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Abstract: Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is 

studied. The flow of nanofluid between two plates that placed parallel in a rotating system by 

keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using 

Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are 

transformed by virtue of suitable similarity transformation. Nanofluid model includes the important 

effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity 

parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt 



10177 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10176–10191. 

number are investigated for the Velocity field, Temperature variation and Concentration profile 

numerically. The findings underline that the parameter of skin friction increases when the Squeezing 

Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse 

relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of 

Nusselt number with injection parameter and Reynolds number is observed while its relation with 

Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an 

opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which 

is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison 

of findings through PCM and BVP4c which shows that the obtained results correspond to each other. 

Keywords: nanofluid; squeezing flow; viscosity; thermal conductivity; parallel plates; injection of 

fluid; unsteady; similarity transformations 

 

List of Nomenclature: 

𝜆 ∶ 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                               𝐶𝑝 ∶ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐻𝑒𝑎𝑡  

𝐷𝐵 ∶ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛               𝐶𝑓 ∶ 𝑆𝑘𝑖𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝐷𝑇  ∶ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑇ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑜𝑟𝑒𝑡𝑖𝑐 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛        𝑁𝑢 ∶ 𝑁𝑢𝑠𝑠𝑒𝑙𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 

𝑇0 ∶ 𝐴𝑡 𝐿𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑘 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇𝑒𝑚𝑒𝑟𝑎𝑡𝑢𝑟𝑒              𝑆𝑞 ∶ 𝑆𝑞𝑢𝑒𝑒𝑧𝑖𝑛𝑔 𝑁𝑢𝑚𝑏𝑒𝑟  

𝑇ℎ ∶ 𝐴𝑡 𝑈𝑝𝑝𝑒𝑟 𝐷𝑖𝑠𝑘 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇𝑒𝑚𝑒𝑟𝑎𝑡𝑢𝑟𝑒           Pr: 𝑃𝑟𝑎𝑛𝑑𝑡𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 

𝑢, 𝑣, 𝑤 ∶ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠                          𝐶: 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 

𝜃 ∶ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒                   𝜈 ∶ 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝜙 ∶ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑎𝑛𝑜 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒     𝐾𝑟 ∶ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑁𝑏 ∶ 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                             𝑆𝑐 ∶ 𝑆𝑐ℎ𝑖𝑚𝑑𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 

𝑁𝑡 ∶ 𝑇ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑜𝑟𝑒𝑡𝑖𝑐 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                        𝜏 ∶ 𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑃 ∶ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒                                          𝐴 ∶ 𝐴𝑟𝑒𝑎 

𝜌 ∶ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦                                           𝜇 ∶ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝐷 ∶ 𝐷𝑒𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦                                       𝑇 ∶ 𝑇𝑒𝑚𝑝𝑒𝑟𝑡𝑢𝑟𝑒 

1. Introduction  

The processes widely used in engineering (mainly chemical, mechanical and other such fields) 

state ample utility of the fluid flow between stretching sheets in a rotating system. In a simpler word, 

be it papers’ fabrication, material’s insulation, or manufacturing of plastics or else the material goes 

through elongating, line stretching, and most importantly rotating phenomena. These processes 

follow four-square movement of products and the studying of viscous drags for gaining the desired 

faces. For further understanding, theoretical insight of the properties of the flow would be significant 

for the related setups. 

In the long list of researchers, Stefan [1] pioneered his classical paper based on the lubrication 

approximation (highlighting squeezing flow). In tandem, Reynolds [2] focused on the solution of 

elliptic plates, while the rectangular plates were studied by Archibald [3]. All of these conducted 

studies supplement multiple examples of flow and its squeezing that are injection molding, 

compression, and polymer processing. Additionally, the lubrication system does regard this process 
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of squeezing flows. Over the past and even now in the present era, new fields of studies have been 

uncovered which substantiate the implication of the concept of Nano fluids. Now nano fluid is 

named as the suspended solid sized nanometer ranging (1–100nm) in diameters. Although fluids 

have lower thermal conductivity than solid, the fluid’s mixture and nano-particles can easily develop 

the heat transfer of fluid with valuable assistance of thermal conductivity. 

Von Karman [4] is credited for the foot work of rotating discs. However wide ranged studies 

have been later conducted after him. He focused the rotating disc in fluid with constant angular 

velocity. When it comes to the introduction of transformation and reduction of Naviar stokes 

equation to ordinary differential equation of fourth grade with the help of approx. Cochran [5] 

fortuned a more simplified concept. He took to higher accuracy by analyzing the fluid’s motion at 

rest and thus gave the solution of this state of fluid. Hamza and MaCDonald [6] tried finding the 

solution of the fluid flow between the two plates placed at the angle𝜃. They explained that at time ‘t’ 

a plate separation of Ω (1-𝛼 t)-1/2 plates are permitted to rotate with rotational velocity that is 

proportional to Ω(1-𝛼 t)-1, (Ω represents rotational velocity). By Ibrahim [7], we come to the study 

that studies the phenomena of unsteady flow plus heat transfer between two rotating flow. He 

established the finding that the temperature and heat transfer process observe a very small impact of 

rotation of two plates. He also added that the movement of the upper plate traces a prominent effect 

on both temperature and heat transfer. In a step ahead, Mustafa et al. [8] examined a squeezed and 

viscous fluid between the plates which are placed parallel by highlighting the characteristics (that are 

mass and heat transfer). They draw the conclusion that Nusselt number has been observed as an 

increasing function of Prandtland Eckert number. Another researcher named Turkyilmazogl [9] 

investigated laminar flow (three-dimensional stagnation point) that conducted electric charge in a 

fluid in a stretching rotation disk. In addition, in [10] formerly studied the transport of heat in 

nano-fluid flow of a rotating disk. 

At some other point in his research, Hu et al. [11] examined, through disks that were rotated 

counter to each other, the thermo-capillary flow instability. The technique he used was Chebyshev 

technique (a pseudo spectral technique); the solutions obtained therein were of velocity and 

temperature. Hayat et al. [12] focused viscous flow by using non-fourier flux of heat between two 

rotating disks. His later research [13] was about the carbon nano-tubes allowing flow with dual 

conditions of slips in a rotating disk system. Along with this, Rashidi et al. [14] held incompressible 

flow under his study, in which the plates were moving or had the motion normal. However, two 

plates (a porous rotating one and a fixed impermeable one) laminar flow comes into account in the 

study done by Kavenuke [15]. Rashid et al. [16] looked for utility of the second law of 

thermodynamics for MHD flow of nano fluid over a porous disc that is rotating. They extracted that 

the magnetically driven rotating disc finds its utility in the systems of renewable energy occurring 

due to phenomena of transfer of heat. Analytical or numerical methods should be used with the help 

of governing equations regarding fluid’s flow between two rotating discs, or plates. 

Sheikholeslami et al. [17] observed the features of heat transfer and nanofluid flow between two 

plates which are parallel but are held horizontally in a system. He highlighted that the Nusselt 

number (Nu) is increased by increasing volume fraction of nano-particle; in the reciprocal way 

Nusselt number scale down with the enhanced in Eckert number, magnetic parameters and rotation. 

Sheikholeslami and Ganji [18] questioned MHD flow in nano-fluid in a penetrable channel. Their 

collective results underlined that the velocity of boundary layer thickness is enhanced by scaling 

Hartmann number. While velocity of boundary layer thickness goes down with enlarge in Reynold’s 
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number. Sheikholeslami and Ganji [19] numerically studied using fourth order Range-Kutta method 

the flow of nano-fluid and heat transfer. He focused the rotatory system. However, thermophoresis 

and the Brownian motion have been given ample consideration in this model of study. While the 

numerical evaluation and investigation is done by governing different parameters; Injection 

parameter, Reynolds number, Schmidt number, Rotation parameter, Brownian parameter and 

Thermophoresis.  

Shankar et al. [20] has underlined the characteristics of mass and heat transfer of unsteady 

magnetohydrodynamic Casson nanofluid flow between plates held parallel due to the effects of 

viscous dissipation and first order chemical reaction of homogeneous in nature. This investigation 

suggests that the concentration-field serves as a function of thermophoresis parameter in a decreasing 

manner. Unlikely, Brownian motion parameter increases with an enhancement of concentration 

profile. Bhatta et al. [21] has studied the squeezing flow of nano fluid; an unsteady water based flow 

among two disks held parallel. Thus, the findings were (i) The velocity field has shown peculiar 

variations, by channel middle layer separated and (ii) heat transfer coefficient enhances owing to the 

buoyancy parameter. Incompressible squeezing and time dependent flow of Casson and micropolar 

nanofluids confined throughout corresponding disks is also analyzed. He noted that an increase in 

squeezing Reynolds number pushes the radial velocity profile to the upper disk. Ramesh et al. [22] 

focuses that the micro-polar parameter attends to the rotation in conflicting way because of which 

micro-rotational field scale up and later down. The results specify that, for the flow of nano-fluid, the 

rate of heat and mass transfer is inversely co-relate to fraction of volume and its magnetic parameter. 

The rate of mass transfer also goes up with the increase in the values of squeeze number and Schmidt 

number. Gupta and Ray [23] cited a problem regarding unsteady flow of a squeezing nano-fluid 

between two parallel plates. The results highlight that when the plates come close together; the 

Nusselt number (Nu) shows a direct relationship with both Eckert number and nano-particle volume 

fraction while “Nu” shows opposite behaviour with the squeezing number. 

The form influence of gold (Au) nanoparticles on squeezing nanofluid flow and heat 

transmission across parallel plates is investigated by Rashid et al. [24]. Water was used as the base 

fluid to investigate the varied shapes of nanoparticles, including column, sphere, hexahedron, 

tetrahedron, and lamina. The obtained results show that lamina shape nanoparticles have the highest 

rate of heat transfer, and the spherical shape of nanoparticles has played a significant role in 

temperature dispersion when compared to other shapes of nanoparticles. Bilal et al. investigate the 

CNT–Fe3O4/H2 flow into a horizontal parallel channel with thermal radiation through squeezing and 

dilating porous walls in a hybrid magnetohydrodynamics (MHD) nanofluid (Carbon nanotubes and 

ferrous oxide–water). The thermal enhancement of hybrid nanofluid is shown to be more than that of 

plain nanofluid. Furthermore, single-wall carbon nanotubes have a greater temperature influence 

than multi-wall carbon nanotubes [25]. The unstable flow in rotating circular plates located at a finite 

distance filled with Reiner-Rivlin nanofluid is studied by Arain et al. [26]. It’s worth noting that the 

DTM-Padé approach has been found to be both stable and accurate. These flows can be used to 

mimic problems in geophysics, oceanography, and a variety of commercial applications such as 

turbo machinery. To solve the fourth-order nonlinear ordinary differential equations emerging from 

squeezing unstable nanofluid flow. Nouar et al. [27] employed very efficient, intelligent approaches. 

Log-sigmoid, radial basis and tan-sigmoid activation functions were employed to create the three 

models. In contrast to the discrete form generated by the numerical method, the solutions found by 

using the neural network technique of our variables field (velocity and temperature) are continuous. 
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Khan et al. [28] analyze the heat transmission behaviour of an ionized nano liquid motion between 

two parallel discs. The suggested model analyses the squeezing flow of Cu-water nanofluid with 

electrical potential force to evaluate the flow properties and applies a uniform magnetic field to that 

fluid by making the bottom disc porous. He also looked at the effects of various nanomaterials on heat 

transfer through nanofluids. Upreti et al. [29] studied the entropy generation and heat transfer of 

unsteady hybrid pressed magnetic nanofluid flows between parallel plates, taking into account heat 

sources/sinks and heat radiation. He observed that the contours of entropy generation accelerated with 

increasing magnetic field values as the hybrid nanofluid moved away from the surface. Li et al. [30] 

analyzed by axisymmetric transient squish flow of Newton non-conductive liquid through a porous 

system “circular plate”. 

This present study will serve as an extension of the article by [19] which will aim at 

investigating the unsteady squeezing of nano-fluid in a rotatory system. It would be furthered by 

applying two or multiple phase models for initiating nano-fluid and heat transfer in the system. All 

the mentioned parameters in [19] will be found out by keeping the variables of Viscosity and 

Thermal conductivity. These results will be a step forward towards several interpretations of the key 

concepts and would be a base for times to come for new researchers. There are different techniques 

to solve PDEs. Here I used to solve PDEs through Parametric Continuation Method and result is 

validated through BVP4c because my problem mostly consists of the parametrical behaviour, thus 

PCM is one of the best techniques to get the result. 

2. Mathematical modeling 

In the present study, unsteady squeezing nano fluid flow in center of between two plates held 

horizontally parallel is considered. The upper plate, as well as the fluid, is rotating with a certain 

rotational velocity around y-axis while plate at origin position is fixed. Considering the Cartesian 

coordinates for the system goes as follows: an x-axis is alongside the lower plate, and the y-axis is at 

90° to it; while the axis which is normal to the xy plan is the z-axis as shown in below Figure 1. 

 

Figure 1. Geometry of the problem. 

Wall injection subjects the upper plate of the system to a constant velocity v0. The location of the 

plates is as follows: the lower plate is just alongside the horizontal line i.e., y = 0 and the upper plate 

is placed at some specific height i.e., y = h. The placement of the points (0, 0, 0) is kept unchanged 

for lower plate. This balance is achieved through the Newton’s third law (two opposite forces with 
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equal magnitude). Thus, the equations for the said frame of references are as under. 

2.1. Governing equations for the stated problem with boundary conditions 

The governing equations in a rotating frame of reference are: 

Continuity equation: 

                      ∇. 𝑢⃗ = 0                                   (2.1) 

Navier Stokes Equation: 

          𝜌
𝐷𝑢⃗⃗ 

𝐷𝑡
− 2Ω 𝑢⃗  = −∇𝑃 + ∇. (𝜇∇𝑢⃗ ) + 𝜌𝑏                  (2.2) 

Energy Equation: 

              
𝐷𝑇

𝐷𝑡
= ∇(𝐾∇𝑇) +

(𝑃𝐶𝑃)𝑃

(𝑃𝐶𝑃)𝑓
[𝐷𝐵∇T. ∇C +

DT

T∞
∇𝑇. ∇𝑇]               (2.3) 

Concentration Equation: 

            
𝐷𝐶

𝐷𝑡
= 𝐷𝐵∇2C +

DT

T∞
∇2T                       (2.4) 

After transforming into Cartesian coordinates: 

𝜕𝑢⃗⃗ 

𝜕𝑥
 +  

𝜕𝑢⃗⃗ 

𝜕𝑦
 +  

𝜕𝑤⃗⃗ 

𝜕𝑧
 =  0                   (2.5) 

𝜕𝑢⃗⃗ 

𝜕𝑡
 +  𝑢⃗ 

𝜕𝑢⃗⃗ 

𝜕𝑥
+ 𝑣 

𝜕𝑢⃗⃗ 

𝜕𝑦
− 2Ω𝑤⃗⃗ = −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢⃗⃗ 

𝜕𝑥2
+

𝜕2𝑢⃗⃗ 

𝜕𝑦2
) +

𝜕𝜇

𝜕𝑥

𝜕𝑢⃗⃗ 

𝜕𝑥
+

𝜕𝜇

𝜕𝑦

𝜕𝑢⃗⃗ 

𝜕𝑦
         (2.6) 

 
𝜕𝑣⃗ 

𝜕𝑡
 + 𝑢⃗ 

𝜕𝑣⃗ 

𝜕𝑥
+ 𝑣 

𝜕𝑣⃗ 

𝜕𝑦
= −

𝜕𝑃

𝜕𝑦
+ 𝜇 (

𝜕2𝑣⃗ 

𝜕𝑥2
+

𝜕2𝑣⃗ 

𝜕𝑦2
) +

𝜕𝜇

𝜕𝑥

𝜕𝑣⃗ 

𝜕𝑥
+

𝜕𝜇

𝜕𝑦

𝜕𝑣⃗ 

𝜕𝑦
           (2.7) 

   
𝜕𝑤⃗⃗ 

𝜕𝑡
+ 𝑢⃗ 

𝜕𝑤⃗⃗ 

𝜕𝑥
+ 𝑣 

𝜕𝑤⃗⃗ 

𝜕𝑦
− 2Ω𝑢⃗ = −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑤⃗⃗ 

𝜕𝑥2
+

𝜕2𝑤⃗⃗ 

𝜕𝑦2
) +

𝜕𝜇

𝜕𝑥

𝜕𝑤⃗⃗ 

𝜕𝑥
+

𝜕𝜇

𝜕𝑦

𝜕𝑤⃗⃗ 

𝜕𝑦
        (2.8) 

𝜕𝑇

𝜕𝑡
+ 𝑢⃗ 

𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
+ 𝑤⃗⃗ 

𝜕𝑇

𝜕𝑧
= 𝐾 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) +
𝜕𝐾

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐾

𝜕𝑦

𝜕𝑇⃗ 

𝜕𝑦
+

𝜕𝐾

𝜕𝑧

𝜕𝑇⃗ 

𝜕𝑧
 

+
(𝑃𝐶𝑃)𝑃

(𝑃𝐶𝑃)𝑓
[𝐷𝐵 (

𝜕𝑇

𝜕𝑥

𝜕𝐶

𝜕𝑥
+

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
+

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
) +

𝐷𝑇

𝑇∞
{(

𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

}]     (2.9) 

𝜕𝐶

𝜕𝑡
+ 𝑢⃗ 

𝜕𝐶

𝜕𝑥
+ 𝑣 

𝜕𝐶

𝜕𝑦
+ 𝑤⃗⃗ 

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
)+

𝐷𝑇

𝑇∞
(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
)      (2.10) 

The following non-dimensional variables are introduced: 
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  𝑢 =
𝛽𝑥

2(1−𝛽𝑡)
𝑓′(𝜂) , 𝑣 =

−𝛽𝑙

2√(1−𝛽𝑡)
 𝑓(𝜂) , 𝑤 =

𝛽𝑥

2(1−𝛽𝑡)
 𝐺(𝜂), 𝜇 = 𝜇𝑜 (1 − 𝛽𝑜𝑇𝜃), 

   𝐾 = 𝐾𝑂(1 − 𝛽𝑜𝑇ℎ𝜃), 𝑇 = 𝑇ℎ 𝜃(𝜂)  𝐶 = 𝐶𝑢 𝜙(𝜂)                   (2.11) 

here differentiation with respect to 𝜂 is denoted by a prime. Substituting Eq (2.11) with Eqs 

(2.5)–(2.10), 

𝑓𝑖𝑣(𝜂) =
1

(1−𝑅1𝜃)
[{ 2𝑅1𝜃

′𝑓′′′ + 𝑅1𝜃𝑓′′′ + 2𝐾𝑟𝑔′ + 𝑆𝑞 ( 𝜂𝑓′′′ + 3𝑓′′ + 𝑓′𝑓′′ − 𝑓𝑓′′′)} +

1

(1−𝑅1𝜃)
{(𝑅1 − 𝑁𝑡)𝜃′2 − 𝑁𝑏𝜙′𝜃′ +

1

2
𝑃𝑟𝑆𝑞𝜂𝜃′ −

1

2
𝑃𝑟𝑆𝑞𝑓𝜃′}]            (2.12) 

𝑔′′(𝜂) =
1

1−𝑅1𝜃
{𝑅1𝜃

′𝑔′ + 2𝐾𝑟𝑓′ + 𝑆𝑞(𝜂𝑔′ + 2𝑔 + 𝑓′𝑔 − 𝐹𝑔′)}           (2.13) 

𝜃′′(𝜂) =
1

(1−𝑅1𝜃)
{𝑅1(𝜃′)2 − 𝑁𝑏𝜃′φ′ − Nt(𝜃′)2 + 𝑆𝑞𝑃𝑟(𝜂𝜃′ − 𝑓𝜃′ )}        (2.14) 

𝜑′′(𝜂) = 𝑆𝑞𝑆𝑐(𝜂𝜑′ − 𝑓𝜑′) −
𝑁𝑡

𝑁𝑏
𝜃′′                       (2.15) 

Using the below boundary conditions for above equations,  

𝑓 = 0, 𝑓 ′ = 1, 𝑔 = 0, 𝜃 = 1, 𝜑 = 0                   at    𝜂 = 0 

𝑓 = 𝜆, 𝑓 ′ = 0, 𝑔 = 0, 𝜃 = 0,   𝜑 = 0                 at   𝜂 = 1      (2.16) 

For other non-dimensional quantities: 

𝜆 =
𝑣𝑜

𝑘𝑙
 , 𝑆𝑞 =

𝛽𝑙2

2𝑣
, 𝑃𝑟 =  

𝜇

𝜌 𝑘
, 𝑆𝑐 =

𝜇

𝜌𝐷
, 𝑅1 = 𝛽0𝑇ℎ,    𝐾𝑟 =

Ω𝑙2

𝑣
, 

𝑁𝑏 =
(𝑃𝐶𝑝)

𝑝
𝐷𝐵𝐶ℎ

(𝑃𝐶𝑝)
𝑓
𝐾

,    𝑁𝑡 =
(𝑃𝐶𝑝)

𝑝
 𝐷𝑇𝐶ℎ

(𝑃𝐶𝑝)
𝑓
 𝐾 𝑇0

           (2.17)  

Nusselt number(𝑁𝑢) and coefficient of skin friction (𝐶𝑓), are as under: 

𝐶𝑓 = 𝑓′′(0)   𝑎𝑛𝑑  𝑁𝑢 = −𝜃′(0) 

2.2 Numerical solution by PCM 

The basic idea of PCM application to non-liner Eqs (2.12)–(2.15) with the relative boundary 

condition (2.16) expressed in the steps which are following: 

Step 1. Converting the system of BVPs to a system of ODEs of first order, the following procedure 

as adopted.  

𝑓 = 𝐹1 , 𝑓′ = 𝐹2,  𝑓′′ = 𝐹3,  𝑓′′′ = 𝐹4,   𝑔 = 𝐹5, 𝑔′ = 𝐹6, 𝜃 = 𝐹7, 𝜃′ = 𝐹8, 



10183 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10176–10191. 

𝜙 = 𝐹9, 𝜙′ = 𝐹10                         (2.18) 

here 𝑓 is a function of 𝜂. By using the transformation, we get the following equations: 

𝐹4′ =  
1

(1 − 𝐵𝐹7)
[2𝐵1𝐹8𝐹4 + 2𝐾𝑟𝐹6 + 𝑆𝑞 [𝜂 𝐹4 + 3𝐹3 + 𝐹2𝐹3 − 𝐹1𝐹4] +

1

(1 − 𝐵𝐹7)2
(𝐵1𝐹3) 

[(𝐵1 − 𝑁𝑡)𝐹4
2 − 𝑁𝑏𝐹10𝐹8 + 0.5Pr 𝑆𝑞(𝜂 𝐹8 − 𝐹8𝐹1)]              (2.19) 

𝐹6′ =
1

(1−𝐵𝐹7)
[𝐵1𝐹8𝐹6 + 𝑆𝑞(𝜂 𝐹6 + 2𝐹5 + 𝐹2𝐹5 − 𝐹1𝐹6 + 2𝐾𝑟𝐹2)]         (2.20) 

𝐹8′ =
1

(1−𝐵𝐹7)
[ (𝐵1 − 𝑁𝑡) 𝐹8

2 − 𝑁𝑏𝐹8𝐹10 + 𝑃𝑟 𝑆𝑞(𝜂 𝐹8 − 𝐹1𝐹8)]        (2.21) 

𝐹10
′ =  𝑆𝑞𝑆𝑐[𝜂 𝐹10 − 𝐹1𝐹10 −

𝑁𝑡

𝑁𝑏
 𝐹8′]                 (2.22) 

Step 2. Introducing the embedding parameter p. 

𝐹4
′ = 

1

(1 − 𝐵𝐹7)
[2𝐵1𝐹8(𝐹4 − 1)𝑝 + 2𝐾𝑟𝐹6 + 𝑆𝑞 [𝜂 𝐹4 + 3𝐹3 + 𝐹2𝐹3 − 𝐹1𝐹4] 

+
1

(1−𝐵𝐹7)2
(𝐵1𝐹3) [(𝐵1 − 𝑁𝑡)𝐹4

2 − 𝑁𝑏𝐹10𝐹8 + 0.5Pr 𝑆𝑞(𝜂 𝐹8 − 𝐹8𝐹1]     (2.23) 

𝐹6′ =
1

(1−𝐵𝐹7)
[𝐵1𝐹8(𝐹6 − 1)𝑝 + 𝑆𝑞(𝜂 𝐹6 + 2𝐹5 + 𝐹2𝐹5 − 𝐹1𝐹6 + 2𝐾𝑟𝐹2)]     (2.24) 

𝐹8′ =
1

(1−𝐵𝐹7)
[ (𝐵1 − 𝑁𝑡)𝐹8(𝐹8 − 1)𝑝 − 𝑁𝑏𝐹8𝐹10 + 𝑃𝑟 𝑆𝑞(𝜂 𝐹8 − 𝐹1𝐹8)]    (2.25) 

𝐹10
′ =  𝑆𝑞𝑆𝑐[𝜂 (𝐹10 − 1)𝑝 − 𝐹1𝐹10 −

𝑁𝑡

𝑁𝑏
 𝐹8′]               (2.26) 

Step 3.  Differentiating by parameter “p”. 

By differentiating Eqs (2.23)–(2.26) with repect to “p” we get the result as follow. 

𝑉 ′ = 𝐴𝑉 + 𝑅,                           (2.27) 

here R represents remainder while A represent coefficient matrix. 

𝑉 =
𝜕𝐹𝑖

′

𝜕𝑇
                              (2.28) 

where 𝑖 = 1,2, … 13.      

Step 4. The two Cauchy problems given below have to solve. 

𝑉 = 𝑎𝑈1 + 𝑤                              (2.29) 
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here a- unknown blend coefficient 𝑈1𝑎𝑛𝑑 𝑤 are unknown vector function. For each component the 

two Cauchy problems are Solve. 

𝑈1
′ = 𝐴𝑈1,                               (2.30) 

𝑊 ′ = 𝐴𝑊 + 𝑅                              (2.31) 

Substituting the approximate solution Eq (2.29) into the original Eq (2.27), we obtain 

(𝑎𝑈1 + 𝑊)′ = 𝐴(𝑎𝑈1 + 𝑤) + 𝑅,                       (2.32) 

Step 5. Solving the Cauchy problems. 

In this work numerical implicit scheme is used which is presented as below. 

From Eqs (2.30) and (2.31), 

𝑈1
𝑖+1 − 𝑈1

𝑖

∇𝜂
= 𝐴𝑈1

𝑖+1   

𝑊𝑖+1−𝑊𝑖

∇𝜂
= 𝐴𝑊𝑖+1 + 𝑅                           (2.33) 

From above iterative form of the solution is obtained. 

𝑈1
𝑖+1 = (1 − ∇𝜂𝐴)−1𝑈1

𝑖 

𝑊𝑖+1 = (1 − ∇𝜂𝐴)−1(𝑊𝑖 − ∇𝜂𝑅). 

3. Results 

 

(a)                                     (b) 

 

(c)                                     (d) 

Figure 2. (a) Impact of Injection parameter on horizontal velocity profile, (b) Impact of 

Injection parameter on vertical velocity profile, (c) Impact of Injection parameter on 

Temperature profile, (d) Impact of Injection parameter on Concentration profile. 

Mathematical formulation for the consecutive expressions of Newtonian flow for unsteady 
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squeezing fluid is taken into account for modeling the flow between two rectangular plates in Eqs 

(2.1)–(2.18) which is subjected to the boundary conditions as per Eq (2.14) through PCM and BVP4c. 

The equations are thus analyzed, solved and equated for investigations numerically. Furthermore, the 

method of parametric-analysis for dimensionless physical parameters, i.e., Injection parameter, 

Squeezing Reynolds number (Sq), Prandtle number (Pr), Schmidt number (Sc), Brownian parameter 

(Nb) and Thermophoretic parameter (Nt), has been applied. The results of these parameters are 

shown in Figures 2–6. 

 

(a)                                     (b) 

 

(c) 

Figure 3. (a) Impact of Squeezing number on horizontal velocity profile, (b) Impact of 

Squeezing number on Temperature profile, (c) Impact of Squeezing number on 

Concentration profile. 

 

(a)                                     (b) 

Figure 4. (a) Impact of Prandtle number on Temperature profile, (b) Impact of Prandtle 

number on Concentration profile. 

 

(a)                                     (b) 

Figure 5. (a) Impact of Thermophoresis and Brownian motion on Temperature profile, (b) 

Impact of Thermophoresis and Brownian motion on Concentration profile. 
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Figure 6. Impact of Schmidt number on Concentration profile. 

Table 1. Squeezing Number effect on Skin friction (Cf) and Nusselt Number (Nu). Sq = 

0.1, Ks = 0.3, Pr = 5, Sc = 0.3, Nt = 0.1, Nb = 0.1, λ =5. 

Squeezing number(Sq) 0.1 0.2 0.3 0.4 0.5 

Skin friction [𝒇′′(𝟎)] 28.0229 29.0780 30.2237 31.2466 32.2308 

Nusselt number [−𝜽′(𝟎)] 1.2822 1.5965 1.8760 2.1712 2.3392 

Table2. Injection parameter effect on Skin friction (Cf) and Nusselt Number (Nu). Sq = 

0.1, Ks = 0.3, Pr = 5, Sc = 0.3, Nt = 0.1, Nb = 0.1. 

Injection parameter[𝛌] 0.1 0.2 0.3 0.4 0.5 

Skin Friction[ 𝐟′′(𝟎)] –3.4978 –2.8827 –2.2655 –1.6472 –1.0277 

Nusselt Number [−𝛉′(𝟎)] 0.8925 0.9004 0.9084 0.9164 0.9243 

Table 3. Prandtle number effect on Skin friction (Cf) and Nusselt Number (Nu). Sq = 0.5, 

Ks = 0.5, Pr = 5, Sc = 1, Nt = 0.1, Nb = 0.1. 

Prandtle number [Pr] 1 2 3 4 5 

Skin friction[ 𝒇′′(𝟎)] 23.8073 23.8734 23.9209 23.9530 23.9731 

Nusselt Number [−𝜽′(𝟎)] 1.2041 1.4549 1.6833 1.8875 2.0694 

Table 4. Schmidt number impact on Skin friction (Cf) and Nusselt Number (Nu). Sq = 

0.5, Ks = 0.5, Pr = 5, Nt = 0.1, Sc = 5, Nb = 0.1. 

Schmidt number [Sc] 1 2 3 4 5 

Skin friction[ 𝒇′′(𝟎)] 23.9731 23.9715 23.9702 23.9690 23.9681 

Nusselt Number [−𝜽′(𝟎)] 2.0694 2.0540 2.0407 2.0294 2.0199 

Table 5. Comparision between PCM and BVP4c on different mesh points for parameter 

having value as: Kr = 0.5, Pr = 10, Sc = 0.5, Nt = 0.5, Nb = 0.5, 𝜆 = 1 

𝜼 f ' f 𝜽 𝝓 f ' f 𝜽 𝝓 

0.1 0.1079 1.1433 0.8210 0.9718 0.1079 1.1432 0.8210 0.9718 

0.3 0.3507 1.2538 0.4557 0.9230 0.3507 1.2538 0.4557 0.9231 

0.5 0.5994 1.2098 0.1934 0.7740 0.5994 1.2098 0.1934 0.7740 

0.7 0.8233 0.9935 0.0720 0.4951 0.8233 0.9935 0.0720 0.4952 

0.9 0.9758 0.4625 0.0252 0.1599 0.9758 0.4625 0.0252 0.1599 
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4. Discussion 

Figure 2(a),(b) are represent the graph of velocity profile through horizontal direction f'(𝜂) and 

vertical direction $f(\eta)$ for the different value of injection 𝜆 parameter. It shows that if the value of 

injection parameter (𝜆 = 1, 2, 3, 4) increases (which means injecting the fluid through upper plate into 

the system) while other quantities such that Sq = 0.5, Pr = 10, Kr = 0.5, Nt = 0.1, Nb = 0.1, Sc = 0.5 

remain unchanged then the value of f'(𝜂) mean flow along horizontal direction and f(𝜂) which is the 

alongside of y-axis also increases. It is because of the existence of porosity in the plate, allows the fluid 

flow through the system and leads to increase the motion of the fluid. The effect of injection 

parameter (𝜆) on temperature profile in Figure 2(c) and concentration profile in Figure 2(d), are 

highlighted respectively. It is noted in Figure 2(c),(d) that due to increase in the value of injection 

parameter (𝜆 = 0.9, 1, 1.2, 3) for temperature and 𝜆 = 0, 1, 2, 3 for concentration profile, while 

other quantities as Sq = 0.3, Pr = 5, Kr = 0.5, Nt = 0.1, Sc = 0.5, Nb = 0.1 is fixed, then temperature 

decreases while opposite in concentration profile is being observed. It is because when injection 

parameter increases then the thermal diffusivity decreases, which eventually mean that the thermal 

conductivity decreases or to say that density increases. 

Figure 3(a) is exhibit the impact of squeeze Reynolds number (Sq) on the component along x-axis 

in the field of velocity while keeping Sc = 0.5, Kr = 0.5, Nt = 0.5, Nb = 0.5, Pr = 10 and 𝜆 = 0.5 fixed. 

With a decrease in the velocity of the upper plate i.e., (Sq = 25, 15, 5, 0) moving towards the lower 

plate, as the value of Sq scale down which means that there is an increase within the kinematic 

viscosity i.e., decrease in the density of the fluid. Similarly, when the space or length between the 

plates is decreased, the velocity profile has increased. As a result, the fluid initiates to move along 

x-axis. Figure 3(b) shown the variation of temperature profile 𝜃(𝜂) for different value of Squeezing 

number i.e., (Sc = 0.5, Kr = 0.5, Nt = 0.5, Nb = 0.5, Pr = 10 and 𝜆 =1). Considerable increase in the 

profile of temperature field (𝜃(𝜂)) is noted for diminutive worth of Sq as (Sq = 5, 3, 1, 0). It is very 

clear from Figure 3(b) that graph of temperature raises when plates move in directions opposite to 

each other. It is because when decrease in the value of squeezing number (Sq) can relate as kinematic 

viscosity scale up (i.e., internal resistance of fluid flow become increase) or decrease in the length 

through which the plates are separated. So we get increasing phenomena in temperature profile. In 

Figure 3(c) the findings of smaller values of Sq = 12, 7, 4, 1 on the concentration field is witnessed 

when such parameters Sc = 0.5, Kr = 0.1, Nt = 0.5, Nb = 0.5, Pr = 0.5, 𝜆 = 5 are fixed. In Figure 3(c) 

opposite impact is being seen for the concentration profile, when it is compared to temperature field 𝜃. 

It is because of increasing kinematic viscosity (decrease in the density). 

The impact of Prandtle number (Pr = 1, 3, 5, 7) on temperature field while such parameters Sc = 0.5, 

Kr = 0.1, Nt = 0.5, Nb = 0.5, Sq = 0.5, Pr = 5, 𝜆 = 5) are fixed. As the Prandtle number is a quotient 

of momentum diffusivity to thermal diffusivity. So it is clear shown in Figure 4(a) that increases in 

Pr causes increase in temperature due to scaling down in thermal diffusion or can say that thermal 

conductivity raises or density of the fluid scale down. Figure 4(b) represent the impact of Prandtle 

number (Pr) on Concentration profile while keeping these parameters  𝜆 = 3, Sc = 0.5, Kr = 0.1, 

Nt = 0.5, Nb = 0.5, Sq = 0.5 remain unchanged. Concentration profile behaviour as shown in 

Figure 4(b) which shows that increase in Pr = 1, 2, 3, 5 shows increase in Concentration because 

to increase in Momentum diffusivity i.e., momentum of the fluid particle increasing in the 

direction of the flow of fluid. 

Thermophoretic (Nt) and Brownian parameter (Nb) impact on dimensionless temperature profile 



10188 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10176–10191. 

are shown in Figure 5(a). As thermophoresis and Brownian motion are two important sources of 

nano-particle migration in nano fluids, having considerable effects on the thermo physical traits of 

nano fluids. It is shown here that the smaller nano-particles are able to accumulate at the heated walls 

and enhances the heat exchange rate. We can see from Figure 5(a) temperature profile scale up as the 

value of Nt = Nb = 1, 2, 3, 4 increases while keeping Sc = 0.5, Kr = 0.1, Sq = 0.5, Pr = 5, 𝜆 = 3 

these parameter fixed. Increasing behavior of temperature is due to the specific factor that Nt and Nb 

has direct relation with the transformation of heat coefficient corresponding with the nanofluid 

particles. Figure 5(b) used to analyze the impact for different value of Thermophoretic (Nt) and 

Brownian parameter (Nb) on Concentration profile. Figure 5(b) showing the behavior of Concentration 

profile (𝜙(𝜂)) by changing the value of Sc while Kr = 0.5, Nt = 0.5, Nb = 0.5, Sq = 0.5, Pr = 5, 𝜆 = 2) 

are fixed. As it is being observed in Figure 5(b) that when the value of Nt = N_b = 0.1, 0.5, 0.9, 1.5 

increases while other parameters such as Sc = 0.5, Kr = 0.5, Sq = 0.5, Pr = 5, 𝜆 = 2 are kept 

constant then the similar impact of both parameter Nt and Nb scale down the Concentration profile. It is 

because of the random motion of the nanoparticle or dimensionless nanoparticle volume fraction profile.  

It finds in Figure 6 that concentration profile graph decreases when the Schmidt number is 

increased. it is because Schmidt number is one of the numbers without dimension and it is stated as 

the co-relation between momentum diffusivity to mass diffusivity. So for high Schmidt numbers i.e., 

(Sc = 1, 3, 6, 10) momentum diffusion will dominate such as by increasing Schmidt number dynamic 

viscosity increases and density decreases. 

The numerical comparison has also been presented for better understanding for both coefficient 

of skin friction (Cf) and Nusselt number (Nu) as a particular case for this study. Increasing Reynolds 

number, Prandtle number and injection parameter results into scale-up in the coefficient of skin 

friction with also Nusselt number. Also it is shown that Nusselt number increases due to the increase 

in injection parameter. Opposite trend follows when the value of Schmidt number is increased as 

seen in Tables 1–5. 

5. Conclusions 

Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid is studied. 

Nanofluid model includes the pivotal impact of thermophoresis and Brownian motion. By using the 

concept of similarity transformation PDEs morphed into combine scheme of ODEs. Parametric 

Continuation Method (PCM) used for the numerical evaluation of all the major parameters i.e., 

Schmidt number, squeezing number, Prandtle number, Brownian and Thermophoretic parameter. 

Tabulated findings analyzed for studying the effect of Nusselt number and Skin friction. The result 

indicates that: 

 If we have to increase the value of injection parameter (𝜆) then the velocity profile f'(𝜂), f(𝜂) and 

concentration profile 𝜙(𝜂) increases while temperature profile 𝜃(𝜂) decreases. 

 It is observed that when the squeezing number decreases (means that upper plate come close 

towards lower plate), as a result velocity and temperature profile increases and Concentration 

profile decreases. 

 It is shown that increase in Prandtle number, temperature profile decreases and opposite 

behaviour is observed in Concentration profile. 

 Similar implications of Thermophoresis and Brownian parameter on temperature profile and 

concentration profile is drawing out in which temperature increases and concentration decreases. 
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 It is shown that when Schmidt number (Sc) increases then profile of Concentration decreases. 

 Also it originates that Skin friction and Nusselt number have direct affiliation with Squeezing 

Reynolds number, Prandtle number and also with injection parameter while it is observed that, it 

has an opposite relation with Schmidt number. 

In future we have: 

 The same problem may able to studied in this type of system in Partial differential equation. 

 An advance numerical MATLAB program is required for the analysis of these system models. 
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