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Abstract: When weak compound fault occurs in rolling bearing, the faint fault features suffer from 
serious noise interference, and different type faults are coupled together, making it a great challenge 
to separate the fault features. To solve the problems, a novel weak compound fault diagnosis method 
for rolling bearing based on improved Autogram and multipoint optimal minimum entropy 
deconvolution adjusted (MOMEDA) is proposed. Firstly, the kurtosis index in Autogram is modified 
with multi-scale permutation entropy, and improved Autogram finds the optimal resonance frequency 
band to preliminarily denoise the weak compound fault signal. Then, MOMEDA is performed to 
deconvolute the denoised signal to decouple the features of compound fault. Finally, square envelope 
analysis is applied on the separated deconvoluted signals to identify different type faults according to 
the fault characteristic frequencies in the spectrums. The proposed method is performed to analyze the 
simulated signal and experimental datasets of different types of rolling bearing weak compound faults. 
The results indicate that the proposed method can accurately diagnose the weak compound faults, and 
comparison with the analysis results of parameter-adaptive variational mode decomposition algorithm 
verifies its effectiveness and superiority. 

Keywords: compound fault diagnosis; rolling bearing; Autogram; multipoint optimal minimum 
entropy deconvolution adjusted 

 

1. Introduction 

Nowadays, rolling bearings are the key components widely used in various types of rotating 



10425 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10424–10444. 

machinery, such as motors, gearboxes, machine tools, etc. Due to adverse working environment, 
frequent external load and performance degradation, the inner race, outer race and ball of rolling 
bearing easily suffer from wear, spalling, crack, etc. [1−3]. In engineering practice, the faults are 
random, concurrent, secondary and hidden, which unavoidably leads to the occurrence of compound 
fault [4]. If effective measures are not taken in time, bearing compound fault may cause machinery 
idle and even more serious accidents [5,6]. Therefore, the accurate diagnosis of bearing compound 
fault is of great significance. 

However, compared with single fault diagnosis, rolling bearing compound fault diagnosis faces 
greater difficulties. Firstly, the compound fault signal is not a simple linear sum of single fault signals. 
The mutual interference and counteraction among different frequency components make the vibration 
signal more complex and the fault features weaker [7]. Secondly, the sophisticated transmission path 
seriously attenuates the energy of fault impulse components in the vibration signal collected by sensor, 
which further weakens the fault features. And they are easily buried in strong environmental noise [8]. 
Thirdly, the compound fault signal shows obvious nonlinearity and non-stationarity. The mutual 
coupling and modulation among different type faults make it a great challenge to extract and decouple 
compound fault features, which easily leads to missed diagnosis and misdiagnosis [9]. 

In recent years, scholars have proposed many compound fault diagnosis methods for rotating 
machinery, such as model-based methods [10−12], data-driven methods [13−15] and signal-based 
methods [16−18]. However, model-based methods require numerous hypotheses, so the established 
models deviate from the entities, making it difficult to achieve accurate diagnosis. Data-based methods 
need a large amount of fault data for training, which restricts their using range. Therefore, signal-based 
compound fault diagnosis methods are paid attention to in this article. Among them, deconvolution-
based methods are widely studied in recent years, which deconvolute periodic impulse components 
from the acquired fault signals to realize compound fault diagnosis [19]. Mcdonald et al. [20] proposed 
the maximum correlated kurtosis deconvolution (MCKD) method and achieved good results in gear 
fault diagnosis. But MCKD has many preset parameters, the selection of which determines the fault 
separation effect. To overcome the above problem, Tang et al. [21] used the cuckoo search algorithm 
to adaptively select the filter length and shift number in MCKD, and the improved method successfully 
identified the compound fault of rolling bearing. Nevertheless, the period in MCKD must be set to an 
integer, otherwise it needs to be resampled and rounded. The filter parameters are calculated in an 
iterative way, and the obtained filter is just the local optimal solution not always global optimization 
[22]. Subsequently, aiming at the shortcomings of MCKD, Mcdonald et al. [23] presented a novel 
deconvolution algorithm named multipoint optimal minimum entropy deconvolution adjusted 
(MOMEDA), which has aroused many scholars’ extensive concern [24,25]. MOMEDA introduces the 
target vector to define the positions and weights of impulses, and the fault-related periods are identified 
through the multipoint kurtosis (MKurt) spectrum. MOMEDA can not only set non-integer period but 
also find the optimal filter without the complicated iterative procedure, avoiding the resampling 
process [26]. However, MOMEDA does not perform well under strong noise interference. When weak 
compound fault occurs in rolling bearing, the fault features are very faint, and the fault-related impulses 
are easily submerged by noise, the rotating frequency of shaft and other interference, which are difficult 
to be identified. If MOMEDA is directly applied to analyze the vibration signal, the fault periods in 
the MKurt spectrum will be interfered by various irrelevant components, which will lead to the 
inaccurate identification of fault periods and further misdiagnosis. Therefore, it is necessary to 
preprocess the weak compound fault signal before applying MOMEDA to reduce the noise interference. 

The Autogram algorithm is a new effective signal denoising technology [27]. It uses maximal 
overlap discrete wavelet packet transform, unbiased autocorrelation and kurtosis to effectively detect 
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the resonance frequency band submerged in random noise, thus achieving noise reduction and feature 
extraction of fault signal. Zheng et al. [28] applied Autogram on the fluid pressure signal of hydraulic 
pump and achieved accurate diagnosis. Wang et al. [29] improved Autogram with maximum envelope 
to adaptively divide the frequency bands, and then symplectic geometry mode decomposition was 
performed to diagnose the gear faults. Nevertheless, mere kurtosis index may lead to inaccurate 
selection of resonance frequency band with strong impulse noise or high repetition rate transient. 

Based on the above discussion, a novel weak compound fault diagnosis method for rolling bearing 
based on improved Autogram and MOMEDA is proposed in this article. Firstly, the improved 
Autogram can effectively detect the optimal resonance frequency band, thus realizing the denoising of 
weak compound fault signal. Secondly, MOMEDA is performed to deconvolute the denoised signal, 
which adaptively obtains the fault periods and decouples the compound fault features. The 
effectiveness of the proposed method is verified with the simulated signal and experimental datasets 
of rolling bearings. 

The main structure of this article is as follows. Section 2 shows the theory and implementation 
procedure of the proposed method. Section 3 and Section 4 explain the method’s validation with 
different data, which illustrates its effectiveness and superiority. Finally, the conclusions are drawn in 
Section 5. 

2. Methods 

2.1. Improved Autogram 

The Autogram algorithm aims at finding the optimal resonance frequency band that contains 
abundant fault information. It is selected by comparing the kurtosis of unbiased autocorrelation for 
decomposition signal’s square envelope. Unbiased autocorrelation is given as [27] 
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where X represents the square envelope of signal, and N is the length of signal. 
The traditional kurtosis formula is modified in Autogram to quantize the impulsiveness of signal 
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(2)

The frequency band of the component corresponding to the maximum kurtosis is selected as the 
optimal resonance frequency band. As a result, the noise interference is reduced. Autogram overcomes 
the drawback of subjective judgment. However, the effectiveness of kurtosis index decreases with 
strong impulse noise or high repetition rate transient. The component selection based on kurtosis alone 
may lead to inaccurate selection. 

There are some other effective indexes to evaluate fault features, such as Gini index [30], Hoyer 
measure [31], multi-scale permutation entropy (MPE) [32], etc. The MPE, a method to detect the 
randomness and dynamic mutation in time series, can be used to monitor the state of mechanical 
equipment. MPE first processes the raw time series through coarse graining, and then calculates the 
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permutation entropy at different scales. The specific calculation steps are as follows [33]: 
   1 2, , ,i Nx x x x    is the raw time series, and the length of  ix   is N. The new coarse-

grained series is as follows 
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where s is the scale factor. 
When s = 1, the coarse-grained series is the raw time series, and the result is single-scale 

permutation entropy. When s ＞ 1, the raw time series is segmented into s coarse-grained series, and 
the length of each coarse-grained series is N/s. Then the permutation entropy of each coarse-grained 
series is calculated. The function expression of MPE is constructed as 

    MPE , , , PE , ,s
jx m s y m 

 
(4)

where m and λ represent the embedding dimension and time delay of permutation entropy, respectively. 
To replace the kurtosis index in Autogram, a comprehensive index Z is constructed with kurtosis 

and MPE 
K

Z
M

 (5)

where K represents kurtosis, and M is the average of MPE. 
The comprehensive index Z not only takes the impulsiveness and sparsity of signal into 

consideration, but also can detect the randomness and dynamic mutation. The larger comprehensive 
index Z, the more fault information contained in the component. The performance of comprehensive 
index Z is investigated using the simulated signal constructed in Section 3 which is composed of the 
outer race and inner race fault signals of bearing and strong noise. Figure 1 displays the kurtosis, MPE 
and comprehensive index values of the three signal components. It is obvious that the kurtosis value 
of outer race fault signal is smaller than that of noise, so new index is needed. The MPE and 
comprehensive index Z both have better performance in fault identification. Therefore, comprehensive 
index Z is suitable for the selection of the optimal resonance frequency band in Autogram. 
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Figure 1. Indexes values of different signal components. 
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2.2. MOMEDA 

The theory of MOMEDA algorithm is as follows [23]: 
The vibration signal collected from the sensor is 

x h y e    (6)

where y is the impulse signal generated by fault. h is the response of surroundings and transmission 
path. e is the noise interference. 

The purpose of MOMEDA is to find an optimal FIR filter f in a non-iterative way. Then the input 
impulse signal y is recovered from the output vibration signal x through f 
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The Multi D-Norm is introduced in MOMEDA, which is defined as 
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where t is the vector that defines the positions and weights of target impulses to be deconvolved. So 
the problem of finding the optimal filter is transformed into calculating the maximum value of Multi 
D-Norm 
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The optimal solution is expressed by normalization. And the signal impulses are located and 
separated through target vector t. Solving Eq (9) is equivalent to computing the derivative of filter 
coefficients 
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According to [23], the following equation is known 
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Therefore, Eq (10) turns to 
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Eq (13) is simplified as 
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1 1 2 2 0N L N LM M M X    t t t t  (14)

With the derivative equal to 0, Eq (11) is written as 
1 3

0 0 0Ty X y yX y
  t t  (15)

Eq (15) is simplified as 
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Considering that the multiples of f are also the solutions of Eq (17), the multiples of filter 
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Substituting Eq (18) and Eq (19) into 0
Ty X f , the raw impulse signal is recovered. 

To accurately extract the fault features, MKurt is introduced to determine the fault period 
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When MKurt reaches a peak, the corresponding sampling number is the fault period T, maybe its 
multiple or factor. 

2.3. Implementation procedure of the proposed method 

When weak compound fault occurs in rolling bearing, the faint fault features suffer from serious 
noise interference, making it a great challenge to extract fault information from the raw signal. And 
different type faults are coupled together, which may cause low accuracy of fault diagnosis and missed 
diagnosis. To address the problems, a weak compound fault diagnosis method for rolling bearing based 
on improved Autogram and MOMEDA is proposed in this article. The vibration signal of bearing is 
preliminarily denoised through improved Autogram at first. And then the filtered signal obtained from 
the previous step is deconvoluted by MOMEDA to decouple the features of compound fault. The 
complete process of the proposed method is shown in Figure 2, and the specific steps are as follows: 

(1) Perform improved Autogram on the vibration signal of weak compound fault, and find the 
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resonance frequency band corresponding to the largest comprehensive index. 
(2) Construct a band-pass filter according to the selected resonance frequency band, and filter the 

compound fault signal. 
(3) Perform MKurt analysis on the filtered signal to identify the fault periods. 
(4) Perform MOMEDA on the filtered signal with different deconvoluted periods, and solve the 

optimal filters to recovery the impulse signals. So the compound fault is decoupled. 
(5) Perform square envelope analysis on the separated deconvoluted signals, and judge the 

bearing faults according to the fault characteristic frequencies in the spectrums. Therefore, the 
diagnosis of rolling bearing weak compound fault is realized. 

Filtered signalWeak compound fault signal

Resonance frequency 
band determination

Improved 
Autogram Band-pass filter

Signal denoising

Compound fault decoupling

Fault peroids determination

MOMEDA

…

Deconvoluted signals
Square envelope 

analysis

Fault 1

Fault n

…

 

Figure 2. Flowchart of the proposed method. 

3. Simulation analysis 

To verify the feature decoupling effect of the proposed method, a bearing weak compound fault 
signal model with inner race and outer race is constructed by numerical simulation 
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where g = 0.1 represents the damping coefficient. The parameters of source signals s1(t) and s2(t) are 
as follows: the natural frequencies fn are set to 3000 and 5000 Hz, respectively. The fault characteristic 



10431 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10424–10444. 

frequencies f = 1/T of outer race and inner race are 73 and 207 Hz. The sampling frequency fs is set to 
25600 Hz, and a sample in a 0.5 s time horizon is analyzed. A = [0.8147, 0.9058] is a randomly 
generated matrix. To simulate weak compound fault, n(t) is the incorporated strong Gaussian white 
noise with −6 dB signal-to-noise ratio. 

The time-domain waveforms and their corresponding square envelope spectrums of the simulated 
bearing weak compound fault signals are represented in Figure 3. Figure 3(e) is composed of Figure 
3(a),(c) and strong noise. It can be found from Figure 3(e) that the signal is dominated by noise, and 
the periodic impulse components cannot be identified. Only the inner race fault characteristic 
frequency and its double frequency appear in Figure 3(f), but they have low amplitudes with serious 
noise interference. The feature of outer race fault is completely submerged in noise, making it difficult 
to be extracted. Therefore, only the inner race fault can be diagnosed somewhat by conventional square 
envelope spectrum analysis, while the outer race fault is missed diagnosed. 

  

(a) Time-domain waveform of outer race fault 
signal 

(b) Square envelope spectrum of outer race fault 
signal 

  

(c) Time-domain waveform of inner race fault 
signal 

(d) Square envelope spectrum of inner race fault 
signal 

  

(e) Time-domain waveform of weak compound 
fault signal 

(f) Square envelope spectrum of weak 
compound fault signal 

Figure 3. Simulated weak compound fault signals of bearing. 

Figure 4 is the analysis result of simulated signal through improved Autogram. The color 
represents the value of comprehensive index, and the largest index is 4.04. The center frequency and 
bandwidth of the corresponding resonance frequency band are 2800 and 800 Hz, respectively. Then 
the simulated signal is band-pass filtered according to the obtained center frequency and bandwidth. 
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Figure 4. Improved Autogram of simulated signal. 

To identify the fault periods, MKurt analysis is performed on the obtained filtered signal, and the 
MKurt spectrum is shown in Figure 5. It is evident that To = 351 along with its half can be identified 
clearly, which is very close to the theoretical value of outer race fault period To = fs/fo = 350.68. 
Similarly, Ti = 124 along with its half and double appear in Figure 4, approaching the theoretical value 
of inner race fault period Ti = fs/fi = 123.67. Therefore, the compound fault signal contains the impulse 
components with the above two periods. 

 

Figure 5. MKurt spectrum of filtered simulated signal. 

The deconvoluted period is set to 351 at first. The filtered signal is deconvoluted by MOMEDA, 
and the time-domain waveform and square envelope spectrum of the deconvoluted signal are shown 
in Figure 6. The periodic impulse component is very obvious in Figure 6(a) with excellent denoising 
effect. From Figure 6(b) we can observe that the background noise is significantly reduced. The outer 
race fault characteristic frequency fo and its frequency multiplication components are dominant in the 
square envelope spectrum. Thus the outer race fault is diagnosed effectively. Then the deconvoluted 
period is adjusted to 124. Figure 7 illustrates the deconvoluted result after performing MOMEDA on 
the filtered signal. Seen from Figure 7(a), the impulse component is distinct and regular. The spectral 
lines in Figure 7(b) are quite clear, and obvious spectral peaks appear at the inner race fault 
characteristic frequency fi and its double frequency. So the inner race fault is judged out. In view of 
above, the proposed method can effectively decouple the features of weak compound fault, thus 
realizing compound fault diagnosis. 
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(a) Time-domain waveform (b) Square envelope spectrum 

Figure 6. Deconvoluted signal when period is 351. 

  
(a) Time-domain waveform (b) Square envelope spectrum 

Figure 7. Deconvoluted signal when period is 124. 

To highlight the superiority of the proposed method, a contrastive analysis is performed with a 
prevalent compound fault diagnosis method, the parameter-adaptive variational mode decomposition 
(VMD) [34]. The simulated signal is decomposed into two IMFs by parameter-adaptive VMD, and 
their time-domain waveforms and corresponding square envelope spectrums are displayed in Figure 8. 
We can find that the inner race fault characteristic frequency fi and its double frequency appear in IMF2, 
but there are many interference frequencies in the square envelope spectrum compared with Figure 
7(b). And no outer race fault features can be identified in IMF1 and IMF2, which is prone to missed 
diagnosis. The result proves the advantages of the proposed method in weak compound fault diagnosis. 
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 (a) Time-domain waveforms (b) Square envelope spectrums 

Figure 8. IMFs of simulated signal. 
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4. Experimental verification 

4.1. Description of datasets 

To further verify the feasibility and applicability of the proposed method, the XJTU-SY bearing 
datasets are adopted for analysis, which are more close to the faults in practical application [35]. The 
testbed of rolling bearings is displayed in Figure 9. It is mainly composed of an AC motor, a motor 
speed controller, a support shaft, support bearings, a hydraulic loading system and the tested bearing. 
Two accelerometers are horizontally and vertically installed on the tested bearing through magnet 
bases. During the experiment, the sampling frequency is set to 25.6 kHz. The sampling interval is 1 
min, and each sampling time is 1.28 s. The XJTU-SY bearing datasets contain the whole life vibration 
signals of bearings under different working conditions, including single faults and compound faults. 
In order to study the weak compound fault of bearing, the forward portion of vibration signals with 
weak fault features is selected for analysis. Bearing 1_5 and Bearing 3_2 are chosen as the research 
objects, for compound fault with inner race and outer race and compound fault with inner race, outer 
race and ball occur in them, respectively. The faults of different components are shown in Figure 10. 

 

Figure 9. Testbed of rolling bearings. 

   

(a) Inner race wear (b) Outer race wear (c) Outer race fracture 

Figure 10. Photographs of different faults. 
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According to the bearing parameters, different fault characteristic frequencies are calculated as 
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where fi, fo and fb represent the fault characteristic frequencies of inner race, outer race and ball, 
respectively. Z is the number of balls. d the ball diameter, and D is the bearing mean diameter. α is the 
contact angle. N represents the rotating speed. The fault characteristic frequencies can be obtained in 
Table 1. 

Table 1. Fault characteristic frequencies of bearings. 

Bearing N (r/min) fi (Hz) fo (Hz) fb (Hz) 
Bearing 1_5 2100 172.09 107.91 72.33 
Bearing 3_2 2400 196.68 123.32 82.66 

4.2. Experimental data analysis 

4.2.1. Compound fault with inner race and outer race 

A sample from the forward portion of Bearing 1_5 dataset (the 23rd sample of the horizontal 
vibration signal) is randomly selected for analysis. Figure 11 illustrates the time-domain waveform 
and square envelope spectrum of the compound fault signal with inner race and outer race acquired by 
the accelerometer. Seen from Figure 11(a), no obvious periodic impulse component appears due to the 
noise interference and transmission attenuation. In Figure 11(b), the spectral peak appears at the 
rotating frequency, but the fault characteristic frequencies of inner race and outer race cannot be 
identified. 

 

  

(a) Time-domain waveform (b) Square envelope spectrum 

Figure 11. Compound fault signal with inner race and outer race. 

The sample is analyzed by improved Autogram, and the result is displayed in Figure 12. The 
largest comprehensive index is 5.01. And the center frequency and bandwidth of the corresponding 
resonance frequency band are 1400 and 400 Hz. Then the sample is band-pass filtered according to the 
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obtained center frequency and bandwidth. 

 

Figure 12. Improved Autogram of compound fault signal. 

Figure 13 displays the MKurt spectrum of filtered signal, from which the fault periods can be 
identified. It can be noticed that Ti = 155.1 along with its half and double can be clearly identified, 
which is relatively close to the theoretical value of inner race fault period Ti = fs/fi = 148.76. In addition, 
To = 233.8 along with its half, 1.5 times and double are evidently observed. It is basically consistent 
with the theoretical value of outer race fault period To = fs/fo = 237.24. So the fault periods of compound 
fault are successfully determined. 

 

Figure 13. MKurt spectrum of filtered compound fault signal. 

The filtered signal is further processed through MOMEDA with the fault periods determined by 
the MKurt spectrum. Figure 14 and Figure 15 illustrate the time-domain waveforms and square 
envelope spectrums of the deconvoluted signals. It can be found that the time-domain waveforms 
display obvious periodic impulse features. The inner race fault characteristic frequency fi and its double 
frequency are clearly identified without interference component, as illustrated in Figure 14(b). 
Similarly, it can be found from Figure 15(b) that the outer race fault characteristic frequency fo and its 
first 4 multiples are dominant in the square envelope spectrum. Therefore, the results demonstrate that 
the compound fault with inner race and outer race occurs in Bearing 1_5, which is consistent with the 
actual circumstance. 
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(a) Time-domain waveform (b) Square envelope spectrum 

Figure 14. Deconvoluted signal when period is 155.1. 

  

(a) Time-domain waveform (b) Square envelope spectrum 

Figure 15. Deconvoluted signal when period is 233.8. 

From the above analysis, we can find that there is a certain gap between the inner race fault period 
Ti = 155.1 determined by the MKurt spectrum and its theoretical value 148.76. For the purpose of 
verifying the accuracy of the fault period determined by the MKurt spectrum, the theoretical value of 
fault period is directly inserted into MOMEDA without MKurt analysis, and the result is displayed in 
Figure 16. We can observe that the periodic impulse component is still hidden in the time-domain 
waveform, and the inner race fault characteristic frequency cannot be effectively extracted from the 
corresponding square envelope spectrum, which illustrates the superiority of proposed method. 

 

(a) Time-domain waveform 

 

(b) Square envelope spectrum 

Figure 16. Deconvoluted signal when period is 148.76. 

Figure 17 displays the result of compound fault signal decomposed by parameter-adaptive VMD. 
Although the time-domain waveforms exhibit impulse features, only a few fault features are extracted 
from the square envelope spectrums. The outer race fault characteristic frequency fo can be identified 
in IMF2, but it has a low amplitude and its frequency multiplication components are still submerged 
in noise. All IMFs are severely interfered by the rotating frequency fr and its multiples, and the inner 
race fault feature cannot be found. Therefore, the parameter-adaptive VMD cannot diagnose the weak 
compound fault of rolling bearing effectively, which further shows the effectiveness and meliority of 
the proposed method. 
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 (a) Time-domain waveforms (b) Square envelope spectrums 

Figure 17. IMFs of compound fault signal. 

4.2.2. Compound fault with inner race, outer race and ball 

Figure 18 shows the time-domain waveform and square envelope spectrum of a randomly selected 
sample from the forward portion of Bearing 3_2 dataset (the 842nd sample of the horizontal vibration 
signal). According to Figure 18(a), the signal components are complex, and the periodic impulse 
component is masked by noise. There are many irrelevant interference frequencies in Figure 18(b), but 
the fault characteristic frequencies of inner race, outer race and ball cannot be found. 

 

  

(a) Time-domain waveform (b) Square envelope spectrum 

Figure 18. Compound fault signal with inner race, outer race and ball. 

The result of improved Autogram is shown in Figure 19. The largest comprehensive index is 16.49. 
And the center frequency and bandwidth of the corresponding resonance frequency band are 2800 and 
800 Hz. Then the sample is band-pass filtered according to the parameters. 
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Figure 19. Improved Autogram of compound fault signal. 

To determine the fault periods effectively, the MKurt analysis is employed to process the filtered 
signal. From the MKurt spectrum given in Figure 20, we can observe that Ti = 133 along with its half 
and double, To = 207.4 along with its half and Tb = 307.5 along with its quarter and half can be clearly 
recognized. They are very close to the theoretical values of inner race, outer race and ball fault periods 
130.16, 207.59 and 309.69, respectively. Therefore, there exist the above three fault periods in the 
compound fault signal. 

 

Figure 20. MKurt spectrum of filtered compound fault signal. 

The deconvoluted periods are set to 133, 207.4 and 307.5, respectively. Figure 21–23 delineate 
the time-domain waveforms and square envelope spectrums of the deconvoluted signals after 
MOMEDA process. From the time-domain waveforms we can notice that the periodic impulses are 
significantly enhanced, and the noise interference is effectively suppressed. The inner race fault 
characteristic frequency fi and its double frequency are dominant in the square envelope spectrum 
given in Figure 21(b), and there exist no interference frequencies. Therefore, the inner race fault 
component in the compound fault signal is effectively revealed. From Figure 22(b) we can find that 
the outer race fault characteristic frequency fo has a low amplitude, but its double frequency is clearly 
identified. So the outer race fault can be diagnosed. The ball fault characteristic frequency fb and its 
abundant multiple components are the main frequency components, and the spectral lines are very 
distinct, as displayed in Figure 23(b). Therefore, the ball fault is judged out. In conclusion, the 
proposed method can effectively decouple the compound fault with inner race, outer race and ball of 
Bearing 3_2. 
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(a) Time-domain waveform (b) Square envelope spectrum 

Figure 21. Deconvoluted signal when period is 133. 

  

(a) Time-domain waveform (b) Square envelope spectrum 

Figure 22. Deconvoluted signal when period is 207.4. 

  

(a) Time-domain waveform (b) Square envelope spectrum 

Figure 23. Deconvoluted signal when period is 307.5. 

To further verify the superiority of proposed method, the raw vibration signal is directly processed 
by MOMEDA without improved Autogram. From the MKurt spectrum displayed in Figure 24, we can 
notice that the fault periods of inner race, outer race and ball can be recognized, but some obvious 
interference spectral peaks appear at 161.4, 215.1, 322.5, etc., which is easy to cause poor identification 
of fault periods and misdiagnosis. In contrast, the spectral lines in Figure 20 are clearer, and the fault 
periods are accurately identified. The analysis results conclude that the proposed method has an 
advantage over MOMEDA in weak compound fault diagnosis. Furthermore, when parameter-adaptive 
VMD is performed to decompose the compound fault signal, the outer race fault cannot be effectively 
diagnosed. The results are similar to those in Subsection 4.2.1, which are not described here due to the 
limited extent. 
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Figure 24. MKurt spectrum of raw compound fault signal. 

5. Conclusions 

To solve the problem of rolling bearing weak compound fault features intercoupling and suffering 
from serious noise interference, a novel weak compound fault diagnosis method based on improved 
Autogram and MOMEDA is proposed in this article. The MOMEDA algorithm is an effective 
compound fault separation method, but its effect is susceptible to strong noise. So the raw weak 
compound fault signal needs to be preprocessed. The improved Autogram algorithm obtains the 
resonance frequency band induced by weak compound fault according to a new comprehensive index 
constructed with kurtosis and MPE. Then the vibration signal is preliminarily denoised through band-
pass filter. Furthermore, the fault periods are adaptively determined by MKurt analysis, and MOMEDA 
obtains the deconvoluted signals with different periods, which realizes weak compound fault diagnosis. 
The simulated signal of rolling bearing weak compound fault and the experimental signals from XJTU-
SY Bearing Datasets are used to verify the proposed method, and the results show that the weak 
compound faults are accurately diagnosed. Compared with the parameter-adaptive VMD algorithm, 
the proposed method has better performance in fault decoupling, which verifies its effectiveness and 
superiority. 
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