propositions formally [20], 
and RDF graphs are a promising alternative to existing argument graph representations. It has been 
demonstrated that Toulmin’s argument scheme can be defined using a generic ontology [21], which 
could later guide the representation and interpretation of arguments in interchangeable RDF 
structures. Related techniques have also been applied to maintain semantic relationships among 
clinical concepts [22], acquire semantically enriched data for clinical queries [23] or storage [24], 
and towards clinical recommendations using SWRL [25]. 

We believe the synthesis of conventional argument theories with Semantic Web-oriented 
knowledge representations and inference machinery, as advocated by this study, will advance a 
promising, open and interoperable clinical decision support paradigm. In the age of Web, encoding 
semantic domain knowledge offers a standard approach for managing software complexity 
continuously, as business logic is decoupled from code and in an easily configurable manner. One 
may even envision that one day, a kind of “Semantic Argument Web” as an extension of the 
Semantic Web will augment the flexibly, understandability, and reasoning ability of the Web to a 
much deeper extent. It is sensible, thus far, to advocate a systematic approach to represent 
RDF-based argumentation knowledge for nationally or internationally recognized clinical guidelines 
and use them to drive decision support. 

1.3. The lack of explanation and the benefits of its integration 

Many CDSSs fail to explain to human decision makers the decision rationale behind the 
recommendation. While humans have insufficient confidence or feel uncomfortable about what are 
suggested, the advices may potentially be obsolete, unfortunately. 

In the opposite side, the benefits are evident. The PHI method has been proposed in [26] to 
enhance IBIS, and it integrates argumentation into a context to detect and critique suboptimal 
solutions made by decision makers. The communication between humans and problem-domains is 
improved, during which crucial decision-making won’t be disrupted by argumentation but supported 
so via critical reflection in an integrated environment. In a study of tour recommender systems [27], 
it is found that entity-based explanations with ontology classes and sentence-based explanations can 
enhance user satisfaction towards the recommended tours. In the clinical domain, PANDEX [28] is a 
genetic prenatal consultation application designed to calculate the optimal treatment strategy with an 
explanatory infrastructure to assist patients and care providers to reach their shared decisions. It has 
been demonstrated that the graphical tools embedded in the system can facilitate patients to fully 
understand the recommended strategy, while their personal medical data or preferences are changed 
the corresponding effects on the recommended strategy can be further explored. 
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2. Materials and methods 

 

Figure 1. An overview of the methods. 
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2.1. An overview of the methods 

An overview of the methods proposed in this paper is shown in Figure 1. A generic 
argumentation and recommendation scheme is put forward (Section 2.2). This lays the foundation of 
representing clinical rationale so that generic clinical evidence can be applied to specific patient 
circumstance and generating customized decisions. The representation of argumentation rules is 
demonstrated using the scheme and a case study of triple assessment (Section 2.3). A systematic 
representation process is introduced, as well as the additional expressive power in representing 
recommendations against overscreening, and the attacking relationships among arguments. A rule 
engine is developed to support the interpretation of RDF-based argumentation rules (Section 2.4). 
The representation of SWRL-based recommendation rules is demonstrated, along with its supporting 
ontology (Section 2.5). These lead to the development of a prototype CDSS (Section 3). 

2.2. A scheme of argumentation and recommendation rules 

A scheme for argumentation rules is proposed here on the basis of an adaptation and extension of 
the influential Toulmin’s general argument scheme [29], most suitable for complex real-world 
situations in which no absolute solution to a problem is available. The scheme is designed specifically 
to suit the domain of clinical decision support. It is shown in the upper part of Figure 2 that the original 
scheme can be stated as a Conclusion being established on the basis of a Fact supported by a Warrant, 
with potentially additional Backing, Rebuttal, and Qualifier elements. It is shown in the lower part of 
Figure 2 that our argumentation rule scheme can be stated as a Decision Candidate (Conclusion or 
Claim) being asserted by Patient Data Statement (Fact, Ground, or Data), for reasons given in the 
Argument (Warrant, linking the Ground to the Claim). Such an argument can have a Support Type (Pros 
or Cons) & Weight (Qualifier or Probability), and usually supported by a Clinical Evidence (Backing). 

 

Figure 2. An argumentation and recommendation scheme. 
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It is essential that the argumentation holds the whole structure together. The Backing component 
may represent the rationale behind clinical guidelines published nationally or internationally, or 
synthesized from statistical analysis of clinical trails in very large scales. The Rebuttal element may 
or may not present in this scheme. For example, one may specify an argument against a decision 
candidate, effectively the same as attacking one of its supporting arguments. We believe this 
argumentation rule scheme is generic and simple enough while used in representing and executing 
clinical guidelines. The recommendation scheme will be detailed later. 

2.3. The representation of RDF-based argumentation rules 

Next, we demonstrate the representation of argumentation rules using the above scheme around 
a case study of Triple Assessment. This is a common procedure in the National Health Service of UK 
for women suspected with breast cancer. The major decisions that need to be made are: 1) clinical 
and genetic risk assessment, 2) imaging assessment by mammography or ultrasound and 3) 
pathology assessment by core biopsy, fine needle aspiration, skin biopsy, etc. Only after making 
these decisions will a multidisciplinary team be able to make a management decision about whether 
to refer a patient for treatment of a tumor. In this study, the actual argumentation rule specifications 
are derived directly from well-established clinical guidelines in natural language. An important 
portion of them for imaging assessment are aggregated and summarized in Figure 3. 

Paragraph 1. Indications for ultrasound include: palpable lump; axillary adenopathy; first 
diagnostic approach for clinical abnormalities under 40 and in pregnant or lactating women; 
suspicious abnormalities at mammography or magnetic resonance imaging (MRI); suspicious nipple 
discharge; recent nipple inversion; skin retraction; breast inflammation, etc (the European Society of 
Breast Imaging guideline [30]). Ultrasound can be used as an initial imaging evaluation of palpable 
breastmasses in patients under 30 years of age who are not at high risk for development of breast 
cancer and in lactating and pregnant women (the American College of Radiology guideline [31]). 

Paragraph 2. Indications for mammography include: mass; induration; axillary 
lymph-adenopathy; some types of nipple discharge; skin changes; persistent focal areas of pain or 
tenderness, etc. If the patient is known to be pregnant, the potential radiation risks to the fetus and 
clinical benefits of the procedure should be considered. However, the potential risk of mammography 
is negligible and diagnostic mammography is not contraindicated if cancer is strongly suspected (the 
American College of Radiology guideline [32]). 

Paragraph 3. Mammography and ultrasound: Mammography is not appropriate as the sole 
diagnostic test for symptomatic breast disease. The overall sensitivity of mammography on its own is 
about 80–85% but is considerably less in young patients. Routine mammography is not 
recommended for women under the age of 35 where ultrasound is the first imaging method of choice 
for those with the complaint of a lump (the Royal College of Surgeons of England guideline [33]). 

Figure 3. A summary of the clinical guidelines used for the radiology decision. 
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The key elements of the argumentation rule scheme referred in Figure 2 can be defined more 
precisely as follows: 

1) Candidate (Decision Candidate): A proposed decision option in a form of belief (e.g., 
whether a disease or not), action (e.g., treatment or discharge), or plan (e.g., surgery or 
chemotherapy), etc. 

2) Argument: A proposition that argues about a Candidate with a support type of either “for” 
(support) or “against” (oppose) with a weight indicating its strength, or alternatively “confirming” 
(absolute support) or “excluding” (absolute oppose) without a weight. This shall be supported 
directly by clinical evidence. The support aggregated from all the arguments of a candidate is called 
its net-support. 

3) Statement (Patient Data Statement): A clinical expression such as a patient’s presence of 
symptoms, signs, lab test results that may be judged as either true or false. This represents the 
circumstance under which an argument can apply. 

A general process of key element elicitation for argumentation rules is given as below. The 
clinical guidelines for radiology decisions in Figure 3 are used. Some manual efforts from both 
clinical domain experts and knowledge engineers are required. 

Part 1 

       … 

Part 2 

Part 3 

Figure 4. The representation of an example RDF-based argumentation rules. 

1) Decision candidate elicitation: the decision candidates are usually mentioned side by side in 
the guideline as alternative solutions to a given problem explicitly, e.g., mammogram and ultrasound 
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can be considered as candidate imaging methods of radiology (Paragraph 3). The resulting main 
structure of RDF-based argumentation rules here is multiple “candidate” elements under a “decision” 
element, as seen in Part 1 of Figure 4. 

2) Argument identification and grouping: The arguments need to be identified and grouped 
under decision candidates. Each argument can have a weight, a support type and a statement, e.g., all 
the indications for both imaging methods are of the “for” type of arguments (Paragraphs 1 and 2) 
whereas avoiding mammogram in certain situations (Paragraphs 2 and 3) are of the “against” type. 
Arguments are associated with differentiated weights as implied in the guideline, e.g., a weight of -400 
indicates that the patient being pregnant is a quite strong argument against doing mammogram. The 
main structure here is multiple “argument” elements under a “candidate” element with various 
support types and weights, as seen in Part 2 of Figure 4. 

3) Statement construction: An argument has a logic representation that needs to be evaluated to 
hold true to support or oppose a decision candidate. This logic representation is used for statement 
construction, e.g., a patient being of pregnancy (Paragraph 2) is an argument that opposes the 
decision candidate of mammogram. A statement may be joint by multiple parts linked by "and" and 
“or” (as we will see examples later). The main structure here is a “statement” with a standard triple 
structure, as seen in Part 3 of Figure 4. 

 

Figure 5. The representation of the argumentation rule in graphical notations. 

In the imaging assessment of Triple Assessment, a typical argumentation rule is that: “a patient 
being pregnant” (Statement) is an Argument against (support type) “mammogram” (Candidate), as 
indicated by the “ACR Practice Guideline for the Performance of Diagnostic Mammography” [32] 
for the reason of the potential radiation risks to the fetus (clinical evidence). An argument glues 
together statements with a decision candidate. In addition to its XML format, a directed graphical 
representation of such an argumentation rule is shown in Figure 5. It has a layered RDF structure. 
Here, a rule’s RDF triple is that a statement (subject), an argument against (predicate), and a decision 
candidate of mammogram (object). Within it, a statement can be further represented as a RDF triple 
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of subject-predicate-object, whereas the subject and predicate elements can be both RDF resources. 
The actual statement’s RDF triple here is that patient (subject), currently Pregnant (predicate), and 
true (object). 

Two special kinds of clinical guidelines may be worth mentioning separately. One of them 
focuses on the increasingly important emphasis on reducing practices that are likely to have limited 
benefit and potential harm to patients and so recommending against overscreening, overdiagnosis, 
and overtreatment [34]. A search tool is suggested [35] to help with retrieving recommendations that 
are put together from over 60 medical societies, under the name of “Choosing Wisely campaign”. We 
believe “what not to do” recommendations are complementary to “what to do” recommendations 
towards complete and helpful decision support. A typical scenario is a drug-drug interaction that 
causes side effect, and the existence of simultaneous prescribing should be checked against to 
exclude improper treatment. Generically, negative relationships should be represented between 
symptoms, signs or other conditions, and certain screening or treatment actions that should be 
avoided. Using our existing scheme, such can be represented as arguments marked with “excluding” 
in the support-type tag. While a recommendation is to be suggested from the given decision 
candidates, the ones with “excluding” types of arguments shall definitely not be considered (regarded 
as with a weight of negative infinite). One example retrieved using the search tool says: “Don’t 
routinely use breast MRI for breast cancer screening in average risk women.” (American Cancer 
Society guidelines [36]), distinguished in its support type and represented in Figure 6. Another one 
says: “Don’t routinely recommend follow-up mammograms more often than annually for women 
who have had radiotherapy following breast conserving surgery.” (American Society of Clinical 
Oncology guideline [37]). These are important rules to be included in delivering proper decision 
support. The other type of arguments, in contrast, has “confirming” in their support-type tag. The 
decision candidates with such arguments should definitely be recommended (regarded as with a 
weight of positive infinite). 

 

Figure 6. The representation of an argumentation rule with an “excluding” type. 

Built on the basis of defeasible reasoning, our argumentation scheme can yet be extended to 
accommodate Toulmin’s Rebuttal element, with the addition of an attack relations among arguments. 
Arguments are interactive rather than independent, whereas an argument can be attacked by another 
argument (a rebuttal) and defeated which makes it un-justified (to support its original candidate). An 
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attacking relationship can be equally regarded as an exception of the original argument while an 
additional condition is established. For example, the clinical guideline of “However, the potential risk 
of mammography is negligible and diagnostic mammography is not contraindicated if cancer is 
strongly suspected” (Paragraph 2 in Figure 3 [32]) makes such a relationship, shown in Figure 7. 

An argument is justified if not defeated, and its original supporting or opposing strength to a 
candidate may be simply retained, or alternatively adjusted by the attacking power. In the latter case, 
an aggregating process of the overall strength of this very argument node is required. An argument 
can be weakened by its linked attacking argument, but which in turn may be attacked by yet another 
argument that weakened the original attacking effect, and this goes on iteratively. An “attack and 
weaken” relation between an argument pair is a preferred option set in our model by default, just like 
the relation between an argument and candidate pair, but a simpler “attack and defeat” model can be 
switched to if required. 

 

Figure 7. The representation of an argument being attacked by another argument (a 
rebuttal element), which itself may be attacked. 

2.4. The interpretation of argumentation rules using a Rule Engine 

A Rule Engine has been developed to support runtime parsing and execution of RDF-based 
argumentation rules. The algorithm used by the engine is presented in Figure 8. It takes a RDF model 
(line 1) and invokes underlying Jena functions for interpreting RDF model elements. This collects 
into various data structures the decision candidates, the arguments in support or against them, and the 
statement criteria that needs to be justified for these arguments (lines 2–7). A list of decision 
candidates together with all those justified arguments in support or against them is eventually 
returned (lines 8–10). The outcome will be available on the decision support interface on request. 
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Rule‐Engine() 
1     model = Model‐Factory‐Read() 
2     Candidates = Selector(model , Property.decision) 
3     Map < Candidate , Arguments > map 
4     for i = 0 to Candidates . length by 1 
5       Arguments = Selector(Candidates[i], “consist‐of ”) 
6     for j = 0 to Arguments . length by 1 
7             Statements = Selector(Arguments[j] , “include”) 
8             A[Argument][weight] = Verify‐Argument(Statements) 
9   map. put(Candidate[i] , 

Collect(A[Argument],Calculate(A[Arguments][weight])))   
10   return map 

Verify‐Argument(Statements) 
1 OrStatements = Split(Statements , “or”) 
2 i = j = 0 
3 for k =0 to OrStatements. length by 1 

4         AndStatements = Split(OrStatement[k] , “and”) 
5         for m =0 to AndStatements.length by 1 
6                 if (Judge‐Patient‐Data(AndStatements[m])) 
7                   j = j + 1 
8         if (j == m) 
9           i = i + 1 
10           statement = OrStatement[k]   
11           Break 
12 if (i > 0) 
13     A[Argument][weight] =Add(statement ,Selector(statement, 

“weight”)) 
14 return A[Argument][weight] 

Figure 8. The algorithm used by the engine for argumentation rule interpretation. 

In the algorithm, an argument judging facility of VERIFY-ARGUMENT is defined (line 8). 
This function takes in an argument of composite statement parts linked by keywords of “AND” 
and/or “OR”. It is demonstrated in Figure 9 a mechanism of interpreting a generic argument structure 
on the left hand side and a concrete example on the right hand side. It says that an argument to 
support mammogram and with a weight of 100 is that the patient has been assessed as being at 
medium or high genetic risk and is over 30 years old. Briefly, the “OR” keywords serve as the 
splitting points to break a composite argument into separate parts (line 1 of the function). Each part is 
judged in an iterative manner and if any one of them is successfully judged (lines 3–11) then the 
whole argument is valid and it jumps out of the loop. The judging of each part is via further splitting 
them into multiple atomic statements linked only by the “AND” keyword (no more “OR” in between 
at this moment) and every single atomic statement must be judged as true (lines 4–9) for this part to 
hold true. A local EHR service can be invoked to match against the atomic statements (line 6). 
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Figure 9. A mechanism used by VERIFY-ARGUMENT in the algorithm. 

2.5. The representation of recommendation rules using Semantic Web Rule Language (SWRL) 

Upon the completion of argument evaluation by the engine, the decision candidates along with 
the justified arguments supporting or opposing them are available. Thus, all decision candidates can 
have their overall weights calculated, via adding together the weights of arguments for them and 
taking away the weights of arguments against them. The argumentation process is followed by a 
recommendation process, governed by the recommendation scheme shown in the bottom part of 
Figure 2. A key element of the scheme is recommendation rules, which represent the strategy of 
choosing one or more preferred candidates among the alternatives. A strategy as such is often 
implicitly stated in guidelines and the definition of recommendation rules requires thorough 
understanding of the guidelines. These may vary one another depending upon the decision problems. 
One may be defined as: a preferred candidate is chosen as the one with the maximum net-support 
weight among all candidates by ranking (more arguments for it than others). Another one may be: 
any candidate with a net-support weight over zero should be chosen (at the very least some argument 
for them). Yet a third one may be: a preferred candidate is chosen as the first one from an ordered 
candidate list that has a net-support weight over zero (the one with some argument for them and with 
the highest priority). We choose to express recommendation rules in the W3C recommended rule 
language of SWRL, to accommodate generic recommendation strategies and towards a semantic 
integration with the argumentation. 
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Figure 10. The example recommendation rules represented in SWRL. 

In our case study, we understand from guidelines that an appropriate action for the radiology 
decision might be both “do a mammogram of both breasts” and “do an ultrasound of the affected 
area”, or just one of them, or neither. The recommendation rules can be defined as: if the net-support 
weight of any of the first two options of mammogram and ultrasound is greater than or equal to 1, 
then that candidate is recommended (multi-selection possible). If neither of the two candidates is 
greater than or equal to 1, then a third option of “do neither” is recommended, as shown in Figure 10. 
The recommendation rules in SWRL can be regarded as a list of IF-THEN rules. They are 
represented using Ontology Web Language (OWL), edited by Protégé v5.2.0 and interpreted by an 
inference engine of Drools. A recommendation rule written in SWRL seeks to satisfy its antecedent 
part and if so its consequent part is applied, both expressed on the basis of ontology. It is at runtime 
that variables are instantiated with values, relationships are established, logic representations are 
satisfied, and rules are fired. 

It is given in Table 1 some example classes and properties that constitute OWL ontology and 
support SWRL reference and recommendation. In this way, for example, the first SWRL rule 
representation can be interpreted as: IF the individual in the class of Candidate has name 
“mammogram”, AND it has a weight greater than or equal to the reference value 1, THEN put the 
individual of mammogram into the class of Recommendation. 

An ontology is built to support the definition of SWRL, with its major part shown in Figure 11. 
The elements of Candidate, Argument, and Statement in the argumentation scheme are present as the 
main line of class structure. In a side branch of Argumentation, Recommendation Rules encapsulate 
the decision strategy and make a certain Recommendation out from the Candidates available. Among 
the Candidates, human decision makers may choose one as a Commitment eventually, most likely 
but not necessarily the same as the Recommendation. While a concrete decision is demanded, class 
instances as individuals become available, e.g., ultrasound and mammogram are Candidates for the 
decision task of radiology. In the bottom layer, Statements need to be evaluated, e.g., “patient-age 
less-than 35”, “patient currently-pregnant true”, “patient lump true”, etc. Typically these include 
patient symptoms, signs and many other terms and so standardized clinical ontology can be referred 
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to. Such RDF resource elements may be retrieved from the existing EHRs in an inter-operable 
manner, and evidence sources may also be referred. 

Table 1. Some classes and properties of the ontology used in Figure 10. 

Name Type Description 

Candidate Class A class represents the decision candidates. 

Recommendation Class A class stores the recommended decision candidate. 

ultrasound Individual An individual as an instance of a Candidate with 

datatype constraint of “hasName” and “hasWeight”. 

mammogram 

 

Individual An individual as an instance of a Candidate with 

datatype constraint of “hasName” and “hasWeight”. 

doingNeither Individual An individual as an instance of a Candidate with 

datatype constraint of “hasName” and “hasWeight”. 

hasWeight Datatype property 

(Integer)  

A property that represents the weight of a Candidate. 

hasName Datatype property 

(String) 

A property that represents the name of a Candidate. 

 

Figure 11. A major part of the ontology centered on argumentation and recommendation. 
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3. A prototype decision support system for breast cancer 

The main results are a prototype decision support system with integrated explanation. It is 
particularly important that the decision rationale behind the recommendation is made explicit if 
guidelines are to be adhered invariably. In contrast with the convention of providing suggestions only, 
we believe that why these are suggested should be available in addition to what, in the very decision 
contexts. This would allow decision makers to be convinced of the suggestions and help to reduce 
the chance of inappropriate decisions. Therefore, in our design of a prototype decision support 
system, three key components are present. 

1) The main decision support interface guides the decision support process, from prompting 
users for clinical data collection until presenting the recommendation. The screenshots of the 
typical moments are shown in Figure 12(a),(b), respectively. In Figure 12(a), an automatically 
generated enquiry interface page is presented, and the data for enquiry are those necessary for 
executing the RDF-based argumentation rules. In Figure 12(b), an imaging decision on the use of 
ultrasound investigation is recommended, as indicated by a checkmark. The pros and cons of each 
candidate are presented and indicated by the plus and minus marks under the candidates. The 
candidates are also accompanied with their aggregated net-support values. These offer a simple but 
natural form of explanation. 

(a) Part of a data collection interface (b) A recommendation interface 

Figure 12. An example of data collection and recommendation interface. 

The decision makers may, however, overturn the default recommendation, and a reason needs to 
be supplied. Such a process may proceed in several rounds, each of which has a particular set of data 
for collection followed by clinical, imaging, and pathology argumentation and recommendation. A 
decision path shall be selected step by step until all major decisions are finally made. 

2) A context-sensitive viewer of the original clinical guidelines provides to decision makers the 
evidence on which basis the decision support is delivered. The appropriate parts of the guidelines in 
natural languages are displayed in the viewer while decision makers are performing corresponding 
tasks. The viewer is refreshed and the relevant parts are jumped to for reference while the decision 
context is changed. This explains, for example, why a clinical symptom is critical and needs to be 
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inquired about for a patient or why a diagnosis is suggested, according to the guideline description. 
3) A proof knowledge graph further explains the argumentation and recommendation rationale. 

Such front-end representation and explanation is in contrast with the back-end interpretation and 
execution, though both use the same set of argumentation knowledge. Each decision candidate can 
have its justified and non-justified arguments linked to them, and the comparison of their strengths 
shown visually. As the proof knowledge graph can be directly examined by decision makers in the 
decision context, the argumentation is made explicit rather than hidden away, and the recommendation 
rationale can be appreciated in a human-understandable manner. This is particularly useful in 
explaining situations whereas an arguable decision is recommended even though some arguments are 
against it, or a seemingly sound decision is not recommended even though some arguments support it. 
Ultimately, the human decision actions are less likely to be varied and strayed away from guidelines. 

a) A generic argumentation graph: 
It establishes all general relationships between 
concepts that hold true as indicated in 
argumentation knowledge: the “candidate-of” kind 
of relationships between candidates and decisions, 
and “argument-for” or “argument-against” kind of 
relationships between arguments and candidates. 

b) A specific recommendation graph:  
It is instantiated for a specific patient, 
highlights ultrasound being preferred over 
mammogram, with justified arguments. 
Ultrasound has two supporting arguments 
each with a weight of 1. Mammogram has 
three supporting arguments each with a 
weight of 1, and two opposing it with a 
weight of -50 and -400. 

Figure 13. A pair of proof knowledge graphs for imaging investigation. 

It is shown in Figure 13 a pair of proof knowledge graphs generated automatically within the 
decision support environment. This includes (a) a generic argumentation graph for a given decision 
support problem, and (b) a specific recommendation graph for a particular scenario. An 
argumentation graph is a fully connected graph, establishing all general relationships between 
concepts as indicated by argumentation rules. One type of connection is concerned with “argument” 
and “candidate” types of nodes. If Node A (a type of “argument”, rectangle, in grey by default) 
supports/opposes Node C (a type of “candidate”, oval, in blue), an edge Argc runs from A to C (a 
type of “argument-for” or “argument-against”, with a strength value). Another type of connection is 
concerned with “candidate” and “decision” types of nodes. If Node C (a type of “candidate”) is a 
candidate of Node D (a type of “decision”, cycle, in red), an edge Cand runs from C to D (a type of 
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“candidate-of”). A specific recommendation graph is a runtime instantiation and partial graph of the 
previous one. Only the nodes and relationships justified in the context of a specific patient are 
selected, indicating the establishment of clinical evidences and supporting the comparison of the 
relative strength of candidates. The graph is produced following the data collection process. The 
“argument” type of nodes is evaluated and those successfully judged are highlighted and filled in 
green. The edges that point them to the related “candidate” nodes are also highlighted to indicate 
their supporting or opposing conditions hold. All other nodes and edges of the same type are taken 
away. Also, all “candidate” type of nodes is marked with their aggregated weights. One of them is 
eventually recommended for the “decision” type of node, marked with an outer highlighted cycle 
indicating it is a “preferred candidate”. 

 

Figure 14. A prototype decision support system with three integrated components. 

Our prototype has its main interface shown in Figure 14. Its three integrated parts include: the 
main decision support interface (left hand side), the guideline viewer (top right hand side), and the 
proof knowledge graph (bottom right hand side). At runtime, the decision makers are guided through 
the decision-making interface, referring simultaneously to the guideline text and the proof 
knowledge graph. At first, the graph is presented as a general graph of nodes and edges via parsing 
the RDF-based argumentation rules. Also, the appropriate guidelines as summarized in Figure 3 are 
loaded into the guideline viewer. This is via parsing the guideline source links as annotated in the 
“Evidence” node of the argumentation scheme, shown in Figure 5. As decision makers go through 
the decision process, the enquiry data are fulfilled and this leads, immediately, to their related 
arguments being established and relevant nodes highlighted in the graph. In Figure 14, it is shown 
that five argument nodes turn in green in correspondence to the enquiry data just being collected. 
Also, the proper guidelines are populated into the viewer, or the precise sections jumped to, as soon 
as the decision context is changed. This goes on until, finally, all recommendations are provided for 
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this particular patient, an example recommendation page being shown in Figure 12(b). Each patient 
will, eventually, have a specific proof knowledge graph built to reflect her own situations though the 
same argumentation rationale applies. The graph can be explored by decision makers to make better 
sense of the recommendation presented on the interface prior to any final decision commitment. 
These three components of the system are rendered under synchronized coordination. 

4. Experiments and evaluation 

We carried out an empirical experiment to evaluate our approach. The experiment is organized 
in the following manner. 

1) Firstly, we prepared the clinical decision environments. The prototype system developed for 
breast cancer, as described in Section 3, was used for comparison. It is empowered with the full 
clinical decision support capabilities with backend argumentation, recommendation at point of care, 
and context-sensitive guideline viewer and visualized proof knowledge graph for explanation. The 
ones for comparison are a conventional decision support system and human clinicians without any 
decision support. The conventional system was developed using PROforma, the same guidelines and 
sets of user interfaces were used, but it was limited in explanation facilities. The human users were 
supplied with a basic decision-making environment but no recommendation. The interfaces of the 
three environments are shown in Figure 15. 

2) Secondly, we set out a number of 8 metrics, namely accuracy, variation, adherence, time, 
satisfaction, confidence, learning, and integration, for evaluation among the three decision support 
environments. Accordingly, 8 hypotheses were drawn upon from these. We expected clinicians using 
our prototype system would perform better (objective) or feel supported better (subjective) than other 
environments in the above metrics. This part is detailed in Section 4.1. 

3) Thirdly, we prepared patient cases for running through decision-making, and recruited 
postgraduate medical college students as participants. They were randomly assigned to one of the 
three decision-making environments as a group. The arrangement of patient cases for each 
participant was designed in a way to enable an independent and fair assessment of different metrics. 
Four hypotheses on accuracy, variation, adherence, and time as objective metrics were directly 
measured using the data collected from the observation of decision-making processes of participants. 
Three hypotheses on satisfaction, confidence, and learning as subjective metrics were measured 
using questionnaires for decision makers immediately following the decision-making. The last 
hypothesis on integration was measured using separate questionnaires for the staff of the host IT 
department. This part is detailed in Section 4.2. 

4) Lastly, the data was collected and analyzed in an attempt to confirm the 8 hypotheses. Two 
P-values were used, one as a statistical measurement that assumes the null hypothesis is correct 
between two decision support systems, and another between our decision support system and human 
clinicians. The previously defined hypotheses are considered as alternative hypotheses. The result is 
that the hypotheses on 6 metrics were confirmed between two decision support systems, and all 8 
metrics between our decision support system and human clinicians. We analyzed and gave 
explanation on why there was no statistically significant difference in terms of the time spent on 
decisions and the satisfaction level of using the two systems. This part is detailed in Section 4.3. 
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Figure 15. The user interfaces of three clinical decision environments for comparison. 

4.1. Research hypotheses 

Experiments were carried out to investigate various quality attributes of the prototype CDSS 
built with the systematic approach of argumentation, recommendation, and explanation (called 
ARE-CDSS). We compared ARE-CDSS with a conventional CDSS (called C-CDSS) developed 
using PROforma, as well as human clinicians (called HC) without any system-level support. Both 
CDSSs shared the same clinical guidelines, and guided decision makers in decision processes of 
collecting clinical data, recommending decision options in ranked lists, prompting clinical actions to 
commit, etc. Nevertheless, ARE-CDSS is capable of semantic linking with local environments and 
provides advanced explanation facilities. It has been suggested in literature [38,39] that metrics for 
evaluating decision support systems could be categorized under productivity, process, and perception. 
These have been extended to derive the precise metrics for our study, summarized in Table 2. 

A total number of 8 hypotheses were drawn upon from Table 2, as follows: 
Hypothesis 1, Accuracy: Clinicians using ARE-CDSS yield higher accuracy in decision 

outcomes than those using C-CDSS and HC. 
Hypothesis 2, Variation: Clinicians using ARE-CDSS yield less variation in decision outcomes 

than those using C-CDSS and HC. 
Hypothesis 3, Adherence: Clinicians using ARE-CDSS yield higher adherence to 
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recommendations than those using C-CDSS. 
Hypothesis 4, Time: Clinicians using ARE-CDSS spend less time than those using C-CDSS 

and HC. 
Hypothesis 5, Satisfaction: Clinicians using ARE-CDSS are more satisfied than those using 

C-CDSS and HC. 
Hypothesis 6, Confidence: Clinicians using ARE-CDSS are more confident than those using 

C-CDSS and HC. 
Hypothesis 7, Learning: Clinicians using ARE-CDSS feel they have more opportunity to learn 

from it than those using C-CDSS or HC. 
Hypothesis 8, Integration: IT managers and staff have a higher level of desire in integrating 

ARE-CDSS with existing hospital information systems than C-CDSS. 
In conducting hypothesis tests, we were able to evaluate the association between various metrics 

with ARE-CDSS, C-CDSS, and HC, respectively. This provided insights into the value of our 
approach and the difference it might make, if any. 

Table 2. A summary of the metrics for evaluation. 

Category Metric Description 

Productivity Accuracy  The accuracy of outcomes produced by decision makers.

 Variation The variation of outcomes produced by decision makers 

between two or more similar patient cases (which 

should be consistent). 

Process Adherence The adherence of decision-making to recommendations. 

 Time  The time spent in making decisions. 

Perception Satisfaction The satisfaction of decision makers towards the support 

received (or themselves if no support is available, the 

same principle applies below).  

 Confidence The confidence of decision makers in committing to the 

suggested recommendations. 

 Learning The level of learning involved in recommendation and 

explanation during the decision-making processes and 

the insights decision makers can get from it. In other 

words, to what extent is the improved understanding 

from the current experience facilitating the development 

of skills useful for future decision-making? 

 Integration The level of desire among hospital IT manager/staff in 

integrating the CDSS with existing hospital information 

systems. 



10466 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10445–10473. 

4.2. Experimental design and settings 

The experiments were designed as follows. Firstly, we prepared a set of 50 patient cases 
recorded in the past 5 years from a major national Grade-A tertiary hospital in the Wuhan city 
through our colleagues from the Breast & Thyroid Surgery Department. The selection of the patient 
cases was under the supervision and assistance from the Director of the department and the hospital’s 
IT manager. A process of data anonymisation had been carried out to protect patient privacy and 
respect hospital regulations. The patient cases were coded P1 through P50, and the data were 
distributed across clinical scenarios so that a diversity of decisions were available. 

Then, a number of 40 postgraduate medical college students were recruited to join the 
experiments, designated as participating subjects of S1 through S40. They had all been trained with 
background medical knowledge and up to one year of medical practice experience. They were 
assigned to one of the three clinical decision-making environments of ARE-CDSS, C-CDSS, or HC. 

After that, each participating subject were given 10 out of the 50 patient cases as their tasks. The 
groups with facilitating CDSSs also received a 30 minutes tutorial on the software packages 
regarding their functions and operations. They all proceeded to decision-making upon the presenting 
of patient cases, while the HC group making decisions on their own, the C-CDSS group having basis 
recommendations and the ARE-CDSS group having additional proof knowledge graphs, etc. The 
decisions made by every participant were recorded, as well as the time spent on each patient case. 

Finally, straight following the tasks, participants were asked to fill out questionnaires 
concerning their satisfaction, confidence, and learning opportunity involved in the tasks. The IT 
manager of the hospital and four working staff were invited to observe the entire process as 
mentioned above, designated as I1 through to I5. They were asked to fill out a separate questionnaire 
to express their desire of integrating these techniques. 

Among the 40 participants, 3 failed to complete the entire processes and another 4 were dropped 
due to the insufficient time spending on the tasks. We considered one had not taken the 
decision-making tasks seriously if the time spent on any patient case is less than 10 minutes. The 
remaining 33 participants were randomly assigned to ARE-CDSS, C-CDSS, and HC, making 11 
participants in each group. Statistical tests were carried out and no significant difference was found 
among the groups. A typical setting of patient cases for each participant is described in Table 3. 

Table 3. A summary of the patient case setting for a single participant. 

Patient case P1 P2 P3 P4 P5 P6 P7 P8 P9 P10e 
Uniqueness of decision 
paths & CDSS 
functionality 

Ua, 
Onc 

U, 
Offd 

U, 
On 

U, 
Off 

U, 
On 

= P1b, 
Off 

= P2, 
On 

= P3, 
Off 

= P4, 
On 

= P5, 
Off 

Note: aP1–5 demand running through unique decision paths, abbreviated by “U”. bP6–10 share clinical characteristics 

with P1–5, hence running through equivalent decision paths. cThe CDSS functionality would be turned On for a 

patient case with explanation facilities, etc. dThe CDSS functionality would be turned Off for a patient case, 

temporarily. The decision maker would have to make decisions on her own, though using the same set of data and 

interfaces, i.e., The entire right part of components shown in Figure 14 would be unavailable, and the decision-making 

process shown in Figure 12(b) would be limited without the ranking and explanation functions. eA decision maker 

would work on the cases in an ascending order from P1 to P10. The above collective set is called a single patient case 

set. A total of 5 patient case sets were prepared, and they were randomly selected and assigned to S1 through to S33. 
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The accuracy in Hypothesis 1 was measured as the total accurate decisions being made among 
the 8 patient cases of P1, P3 & P5–10 by each decision maker, as P2 & P4 would have their CDSS 
functionality turned off, and P6, P8 & P10 would have indications from previous similar cases. 

The variation in Hypothesis 2 was measured as the total decision paths chosen by each decision 
maker that differ each other, unexpectedly, among the 5 pairs of P1–6, P2–7, P3–8, P4–9, and P5–10. 

The adherence in Hypothesis 3 was measured as the total decisions being made in compliant 
with the recommendations, among P1, P3, P5, P7 and P9, while the CDSS functionality turned on. 

The time in Hypothesis 4 was measured as the average time spent on each patient case. 
The satisfaction, confidence, learning and integration in Hypotheses 5–8 was measured using 

questionnaires with a 5-point Likert Scale, whereas Hypotheses 5–7 were targeted to S1 through to 
S33, and Hypothesis 8 to I1 through to I5. 

4.3. Data collection and result analysis 

On gathering and analyzing the data on user decision-making and feedback, the hypotheses 
could be confirmed (or not) in accord with the results shown in Table 4. P-values were used to 
determine whether we should accept or reject our hypotheses. P-value1 is a statistical measurement 
that assumes the null hypothesis is correct between ARR-CDSS and C-CDSS, and P-value2 between 
ARR-CDSS and HC, while alternative hypotheses are defined in Hypotheses 1–8, respectively. 

Table 4. The results of hypothesis testing on the association of metrics with both CDSSs and HC. 

Hypothesis ARE-CDSS C-CDSS HC P-value1 Confirm 

(α = 0.05) 

P-value2 Confirm 

(α = 0.05)Mean S.D. Mean S.D. Mean S.D. 

H1: Accuracy 7.1818 1.0787 6.1818 1.4709 4.5455 2.1616 0.042 Yes 0.0009 Yes 

H2: Variation 0.6364 1.0269 1.6364 1.2863 3.3636 2.0136 0.0288 Yes 0.00035 Yes 

H3: Adherence 4.6364 0.6742 3.7273 1.1037 / / 0.0152 Yes / / 

H4: Time 14.6091 1.4032 16.0455 2.6961 20.118 4.9562 0.0664 No 0.0010 Yes 

H5: Satisfaction 4.1818 0.7508 4.0909 0.5394 3.3636 0.9244 0.3738 No 0.0169 Yes 

H6: Confidence 4.7273 0.4671 4.1818 0.8739 2.7273 1.1037 0.0414 Yes 0.00001 Yes 

H7: Learning 4.8182 0.4045 3.2727 1.009 1.6364 0.809 0.00007 Yes <0.00001 Yes 

H8: Integration 4.2 0.8367 2.6 1.1402 / / 0.0176 Yes / / 

As a result, null hypotheses were rejected in 6 out of 8 circumstances between ARR-CDSS and 
C-CDSS, and in all circumstances between ARR-CDSS and HC. In the former case, the hypothesis 
tests indicate that H1–3 & H6–8 were statistically significant. This revealed a stronger association of 
accuracy, variation, adherence, confidence, and learning with the new approach than conventional 
methods or situations whereas no decision support is available at all. It is convincing that the 
enhanced results in both decision outcomes and user experience were highly related with the 
integrated mechanism of argumentation, recommendation and explanation. This facilitated decision 
makers to better examine, exploit, and understand their options and decision rationale. The favorable 
attitude of IT manager and staff was also encouraging towards the deployment of the new technique. 
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The optimal results align with our primitive research goal and suggest the proposed methods could 
be a substantial contribution to the current CDSS literature. The comparison of the mean values of 
the metrics is shown in Figure 16. 

 

 

Figure 16. The mean values of the metrics from H1-H8 on ARE-CDSS, C-CDSS, and HC. 

As for H4, the result indicates there is no statistically significant difference (P = 0.0664) 
between ARE-CDSS and C-CDSS in terms of the time spent on decisions, though the mean value of 
the former is less than the latter. We believe that two reasons contributed to this: 1) the decision time 
spent on each patient case was calculated as the total time from the start of presenting the case till the 
end of decisions made. This included the rendering of the components of additional proof knowledge 
graphs and the guideline viewer, inevitably with a delayed effect; 2) the explanation facilities had 
probably drawn too much interest to decision makers in their deep investigation and understanding of 
cases, and the extra time spent on self-learning processes counteracted a timely decision-making 
manner. Nevertheless, this is arguably a worthy trade-off in the full picture of clinical 
decision-making. As for H5, a short interview with the participants following the analysis of the 
questionnaires revealed that a couple of users prefer more concise and focused interface in decision 
support. Nevertheless, the average of the satisfaction level of ARE-CDSS is slightly higher than 
C-CDSS though there is no statistically significant difference between them (P = 0.3738). 

A couple of follow-up thoughts are worthy of discussion. The result on H7 indicates a 
statistically significant difference (P < 0.05) both between ARE-CDSS and C-CDSS, and between 
ARE-CDSS and HC in terms of learning and better understanding about decision-making as a result 
of the experiment. The conclusion was drawn, though, from the data collected from questionnaires 
and subjective in some way. A question is then: could we possibly evaluate, in an objective and 
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quantitative manner, the difference between groups on learning? One way of doing this might be the 
design of a test, using closely related decision-making scenarios and handing it out to participants 
both before and after the experiment. The paper-based test should include not just what options one 
would choose but also why. In this way, we could measure the improvement of each participant’s 
knowledge about decision-making, and analyze the difference the experiment makes for each group 
of participants. 

Another question is that: could the decision support facilities deprive decision makers of their 
own sense of decision-making, and even mislead them in worst scenarios? That might be a 
dangerous situation, because no system could ever possess complete or perfect knowledge. It 
would be helpful, in a future experiment, to mix a few wrong recommendations into the complete 
group of study, and observe whether the participants could pick up any or all of these and give 
appropriate reasons for rejecting the suggestions. This way, the system could also be self-learning 
and improve its own knowledgebase continuously. Suppose in certain decision-making contexts, an 
expert user suggests new options or optimal choices differently due to emerging new arguments. 
Upon the recurrence of the same situation among different users, the new knowledge should be 
considered for incorporation. 

5. Discussion 

The contributions of this work are three-fold:  
1) It provides an approach of applying Semantic Web-oriented knowledge representation 

languages and inference machinery to well-recognized argumentation theories and schemes to 
deliver clinical decision support suited in open and interoperable environments. 

2) It contributes to researchers in the clinical decision support field a general means and a 
reference of Triple Assessment to build tools for other diseases. One can follow the practice 
described in the paper systematically, starting from the elicitation of argumentation and 
recommendation rules from clinical guidelines, until finally the construction of prototype systems for 
various purposes. Some components such as the inference engine and ontology can be reused. The 
design of eight metrics for assessment can also be reused for their own empirical evaluation. 

3) It offers a practical method of integrating recommendation and explanation in delivering 
decision support. The context-aware, visualized proof knowledge graphs are specially designed and 
demonstrated in the prototype system. As decision makers are informed of not just what is 
recommended but also why within an integrated decision support environment, some suboptimal 
decisions will get criticized and abandoned which may have otherwise been selected by chance 
without such an explanation component. This makes the efforts invested in representing clinical 
decision knowledge more worthwhile. Once captured, such knowledge can be put into effective and 
confident reuse in practice, rather than disregarded in documents, locked in a few experts’ head, or 
tragically, dismissed simply because of insufficient explanation. 

6. Conclusions 

In this paper, a systematic approach for argumentation, recommendation, and explanation in 
clinical decision support is proposed. A prototype system of triple assessment of breast cancer is 
developed for demonstration. In the approach, the argumentation scheme provides a generic and just 



10470 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10445–10473. 

enough structure towards problem-solving: raising the decision problem, eliciting the candidates, 
finding the arguments in relation with the candidates, and the actual statements that make part of the 
arguments. Though simple and intuitive, it has expressive power and puts the cognitive cost of 
applying them to the minimum. Yet, the RDF-based representation supports not only the modelling 
of the guidelines but also their automatic interpretation, until final semantic integration with 
SWRL-based recommendation rules. 

In the future, we will investigate the extension of the approach spatially, temporally, and 
finally towards a hybrid paradigm of symbolic knowledge representation and reasoning combined 
with deep learning:  

1) While two or more sets of independently developed clinical evidences across countries or 
organizations become available. As our argumentation scheme has been designed for human 
communities to contribute a wide range of inputs in the first place, various knowledge sources may 
well fit in and this offers an opportunity of more comprehensive recommendations. The same 
interpretation and explanation mechanisms apply. The aggregation of a wide variety of knowledge 
sources may be achieved in this approach via the matching and elicitation of RDF annotations of 
decision problems, candidates, arguments, etc. A focus of the study may be upon the merging of 
complementary or conflicting knowledge sources. 

2) While the medicine advances as time goes by. Then new diagnosis or treatment options may 
become available for a given disease, or new arguments discovered for the existing options. Such 
new knowledge elements can be accommodated via the configuration of the RDF-based 
argumentation triple store. The recommendation will be generated in compliant with the new 
evidence with no further change to the system, as a generic interpretation engine has been put in 
place. Furthermore, we intend to enable decision makers from various organizations as end users to 
configure their own argumentation and recommendation rules flexibly. This will allow the evolution 
of the knowledge base and decision-making environment to reflect local knowledge and policies, etc. 
We will also look into the recommendations that may be discarded by clinicians during the running 
of the system, and these will be recorded and analyzed continuously to refine our knowledge base. 

3) While we adopt the W3C endorsed standards such as RDF and SWRL for knowledge 
representation and inference, the method benefits from two perspectives evidently: the 
well-established national or international clinical guidelines are respected, and the decision support 
accompanied explanation is easily understandable to clinicians. At the same time, the work on 
clinical decision support using deep learning methods flourished, e.g., in predicting future clinical 
events [40] and personalized prescription of medication [41]. Such methods have the advantages of 
learning from large public medical datasets available such as MIMIC-III, using various kinds of 
algorithms. Nevertheless, evidence indicates that they also suffer a number of deficiencies, notably 
biased decision output for under-represented groups of population due to the underlying training 
data [42], and a lack of clinical-level reasoning and explanation for clinicians, among others. Given 
the strengths and weaknesses of both paradigms, we would hope to find a reconciliation of them in 
our future work, possibly via the supplement of a deep learning module or even deeper 
methodological integration. In doing so, our method would become even more powerful. Efforts 
would be made in the design of this hybrid paradigm that sustains the capability of guideline 
representation and being clinician-friendly, while makes the best use of big data and learning new 
knowledge and insights from it continuously. 
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