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Abstract: Medical visual question answering (Med-VQA) aims to leverage a pre-trained artificial 
intelligence model to answer clinical questions raised by doctors or patients regarding radiology 
images. However, owing to the high professional requirements in the medical field and the difficulty 
of annotating medical data, Med-VQA lacks sufficient large-scale, well-annotated radiology images 
for training. Researchers have mainly focused on improving the ability of the model’s visual feature 
extractor to address this problem. However, there are few researches focused on the textual feature 
extraction, and most of them underestimated the interactions between corresponding visual and textual 
features. In this study, we propose a corresponding feature fusion (CFF) method to strengthen the 
interactions of specific features from corresponding radiology images and questions. In addition, we 
designed a semantic attention (SA) module for textual feature extraction. This helps the model 
consciously focus on the meaningful words in various questions while reducing the attention spent on 
insignificant information. Extensive experiments demonstrate that the proposed method can achieve 
competitive results in two benchmark datasets and outperform existing state-of-the-art methods on 
answer prediction accuracy. Experimental results also prove that our model is capable of semantic 
understanding during answer prediction, which has certain advantages in Med-VQA. 

Keywords: multimodal learning; pre-training model; residual network; long short-term memory; 
semantic attention 
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1. Introduction 

In the medical field, medical imageology is a mandatory course to be undertaken by every doctor. 
Different types of imaging techniques, such as computed tomography (CT), magnetic resonance 
imaging (MRI) and X-ray, play an irreplaceable role in the clinical diagnosis of patients [1−5]. Neural 
network technology has been gradually introduced into health informatics with the continuous 
advancement of medical empowerment [6]. Additionally, the effectiveness of this technology has been 
proven in radiology image analysis [7], and deep learning models have been utilized in the detection 
and analysis of various diseases, such as lung diseases [8] and chest cancer [9]. However, obtaining 
visual information exclusively from radiology images has the disadvantages of limited interactive 
channels and fixed interactive scenes. 

In recent years, Visual Question Answering (VQA) [10] have gained ever-increasing attention as 
a challenging multimodal task. VQA combines the two disciplines of computer vision and natural 
language processing. A VQA task takes an image and a related question presented with the image as 
inputs, then it outputs the correct answer to the question through a series of processes. Most methods 
of VQA [11,12] are based on the framework of supervised learning, which requires large-scale well-
annotated multimodal data to train the model. For VQA tasks, Malinowski et al. proposed the 
DAQUAR dataset [13] in 2014, and Ren et al. constructed the COCO-QA dataset [14] in 2015 based 
on the MSCOCO image database. Nevertheless, the datasets used in these studies were small in scale, 
and the question-answer pairs were machine generated, which led to a high repetition rate; besides, the 
cluttered image contents made questions difficult to be answered. Subsequently, the Visual Genome 
dataset [15] proposed by Krishna et al. and the Visual7W dataset [16] proposed by Zhu et al. were 
formulated. These datasets contained a large amount of data, the images and question-answer pairs 
were manually annotated and screened by volunteers. However, owing to the uneven distribution of 
answers and biases in the questions, the generalization performance of the models trained on these 
datasets was mediocre. Goyal et al. proposed the VQA 2.0 dataset [17] in 2017 based on MSCOCO 
image data. VQA 2.0 contains 240,721 pictures and 1,105,904 question-answer pairs. The scale of 
VQA 2.0 is sufficiently large, and it overcomes the unbalanced answer distribution. Therefore, VQA 2.0 
has been widely used in current studies on general field VQA tasks. 

Medical VQA (Med-VQA) aims to improve the quality and efficiency of modern medical 
diagnosis and alleviates the pressure on the currently strained medical resources. An example of Med-
VQA is shown in Figure 1. Different types of radiology images are accompanied by annotations (such 
as Body Region and Modality) and corresponding clinical question-answer pairs. Each of these 
radiology images may correspond to several different questions and answers; however, we only list 
one of them in Figure 1. The Med-VQA task is used to predict the true answer through the provided 
radiology images and questions. Med-VQA technology can help patients find possible abnormalities 
in their bodies and—in combination with radiology images—help them easily understand the disease 
they are suffering from. Additionally, it can assist outpatient doctors with clinical diagnosis and 
simultaneously indicate abnormal problems that may be overlooked in radiology images. 

Unlike in the general field, VQA, in medical domain, is confronted with the lack of large-scale 
annotated datasets for model training. On the one hand, there are only a few ways to obtain well-
labeled radiology images; to annotate a radiology image is difficult and requires the cooperation of 
experienced doctors. On the other hand, the medical domain requires highly accurate and 
professional datasets, and different doctors have different ways of generating questions and using 
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words, all of which make it challenging to produce Med-VQA datasets. To the best of our knowledge, 
ImageCLEF [18] first began to host challenges in Med-VQA early in 2018. VQA-RAD [19] is the 
earliest benchmark dataset proposed for Med-VQA, which has been representative and well-
recognized over the years. It was sampled from MedPix (https://medpix.nlm.nih.gov/), which is a 
publicly available database of medical radiographic imaging and medical teaching cases. The question-
answer pairs in VQA-RAD are generated by the natural-communication manner of professional 
clinical practitioners, and these questions are closer to the ones communicated between doctors and 
patients in real life than those generated from a template. SLAKE [20] is a Chinese/English bilingual 
VQA dataset recently proposed by Liu et al., which contains questions that cover more aspects than 
the previous datasets. Moreover, a knowledge graph is introduced into SLAKE to expand the scope of 
questions. Radiology images in the dataset were sampled from three open-source datasets 
(http://medicaldecathlon.com, https://nihcc.app.box.com/v/ChestXray-NIHCC, 
https://doi.org/10.5281/zenodo.3431873); furthermore, question-answer pairs were generated by 
professional doctors based on a pre-set template. 

Body Region:  Chest

Modality:     X-Ray
Question:     What pathology is shown 

    at the lung bases?

Answer:     Nodules

Body Region:  Abdomen

Modality:     CT
Question:         Where is the largest cystic 

    lesion in the image?

Answer:            Left kidney

Body Region:  Brain

Modality:          MRI
Question:         Are the ventricles visualized 

    in this image?

Answer:            No

 

Figure 1. Example of medical visual question answering (Med-VQA) (radiology images 
with annotations and corresponding question-answer pairs). 

For Med-VQA, researchers [21,22] first leveraged transfer learning methods to pre-train the 
model with a large amount of annotated data from the general VQA domain. Then, they migrated the 
model to the medical domain for further fine-tuning. However, owing to the significant differences 
between these two domains, the performance of the model migrated from the general domain was not 
impressive. Subsequently, many studies [23−25] turned to the unlabeled radiology images. They pre-
trained the visual feature extractor through unsupervised learning or self-supervised learning methods 
and then moved in Med-VQA for fine-tuning. This achieved a better performance in answer prediction. 
From another point of view, previous researchers paid much attention to improving visual feature 
extraction through various approaches, while neglecting that the textual feature extraction is equally 
indispensable in Med-VQA. Furthermore, there were few works emphasized the importance of the 
interaction between visual features and corresponding textual features as well as the specific semantic 
information contained in different questions. 
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Based on the aforementioned factors, we briefly summarize our contributions as follows: 
 Considering the interaction between visual features and corresponding semantic features, we 

propose a novel corresponding feature fusion (CFF) method to integrate multimodal features and 
build a semantic attention (SA) module to enable our model to focus on important information 
contained in different clinical questions 

 Extensive experimental results illustrate the effectiveness of our proposed method on two 
benchmark datasets. Compared with previous state-of-the-art methods, our model achieves 
competitive performance in Med-VQA. 

Classifier Answer

Visual feature 
extractor

Feature fusion 
module

Textual feature
extractor

Images

Questions

 

Figure 2. A basic model design for VQA. Visual and textual features are extracted 
respectively, and sent into the feature fusion module. The joint feature representations are 
then sent into the classifier for answer prediction. 

2. Related works 

2.1. Medical visual question answering 

The structure of a VQA model in the medical domain is similar to that in the general domain. 
Generally, in a VQA framework, as shown in Figure 2, the following are required: 1) a visual feature 
extraction module to obtain the image feature representation, 2) a textual feature extraction module to 
obtain question feature representation, and 3) a feature fusion module to fuse the multimodal inputs 
and feed them into a final classifier for answer prediction. Most of the current methods [26−32] 
choose to use a CNN-based neural network such as ResNet or VGGNet for visual feature extraction. 
In [33−35], researchers used recurrent neural network (RNN)-based neural networks such as long 
short-term memory (LSTM) [36], gate recurrent unit (GRU) [37], or transformer-based models such 
as BERT [38] and BioBERT [39], to extract the textual features. Simultaneously, classical models such 
as stacked attention networks (SAN) [40], bilinear attention networks (BAN) [41], and multimodal 
compact bilinear pooling (MCB) [42] are commonly used for multimodal feature fusion to learn visual 
and textual joint feature representations. 

In the past few years, methods such as meta learning and transfer learning have been introduced 
in modern few-shot tasks. Nguyen et al. designed the mixture of enhanced visual features (MEVF) [43] 
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method from a large number of un-annotated radiology images, using model-agnostic meta-learning 
(MAML) [44] and convolutional denoising autoencoder (CDAE) [45] to initialize the model weights 
for the visual feature extraction. Li-Ming Zhan et al. [46] added a conditional reasoning (CR) module 
on the basis of MEVF; questions were divided into the two categories: “Open” and “Closed”, according 
to the manner in which they were asked, to analyze them further. Khare et al. [47] proposed to pretrain 
the multimodal medical BERT on a ROCO dataset with a masked language modeling method 
introduced as a pretext task to learn richer feature representations. Do et al. [48] improved MAML [44] 
in meta-learning and proposed the multiple meta-model quantifying method without using external 
datasets for training; this increased the meta-data by auto-annotation and utilized the features output 
from meta-models for Med-VQA. 

2.2. Multimodal learning 

Robust feature representation is the condition that a model must fulfill to correctly predict the 
answer in Med-VQA. Feature extraction during the multimodal learning process is particularly critical. 
In [49], the author proved through extensive experiments that pre-training can greatly improve the 
model performance for a domain-specific task. Recently, Allaouzi et al. [23] proposed to use an 
external chest dataset [50] to pretrain a DenseNet-based neural network for visual feature extraction. 
Liu et al. [24] noticed that the brain, chest, and abdomen are mainly involved in the current radiological 
benchmark datasets; they pre-trained three visual feature extraction models targeting these three body 
regions through a contrastive learning method to obtain better feature representations. Gong et al. [25] 
used a multitask method to pre-train CNN-based neural networks in three external unlabeled radiology 
image datasets corresponding to the brain MRI [51], chest X-ray 
(https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia), and abdomen CT 
(https://www.synapse.org/#!Synapse:syn3193805/wiki/217753) to extract visual features. The above 
methods made certain progress in the visual channel process of multimodal input. Whereas, these 
methods focused extensively on learning better visual feature representations and overlooked the 
importance of textual features as well as the interactions between textual and visual channels in the 
multimodal learning processes. Based on the previous studies, we made further progress on the 
connection between specific visual features and corresponding semantic features while guiding the 
model to learn the pivotal information contained in various questions in a more targeted manner. 

3. Materials and methods 

In view of the latest studies on Med-VQA [24,25] and benchmark datasets [19,20], the radiology 
images mainly focus on three categories of human body regions: abdomen, brain, and chest. Motivated 
by this observation, as shown in Figure 3, we utilize a type classifier to classify each pair of multimodal 
inputs (radiology images and clinical questions) into given categories. A Semantic Attention (SA) 
module was built to help the model focus on semantic features of questions during the feature 
extraction stage. Thereafter, fusion is performed on the visual and textual features from the same 
category for the terminal answer prediction. Figure 3 presents an overview of our proposed method, 
which will be introduced in further detail in this section. 
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Figure 3. Overview of our proposed corresponding feature fusion (CFF) method. 
Classified images and questions are proceeded respectively. Corresponding features are 
fused and then sent into classifier for answer prediction. 
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Figure 4. Framework of the type classifier where ݇ ∈ ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  .ሽݐݏ݄݁ܥ

3.1. Radiology image and question classification 

During the production stage of the Med-VQA dataset, doctors prepared questions based on the 
visual information presented by radiology images. Regarding a chest X-ray, doctors were more likely 
to ask a question, such as “what abnormalities are observed within the lungs?” rather than “where are 
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the brain lesions located?”. Considering this for a chest X-ray, we hope to fuse its visual features with 
corresponding textual features and then send it to a classifier for answer prediction. It would be 
confusing for the model if the visual features of a chest radiology image were combined with the 
textual features from a question that asks about brain diseases. 

Based on the above considerations, we propose the CFF method. The preferential step of this 
method is to classify the input images and questions into specific categories. We first perform some 
preprocessings on the radiology images. We set the image size and number of channels in the format 
of 3 ൈ 224 ൈ 224 to be consistent with the scale of the input images used in the pretraining stage of 
visual feather extractors, which we will elaborate in Section 3.2. Within one batch, we set the batch 
size as ܤ  and images ܫ ∈ Թ஻ൈଷൈଶଶସൈଶଶସ . For the questions, we set the maximum length of each 
question to 12; questions with a length less than 12 were zero-padded to ensure that the tensor 
dimensions are the same in the subsequent operation, and we use ݍ ∈ Թ஻ൈଵଶ to denote input questions. 
Considering the scale of the datasets and to prevent overfitting, we designed a lightweight CNN-based 
type classifier module, as shown in Figure 4, to classify input radiology images with related questions. 
First, the module extracts visual features of input images ܫ  through two convolution and average 
pooling layers; subsequently, it sends the extracted visual features into a three-layer multilayer 
perceptron (MLP) for a nonlinear transformation. Ultimately, after the processes of the Softmax and 
Sigmoid layers, the classifier finally outputs the three-category prediction score ܵ௞  of the input 
images, ݇ ∈ ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  ሽ represents the scores of each category. And the highest scoreݐݏ݄݁ܥ
ܵ௞  corresponds to the category of the input images and related questions. The input images and 
questions in each batch are divided into three categories: 

ܤ  ൌ ஺௕ௗ௢௠௘௡ܤ ൅ ஻௥௔௜௡ܤ ൅  ஼௛௘௦௧ (1)ܤ

the classified radiology images ܫ௞ ∈ Թ஻ೖൈଷൈଶଶସൈଶଶସ and the questions ݍ௞ ∈ Թ஻ೖൈଵଶ are to be used 

for the follow-up works. 

3.2. Visual feature extraction 

Following the previous work [25], we send ܫ௞ from different categories into three ResNet-34 
models, which are pre-trained in external radiology image databases that correspond to brain MRIs, 
chest X-rays, and abdominal CTs separately; pretrained visual feature extractors are utilized to extract 
the specific visual features contained in the input images from different categories: 

 ࣰ௞ ൌ 	݈ܽݑݏܸ݅ 	݁ݎݑݐܽ݁ܨ  ௞ሻ (2)ܫሺݎ݋ݐܿܽݎݐݔܧ

where ݇ ∈ ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ ሽ  and ࣰ௞ݐݏ݄݁ܥ ∈ Թ஻ೖൈହଵଶൈ଻ൈ଻  represents the extracted feature 

representations of the abdomen, brain and chest.  

3.3. Semantic feature extraction 

3.3.1. Textual feature representation 

We chose to use 200-D BioWordVec [52], which is pre-trained on PubMed and MeSH (two 
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open-source databases in the medical domain), to obtain the word embedding of each word contained 
in the question: 

෤௞ݍ  ൌ  ௞ሻ (3)ݍሺܾ݃݊݅݀݀݁݉ܧ݀ݎ݋ܹ

where ݍ௞ ∈ Թ஻ೖൈଵଶ and ݍ෤௞ ∈ Թ஻ೖൈଵଶൈଶ଴଴.  

Right after word embedding, in Eq (4), the 1024-D LSTM network was leveraged to extract 
textual features from the input questions ݍ෤௞, 

 ࣫௞ ൌ  ෤௞ሻ (4)ݍሺܯܶܵܮ

and obtain the preliminary textual feature representations ࣫௞ ∈ Թ஻ೖൈଵଶൈଵ଴ଶସ  of questions in 

different categories. 

Q Sigmoid
k

Attention
Weight ak

Q k

Q k~

FC1 FC2 FC3

B  ×12×1024

Avg Pool1
Avg Pool2

k B  ×12×512
k

B  ×12×1
k

 

Figure 5. Framework of our proposed SA module where ݇ ∈ ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  .ሽݐݏ݄݁ܥ

3.3.2. SA module 

For each question, we hope that the model is able to distinguish the specific pathological nouns 
and the questioning methods contained in different question categories during the learning process as 
humans are able to do. For example, a clinical question such as, “What are the abnormal cranial 
nerves?”, in which “abnormal” implies that the question may be enquiring about a certain disease. 
Combining this with the phrase “cranial nerves” indicates that it is a brain-type question which may 
relates to some brain pathologies; and this instructs the model not to focus on answers with regard to 
lung or abdominal pathologies. Furthermore, the word “What” suggests that the answer to the question 
is possibly an open-type answer rather than a limited answer. Considering the aforementioned factors, 
distinguishing these specific semantic features will not only help the model learn better feature 
representations but also strengthen its understanding of questions. 

To make our model focus more on this type of specific information, we designed an SA module 
to further process the textual feature representations ࣫௞ of different questions. This step was inspired 
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by [53]. The structure of SA is shown in Figure 5. 

݂௞ ൌ 1ሺ࣫௞ሻ (5)݈݃݊݅݋݋ܲ݃ݒܣ

݂௞
ᇱ
ൌ ሺ݂௞ሻ (6)ܲܮܯ

௞ܨ ൌ 2൫݂௞݈݃݊݅݋݋ܲ݃ݒܣ
ᇱ
൯ (7)

ܽ௞ ൌ ௞ሻ (8)ܨሺ݀݅݋݉݃݅ܵ

To begin with, we utilized an average pooling layer, in Eq (5), to initially obtain the global feature 

݂௞ ∈ Թ஻ೖൈଵଶൈହଵଶ of questions from different categories. Then, as shown in Eq (6), the global feature 

݂௞ was sent into a three-layer MLP for nonlinear transformation; meanwhile, the ReLU activation 
function was used to connect the layers. Subsequently, another average pooling layer, in Eq (7), was 

used to compress the global features of the question into ܨ௞ ∈ Թ஻ೖൈଵଶൈଵ. Next, we sent ܨ௞ into a 

Sigmoid layer to get the SA weight ܽ௞ ∈ Թ஻ೖൈଵଶൈଵ of the whole questio; the value of this attention 

weight determines which semantic features in the question our model should focus on and what 
unnecessary information should be ignored. Finally, we multiplied ܽ௞  by the previously obtained 
textual feature representations ࣫௞: 

෨࣫௞ ൌ ܽ௞ ⊙ ࣫௞ (9)

where “⊙” indicates the dot product.  

After processing of SA, we obtained the final semantic feature representations of different 

questions ෨࣫௞ ∈ Թ஻ೖൈଵଶൈଵ଴ଶସ, which corresponds to the visual features extracted before, where ݇ ∈

ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  .ሽݐݏ݄݁ܥ

3.4. Feature fusion and loss calculation 

We obtained the corresponding features in the above work of the CFF. Next, each pair of the 
corresponding visual and semantic features from different categories were sent into the fusion module. 
After fusing ࣰ௞ with its corresponding ෨࣫௞, we sent the joint feature representations into the VQA 
classifier for answer prediction: 

௞̂݌ ൌ ,ሺࣰ௞݊݋݅ݏݑܨሺݎ݂݁݅݅ݏݏ݈ܽܥ ෨࣫௞ሻሻ (10)

Meanwhile, we utilized a cross-entropy method for the loss calculation of answer prediction: 

ࣦ௞ ൌ െ
1
݉
෍෍݌௜௝

௞ logሺ̂݌௜௝
௞ ሻ

௡

௝ୀଵ

௠

௜ୀଵ

 (11)
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where ݇ ∈ ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  ௞ represents the real answer targets of different categories݌ .ሽݐݏ݄݁ܥ
and ̂݌௞ represents the predicted answer targets; ݊ indicates the quantity of candidate answers the 
model needs to classify; in other words, it represents the total number of candidate answers; and ݉ is 
the batch size of different categories. For all multimodal inputs in one batch, the model traverses 
candidate answers for each input and calculates the cross-entropy between the predicted answer targets 
and the real answer targets. The sum of the cross-entropy is the loss of answer predicting. 

Notably, the total loss of answer prediction contains the sum of three categories 
ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  :ሽݐݏ݄݁ܥ

ࣦ௣௥௘ௗ ൌ ࣦ஺௕ௗ௢௠௘௡ ൅ ࣦ஻௥௔௜௡ ൅ ࣦ஼௛௘௦௧ (12)

In addition, the type classifier module participates in gradient backpropagation; therefore, we 
need to calculate its loss of classification and update the model parameters. We set the real category 
targets of the input image as ݕ and the predicted category target as ݕො, which is calculated in 
Section 3.1. 

ࣦ௖௟௦ ൌ െ
1
݉ᇱ෍෍ݕ௜௝ logሺݕො௜௝ሻ

௡ᇲ

௝ୀଵ

௠ᇲ

௜ୀଵ

 (13)

In Eq (13), ݉ᇱ represents the total batch size that has not yet been classified, and ݊ᇱ represents 
the number of categories to be classified.  

Lastly, we combined the losses of answer prediction and type classification as the final loss for 
the model evolution through a balancing approach: 

ࣦ௙௜௡௔௟ ൌ ߣ ࣦ௣௥௘ௗ ൅ ሺ1 െ ሻࣦ௖௟௦ (14)ߣ

where λ is leveraged to balance the loss. 

(a) VQA-RAD (b) SLAKE* 

Figure 6. Radiology image statistics of VQA-RAD and SLAKE*. (a) Radiology image 
distribution in VQA-RAD. (b) Radiology image distribution in SLAKE* (* indicates the 
filtered version). 

3.5. Datasets 

Our model was validated on VQA-RAD [19] and filtered SLAKE [20]. VQA-RAD is a relatively 
well-recognized dataset in previous benchmarks. As shown in Figure 6(a), there are a total of 315 

104

104

107
Abdomen

Brain

Chest

173

138

177 Abdomen

Brain

Chest



10202 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10192–10212. 

radiology images in VQA-RAD, including 104 abdomen CTs, 104 brain MRIs, and 107 chest X-rays; 
SLAKE is a recently proposed bilingual dataset for Med-VQA, which contains 642 radiology images 
and 7032 question-answer pairs. There are some clinical questions based on knowledge graph and 
radiology images that are not within the scope of our research; we followed the data distribution of VQA-
RAD and screened out 488 radiology images. As shown in Figure 6(b), SLAKE* represents the dataset 
after filtering. The number of chest X-rays (177) exceeds the remaining image categories, followed by 
abdomen CTs (173), which are slightly fewer, and the brain MRIs constitute nearly 28% (138) of the 
radiology images. Figure 7 shows the comparative statistics of questions in different categories from 
two datasets. We calculated the number of questions corresponding to three categories and the number 
of “Open/Closed” questions in these two datasets. Here, “Open” and “Closed” refers to whether the 
question can be answered with limited options such as yes/no or with free-form texts. Thus, the questions 
are divided into two categories: (1) closed-ended questions, (2) open-ended questions. In particular, 
SLAKE* uses the original data split with reference to VQA-RAD, and there are a total of 8392 question-
answer pairs generated by clinicians in these two datasets, which cover more than 10 aspects such as 
“Plane”, “Modality” and “Organ System”. 

 

Figure 7. Question statistics of VQA-RAD and SLAKE* (* indicates the filtered version). 

3.6. Evaluation metrics 

Accuracy is generally used in Med-VQA experiments to evaluate the model performance and is 
calculated as follows: 

ݕܿܽݎݑܿܿܣ ൌ ஼ܰ

்ܰ
ൈ 100 (15)

where ஼ܰ represents the number of correctly answered questions and ்ܰ refers to the entire number 
of questions. 

3.7. Evaluation Metrics 

All of our experiments were conducted on the Ubuntu 16.04 operating system, and the 
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graphics card used was Nvidia GTX 2080Ti; the deep learning framework was CUDA 10.2 and 
Pytorch 1.6.0 loaded on the Python programming language 3.7.0; we selected Adamax as the 
gradient descent optimizer. 

Table 1. Experiment for hyperparameter selection. 

Accuracy (%) 

Reference model 75.4 

Reference: epochs = 200  

Reference: batch size = 64 

Batch size = 32 

 

−0.8 

Reference: RNN = LSTM 

RNN = GRU 

 

−1.3 

Reference: dropout = 0.5 

No dropout  

 

 

Reference: learning rate = 0.005 

Learning rate = 0.010 

Learning rate = 0.002 

 

−1.1 

−0.4 

Reference: gradual warmup steps = 0.0025, 0.0050, 

0.0075, 0.0100  

 

Reference: decay rate = 0.25 

Decay rate = 0.30 

Decay rate = 0.20 

 

−0.5 

−0.6 

Reference: decay step = 38 

Decay step = 30 

Decay step = 45 

 

−0.4 

−0.7 

Before training, as shown in Table 1, we conducted an experiment on the selection of 
hyperparameters; references were the eventual parameter settings of our proposed model. The left side 
of the table shows the hyperparameters, and the right side presents their effects on the prediction 
accuracy of the model. Notably, “RNN” indicates the network we use for textual feature extraction. 
Furthermore, we utilize the warm-up learning method to speed up model convergence, where gradual 
warm-up steps indicate the learning rate setting during the warm-up period; the decay rate represents 
the decay ratio of the learning rate to the previous epoch in each decay step, and the decay step is the 
number of epochs contained in each decay period. Notably, we calculated the classification accuracy 
of the proposed type classifier in each epoch, and the current classifier parameters are saved for 
subsequent training only when the classification accuracy outnumbers the previous best result. 

4. Results and discussion 

4.1. Comparison with the State-of-the-Art 

As shown in Table 2, we validated our model with five other state-of-the-art methods from 
different periods on VQA-RAD and SLAKE*. 

We briefly review the previous methods. Kim et al. [41] proposed a method to extract joint feature 
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representations from multimodal inputs through a low-rank bilinear pooling method while cutting 
down the consumption of learning attention distributions for each pair of multimodal input channels 
at the same time. MEVF + BAN [43] used model-agnostic meta-learning (MAML) [44] and a 
convolutional denoising autoencoder (CDAE) [45] to initialize the visual feature extractor and utilized 
the proposed MEVF framework to extract image features while combining BAN for feature fusion. 
MEVF + BAN + CR [46], on the basis of a previous work [43], added the CR module to process the 
open-ended and closed-ended tasks. Liu et al. [24] proposed a contrastive pre-training and representation 
distillation (CPRD) method that used contrastive learning to pre-train visual feature extraction networks 
on an open-source database and filtered the model for adaptability to small-scale datasets. In [25], Gong 
et al. considered the compatibility and applicability of the pre-trained features and proposed a cross-
modal self-attention (CMSA) multimodal feature fusion method combined with a pre-trained visual 
feature extraction network for answer prediction. 

Table 2. Performance comparison on VQA-RAD and SLAKE* datasets (* indicates the 
filtered version). 

Methods 

VQA-RAD SLAKE* 

Accuracy (%) 

Overall Open Closed Overall Open Closed 

BAN [41] 

MEVF + BAN [43] 

MEVF + BAN + CR [46] 

CPRD + BAN + CR [24] 

CMSA [25] 

CFF + SA + CMSA (Ours) 

58.3 

66.1 

71.6 

72.7 

73.2 

75.4 

37.4 

46.2 

60.0 

61.1 

61.5 

62.6 

72.1 

77.2 

79.3 

80.4 

80.9 

83.9 

77.1 

79.2 

80.7 

− 

81.9 

82.4 

75.6 

77.6 

78.5 

− 

79.9 

81.3 

78.7 

80.4 

83.2 

− 

84.8 

84.5 

Experimental results illustrate the progressive results on both datasets after employing the CFF 
method combined with the SA module, which make certain progress based on former work. As shown 
in Table 2, our model achieves 2.2, 1.1, and 3.0% increase in accuracy for predicting “Overall”, “Open”, 
and “Closed” questions, respectively, compared to the current optimal method in VQA-RAD. In 
SLAKE*, our method achieves 0.5 and 0.4% increase in prediction accuracy of the “Overall” and 
“Open” questions, respectively, despite a 0.3% decrease in the prediction accuracy of “Closed” 
questions. Experimental results adequately demonstrate the effectiveness of our proposed model. 
Furthermore, our model could be further combined with a CR module [46] for an even better 
performance in Med-VQA. 

4.2. Case study 

We intuitively compare our model with the current optimal method [25] in more detail to further 
demonstrate the advantages of our proposed method. As shown in Figure 8, we selected five image-
question pairs to calculate the model attention degree on the specific words contained in the questions 
during the training period. The figure clearly presents the comparison of our method and CMSA in the 
semantic comprehension of questions. 
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CMSA Ours
Is 0.6739 0.5105 Is

this 0.659 0.515 this
an 0.6153 0.5151 an

MRI 0.7014 0.5206 MRI
or 0.7237 0.5259 or
a 0.7087 0.5179 a

CT 0.7195 0.5172 CT
scan 0.7257 0.5177 scan

[padding] 0.6927 0.5103 [padding]
[padding] 0.7132 0.5078 [padding]
[padding] 0.6765 0.5062 [padding]
[padding] 0.6602 0.5056 [padding]

CMSA Ours
Are 0.654 0.5127 Are

there 0.6376 0.5131 there
multiple 0.6876 0.5173 multiple

or 0.6839 0.5234 or
just 0.6774 0.5193 just
one 0.7044 0.5187 one

metastatic 0.7198 0.5229 metastatic
focus 0.7222 0.52 focus

[padding] 0.6816 0.513 [padding]
[padding] 0.7122 0.5085 [padding]
[padding] 0.6852 0.5061 [padding]
[padding] 0.6698 0.5055 [padding]

CMSA Ours
What 0.6812 0.523 What

is 0.7226 0.5157 is
the 0.7225 0.5162 the

mass 0.6815 0.5209 mass
most 0.7008 0.5169 most
likely 0.7140 0.5211 likely

[padding] 0.6829 0.5119 [padding]
[padding] 0.6446 0.5072 [padding]
[padding] 0.6189 0.5059 [padding]
[padding] 0.5902 0.5053 [padding]
[padding] 0.5787 0.5049 [padding]
[padding] 0.5688 0.5048 [padding]

CMSA Ours
What 0.7192 0.5221 What

abnormality 0.7208 0.5224 abnormality
is 0.7206 0.5171 is

seen 0.7254 0.5177 seen
on 0.7277 0.5176 on
the 0.729 0.5188 the
left 0.7286 0.5196 left

side 0.7234 0.5217 side
of 0.7212 0.5181 of
the 0.7216 0.5184 the

frontal 0.7239 0.5221 frontal
lobe 0.7272 0.5225 lobe

CMSA:

Q: What is the mass most likely?

A: Exophytic cyst  × 

Ours:

Q: What is the mass most likely?

A: Kidney cyst  √ 

CMSA:

Q: What abnormality is seen on the 

left side of the frontal lobe?

A: Abscess  × 

Ours:

Q: What abnormality is seen on the 

left side of the frontal lobe?

A: Regression of left frontal mass  √ 

CMSA:

Q: Is the right diaphragm visualized?

A: Yes  × 

Ours:

Q: Is the right diaphragm visualized?

A: No  √ 

CMSA Ours
Is 0.6739 0.5105 Is

the 0.6745 0.5136 the
right 0.6694 0.5243 right

diaphragm 0.7141 0.5234 diaphragm
visualized 0.7004 0.5192 visualized
[padding] 0.692 0.5104 [padding]
[padding] 0.6895 0.5079 [padding]
[padding] 0.6737 0.5062 [padding]
[padding] 0.6568 0.5054 [padding]
[padding] 0.6441 0.5051 [padding]
[padding] 0.6239 0.505 [padding]
[padding] 0.6177 0.5049 [padding]

Image A

Image B

Image C

CMSA:

Q: Are there multiple or just one 

metastatic focus?

A: Not sure  ×

Ours:

Q: Are there multiple or just one 

metastatic focus?

A: One  √

CMSA:

Q: Is this an MRI or a CT scan?

A: CT with contrast  ×

Ours:

Q: Is this an MRI or a CT scan?

A: MRI  √

Image D

Image E

 

Figure 8. Semantic attention comparison between our proposed model and CMSA. 
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(a) Our model 

 
(b) CMSA 

Figure 9. Comparison of the Loss/Accuracy curves. (a) The Loss/Accuracy curves of our 
model. (b) The Loss/Accuracy curves of CMSA. 

The attention map in Figure 8 represents the attention paid to each word in the question; 
CMSA [25] is presented on the left side while our method is on the right. Notably, the darker red shade 
indicates that more attention is paid on the word and vice versa; “[padding]” means zero padding, and 
this has no implication in the question. It can be seen from the comparison that our model can focus 
better on the necessary information contained in a question and is more sensitive to information, such 
as pathology, interrogative pronouns, and orientation. It neglects “the”, “[padding]”, and other 
unnecessary information within a question. These concerns are in line with a human understanding of 
a question and thus can help the model predict answers more accurately and reasonably. 

Figure 9(a),(b) shows the comparative training loss and validation accuracy between our proposed 
model and CMSA, respectively. The training loss decreased with increasing training iterations, and the 
training loss gradually converged to a stable value, proving the convergence of the model. Comparing 
these two figures, we can find that the training loss of our proposed method has a faster convergence 
speed. At approximately 20 epochs, the training loss has dropped to approximately 0.5, and at the 127th 
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epoch, the training loss has dropped to approximately 0.0572; however, more epochs are needed for 
CMSA. Comparing the two models simultaneously, it can be seen that with increasing training 
iterations, our proposed model can achieve a higher answer prediction accuracy much earlier than 
CMSA; this proves the certain advantages that our proposed method has in Med-VQA. 

4.3. Ablation study 

VQA-RAD has been widely cited and recognized by previous studies. It is also more 
representative in Med-VQA. Therefore, to verify the effectiveness of our proposed model, we 
conducted experiments on the VQA-RAD dataset. 

First, for fairness, we replaced CMSA with BAN as the multimodal feature fusion module and 
compared with the current state-of-the-art methods that employed BAN as a feature fusion module as 
well. As shown in Table 3, our method out-performed all other methods on the answer prediction 
accuracy of “Open” and “Closed” questions, with a prediction accuracy of the “Overall” questions that 
is only 0.2% lower compared with CPRD + BAN + CR. The experimental results objectively verify 
that our proposed method can still achieve competitive performance when combined with BAN for 
feature fusion. 

Table 3. Ablation study of the feature fusion module. 

Methods 

VQA-RAD 

Accuracy (%) 

Overall Open Closed 

MEVF + BAN [43] 

CPRD + BAN [24] 

MEVF + BAN + CR [46] 

CPRD + BAN + CR [24] 

CFF + SA + BAN (Ours) 

66.1 

67.8 

71.6 

72.7 

72.5 

46.2 

52.5 

60.0 

61.1 

62.4 

77.2 

77.9 

79.3 

80.4 

82.2 

Table 4. Ablation study of our proposed methods. 

Methods 

VQA-RAD 

Accuracy (%) 

Overall Open Closed Abdomen Brain Chest 

BAN [41] 

BAN + CFF 

BAN + CFF + SA 

CMSA [25] 

CMSA + CFF 

CMSA + CFF + SA 

58.3 

71.3 

72.5 

73.2 

74.3 

75.4 

37.4 

57.7 

62.4 

61.5 

59.3 

62.6 

72.1 

79.8 

82.2 

80.9 

82.6 

83.9 

− 

64.8 

74.8 

− 

68.5 

71.0 

− 

73.4 

76.7 

− 

78.3 

78.2 

− 

77.6 

73.9 

− 

75.9 

77.6 

Second, as shown in Table 4, ablation experiments were conducted on our model to further 
analyze the proposed CFF method and the SA module. We calculated the prediction accuracy of the 
questions from different categories for more intuitive comparison. Meanwhile, BAN and CMSA were 
combined with our method individually to compare the applicability of our model. 
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Comparing BAN with BAN + CFF in the table, it can be seen that the CFF method significantly 
improves the answer prediction accuracy of BAN [41]. The same enhancement also occurs after the 
combination of CMSA [25], even though the prediction accuracy of “Open” questions demonstrates a 
slight decline. After introducing SA module, the model shows a certain degree of improvement in the 
answer prediction performance on almost all types of questions compared to the former method, as 
observed from the table; the prediction accuracy of questions from different categories 
(ሼ݊݁݉݋ܾ݀ܣ, ,݊݅ܽݎܤ  ሽ) is further improved, which affirms that the introduction of SA moduleݐݏ݄݁ܥ
can result in a positive impact, which leads to specific features contained in the questions from different 
categories being exploited. In addition, it can be seen from the comparison of BAN and CMSA that 
our model can achieve higher prediction accuracy when combined with CMSA; this shows that our 
method has better adaptability. In conclusion, we proved from experiments that our proposed method 
is able to exert positive impact on the model to obtain better answer prediction results in Med-VQA. 

5. Conclusions 

In this study, we propose a CFF method to strengthen the interactions between radiology images 
and questions from different categories in Med-VQA, utilizing a CNN-based type classifier to classify 
multimodal inputs and subsequently perform feature fusion for the corresponding image-question pairs. 
Notably, considering the specific semantic information contained in different questions, we propose 
an SA module to help our model continuously learn these specific semantic features during the training 
process and deepen the model's understanding of each question. In addition, extensive experiments 
were conducted on the benchmark dataset VQA-RAD and a recently proposed bilingual dataset 
SLAKE to verify the effectiveness of our proposed method. In contrast to previous state-of-the-art 
methods, our model surpasses several others in answer prediction and achieves better performance in 
Med-VQA. However, current methods for Med-VQA, including ours, still have certain limitations. 
The questions that can be answered by the model are only intuitive questions raised according to the 
content of clinical images. There are some shortcomings, such as limited interaction channels, fixed 
interaction scenes and narrow description range, which cannot meet the interaction needs of diversified 
channels in real clinical diagnosis. In order to solve this problem, we intend to introduce knowledge-
based question answering (KBQA) [54] into Med-VQA in our future work. On the one hand, for a 
variety of clinical questions, the model can provide answers in combination with the giant medical 
information provided by external knowledge bases. On the other hand, the knowledge graph 
containing a large number of structured triples of medical knowledge [55], which can help the model 
answer multi-hop questions as well as the reasoning questions. If knowledge-based visual question 
answering methods [56] could be leveraged in the medical domain, it will better serve the needs of 
doctors and patients in real life, and help to promote the realization and application of intelligent 
inquiry in clinical diagnosis. 
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