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Abstract: This paper investigates the existence of positive equilibrium as well as the stability of
positive equilibrium and zero equilibrium in a nonlinear size-structured hierarchical population model.
Under the condition that larger individuals are more competitive advantages than smaller ones, a non-
zero fixed point theorem is used to show that there is at lest one positive equilibrium in the system.
Moreover, we obtain the stability results of positive equilibrium and zero equilibrium by deriving
characteristic equations and establishing Liapunov function. Finally, some numerical experiments are
presented.
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1. Introduction

Many experiments have shown that the hierarchical structure is prevalent in biological populations
in nature. In 1982, Dewsbury [1] listed hundreds of species with hierarchical structures including
mammals, reptiles, and many plant species. Subsequently, in the past few decades, many scholars
have carried out more research on hierarchical model. In a general hierarchical model, the
competition for resources that determines individual vital rates are depend on some hierarchy which
related to age or individual size. For example, in 1994, Cushing [2] proposed a hierarchical
population model, in which the vital rates of an individual at the age of a depend on the number of
individuals who are older than a and smaller than a. After that, Blayneh [3] established a hierarchical
size-structured population model, where the individual fertility and mortality rates of individuals with
a scale of s are related to the number of individuals with a scale larger than s and smaller than s.

In addition, Calsina and Saldaña [4] studied a hierarchical population model and demonstrated the
existence and uniqueness of the model solution and the gradual behavior of the solution. Jang and
Cushing [5] proposed a discrete with hierarchical age and size structure model to analyze
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intra-specific competition. Ackleh et al. [6] established a comparison principle and built monotone
sequences, they proved the existence and uniqueness of solution for a size structure population system
which environment contain hierarchy. On this basis, Liu and He [7] proposed a nonlinear hierarchical
population model and applied the comparative principle to prove the existence uniqueness theorem of
solution of model. Ackleh et al. [8] studied a class of finite difference approximations with
hierarchical size-structured model, demonstrated the existence uniqueness of weak solution and the
convergence of finite difference approximations. Kraev [9] used coordinate transformation to
demonstrate the global existence of continuous solution in height structured hierarchical population
system. For biological populations, the hierarchical population model was more favorable to the
individuals with hierarchical advantages, such as Henson et al. [10], who studied the dynamic
consequences of intra-specific scramble competition and contest competition, and found that the
ability resource absorption rate of individual is an important determinant. Cushing [11] believed that
in some species, the larger individuals have the advantages of resource absorption and competition.
Gurney and Nisbet [12] argued that predator populations with hierarchical model were more effective
in biological control than simple predators without such social structures.

On the other hand, the population stability plays an important role in the survival of organism
populations and has received widespread attention from scholars. Farkas and Hagen [13] studied a
class of nonlinear size-structured population dynamics model, applied semi-population and spectral
methods to analyze the stability results of the stationary solutions of the model. Li [14] discussed a
class of single population equation with random periods, analyzed the stability conditions of the
positive equilibrium solution when the control function was taken as E. Farkas and Hinow [15]
analyzed the stability of population model distribution. In recent years, He et al. [16] proposed a class
of hierarchical age-structured single-population, and discussed the stability conditions of the zero
equilibrium solution of the model through linearization. In the same year, He and Zhou [17] proposed
a class of competing population model with hierarchical age-structured, used the semi-group theory to
obtain the stability criterion of equilibrium solution.

However, compare with the results of age-structured models and size-structured models, the
research on hierarchical models are inadequate. In addition, the study on the stability of hierarchical
size-structured population models are also insufficient. Therefore, we propose a hierarchical
size-structured population model, which the individual’s life rate functions depend on the internal
environment E(p). The non-zero fixed-point theorem is applied to prove the existence of positive
equilibrium in the model. Moreover, we prove the stability of positive equilibrium and zero
equilibrium by deriving the characteristic equation and present several numerical experiments for zero
equilibrium state.
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2. The existence of positive equilibrium

In this paper, we study the following population model

∂p
∂t +

∂gp
∂s = −µ(s, E(p)(s, t))p(s, t) − u(s, E(p)(s, t))p(s, t), (s, t) ∈ Q,

g(0)p(0, t) =
∫ L

0
β(s, E(p)(s, t))p(s, t)ds, t ∈ (0,T ),

P(t) =
∫ L

0
p(s, t)ds, t ∈ (0,T ),

p(s, 0) = p0(s), s ∈ [0, L],

E(p)(s, t) = α
∫ s

0
p(r, t)dr +

∫ L

s
p(r, t)dr, (s, t) ∈ Q,

(2.1)

where Q = (0, L) × (0,+∞), suppose a finite maximal size denoted by L and the size of the newborn
is considered to be 0. The population is described by means of a density function p(s, t), P(t) is the
total population size at time t. g(s) represents the growth rate of size. The functions µ, β and u are
respectively the mortality, fertility and harvesting effort which based on size s and on the internal
environment E(p), α is called small individuals discount factor with 0 ≤ α < 1.

This paper makes the following assumptions on the model ingredients
(H1) µ(s, E) > 0, 0 ≤ β(s, E) ≤ M1, and u(s, E) > 0,∀(s, E) ∈ [0, L] × [0,+∞),M1 is constant;
(H2) µ(s, E), β(s, E) and u(s, E) are continuous functions, µ′E =

∂µ

∂E and β′E =
∂β

∂E exist with 0 ≤
µ′E < ∞ and −∞ < β′E < 0, respectively;

(H3) µ, β and u are locally Lipschitz functions, there exists Lipschitz constants Li > 0, i = 1, 2, 3,
such that

|µ(s, E1) − µ(s, E2)| ≤ L1|E1 − E2|;

|β(s, E1) − β(s, E2)| ≤ L2|E1 − E2|;

|u(s, E1) − u(s, E2)| ≤ L3|E1 − E2|;

a.e. s ∈ [0, L) and E1, E2 ∈ [0,∞);
(H4) 0 < M2 ≤ g(s) ≤ M3, ∀(s, E) ∈ [0, L]× [0,+∞),M2,M3 are constants. Furthermore, g(L) = 0.
Moreover, assume the functions β, µ and u ∈ C1.

In [7], the authors have proved that system (2.1) has a unique non-negative solution on t ∈ [0,T ],
according to the extension theorem of the solution, it can be obtained that system (2.1) has a unique
non-negative solution for t ∈ [0,∞).

If system (2.1) has equilibria solutions p1(s) then it has to satisfy the following equations

dgp1
ds = −µ(s, E(p1)(s))p1(s) − u(s, E(p1)(s))p1(s), s ∈ (0, L),

g(0)p1(0) =
∫ L

0
β(s, E(p1)(s))p1(s)ds, s ∈ (0, L),

P1 =
∫ L

0
p1(s)ds, s ∈ (0, L),

E(p1)(s) = α
∫ s

0
p1(r)dr +

∫ L

s
p1(r)dr, s ∈ (0, L).

(2.2)

From the first equation of system (2.2)

p1(s) = p1(0) exp
{
−

∫ s

0

µ(r, E(p1)(r)) + u(r, E(p1)(r)) + g′(r)
g(r)

dr
}
, (2.3)
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p1(0) = 0 and p1(0) > 0 are respectively called the zero equilibrium and positive equilibrium of system
(2.2). Substituting (2.3) into the second equation of system (2.2), then

p1(0) =
p1(0)
g(0)

∫ L

0
exp

{
−

∫ s

0

µ(r, E(p1)(r)) + u(r, E(p1)(r)) + g′(r)
g(r)

dr
}
β(s, E(p1)(s))ds, (2.4)

when p1(0) > 0, it can be obtained that S (p1) = 1 from (2.4), where

S (p1) =
1

g(0)

∫ L

0
exp

{
−

∫ s

0

µ(r, E(p1)(r) + u(r, E(p1)(r)) + g′(r)
g(r)

dr
}
β(s, E(p1)(s))ds,

which is called the net reproduction number.
Now introducing non-zero fixed point theorem ([18], Theorem A) to prove system (2.1) existence

positive equilibria.

Lemma 2.1. Let Z be a Banach space, K ⊂ Z a closed convex cone, Kr = K
⋂

Br(0), F : Kr → K
continuous such that F(Kr) is relatively compact. Assume

(i) Fz , λz for all ‖z‖ = r;
(ii) there are ρ ∈ (0, r), e ∈ K\{0} such that z − Fz , λe for all ‖z‖ = ρ, λ > 0.
Then F has at least on fixed point z0 ∈ {z ∈ K : ρ ≤ ‖z‖ ≤ r}.

Proof. Take Banach space Z = L1(0, L) × R, define norm ‖(v, c)‖ = ‖v‖ + |c| on the space Z, where
‖v‖ =

∫ L

0
|v(s)|ds. Consider closed convex cone K = {(v, c) ∈ Z : v(s) ≥ 0, c ≥ 0},Kr = K ∩ Br(0).

Define mapping F : Kr → K, which

F(v, c) =

 c exp{−
∫ s

0
µ(r,E(v)(r))+u(r,E(v)(r))+g′(r)

g(r) dr}

c
g(0)

∫ L

0
β(s, E(v)(s)) exp{−

∫ s

0
µ(r,E(v)(r))+u(r,E(v)(r))+g′(r)

g(r) dr}ds

 .
Firstly, prove the mapping F is continuous.
Let (v, c) → (v0, c0), that is ‖v − v0‖ → 0, |c − c0| → 0. From the fourth equation in system (2.2),

then

‖E(v) − E(v0)‖ =

∫ L

0

∣∣∣∣α∫ s

0
[v(r) − v(r0)]dr +

∫ L

s
[v(r) − v(r0)]dr

∣∣∣∣ds

≤

∫ L

0

∣∣∣∣ ∫ L

0
[v(r) − v(r0)]dr

∣∣∣∣ds

≤

∫ L

0
‖v(r) − v(r0)‖ds→ 0,

thus E(v) is continuous at v0. Then

c
g(0)

∫ L

0
β(s, E(v)) exp

{
−

∫ s

0

µ(r, E(v)) + u(r, E(v)) + g′(r)
g(r)

dr
}
ds

→
c0

g(0)

∫ L

0
β(s, E(v0)) exp

{
−

∫ s

0

µ(r, E(v0)) + u(r, E(v0)) + g′(r)
g(r)

dr
}
ds.
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On the other hand∥∥∥∥ exp
{
−

∫ s

0

µ(r, E(v)) + u(r, E(v)) + g′(r)
g(r)

dr
}
− exp

{
−

∫ s

0

µ(r, E(v0)) + u(r, E(v0)) + g′(r)
g(r)

dr
}∥∥∥∥

≤

∫ L

0

∫ s

0
|

1
g(r)
||[µ(r, E(v)) + u(r, E(v))] − [µ(r, E(v0)) + u(r, E(v0))]|drds

≤(L1 + L3)
∫ L

0

∫ s

0
|

1
g(r)
||E(v) − E(v0)|drds

≤(L1 + L3)
∫ L

0
‖

1
g(s)

[E(v) − E(v0)]‖ds→ 0,

above results mean that F is a continuous mapping.
Secondly, apply the Fréchet-Kolmogorov theorem [21] to prove the relative compactness of

mapping F(Kr).
Extending the domain of the function v(s) to (−∞,∞). Let v(s) = 0 when s < [0, L], for any

(v, c) ∈ Kr, it can be obtained that

F1(v, c)(s) =

 c exp{−
∫ s

0
µ(θ,E(v))+u(θ,E(v))+g′(θ)

g(θ) dθ}, s ∈ [0, L],
0, s ∈ R \ [0, L],

F2(v, c)(s) =

 c
g(0)

∫ L

0
β(s, E(v)) exp{−

∫ s

0
µ(θ,E(v))+u(θ,E(v))+g′(θ)

g(θ) dθ}ds, s ∈ [0, L],
0, s ∈ R \ [0, L].

Then

sup
(v,c)∈Kr

‖F1(v, c)‖ = sup
( ∫ L

0

∣∣∣∣c exp
{
−

∫ s

0

µ(θ, E(v)) + u(θ, E(v)) + g′(θ)
g(θ)

dθ
}∣∣∣∣ds

)
=

∫ L

0

∣∣∣∣c exp
{
−

∫ s

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}

exp
{ ∫ s

0

g′(r)
g(r)

dr
}∣∣∣∣ds

≤

∫ L

0
|
cg(0)
M2
|ds

≤ |
cg(0)
M2
|L

< ∞.

On the other hand

sup
(v,c)∈Kr

‖F2(v, c)‖ = sup
(∣∣∣∣ ∫ L

0

cβ(s, E(v))
g(s)

exp
{
−

∫ s

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}
ds

∣∣∣∣)
≤ |

c
M2

∫ L

0
β(s, E(v))ds|

≤
cM1L

M2

< ∞.
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By the the continuity of µ(s, E) and u(s, E), when s ∈ [0, L − ε], ε > 0 and sufficiently small, then∫
S
|F1(v, c)(s + t) − F1(v, c)(s)|ds

≤

∫ L−ε

0

cg(0)
g(s)

∣∣∣∣ exp
{
−

∫ s+t

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}
− exp

{
−

∫ s

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}∣∣∣∣

≤
cg(0)
M2

∫ L−ε

0

∣∣∣∣ ∫ s+t

s

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
∣∣∣∣ds

≤
cg(0)
M2

2

(L − ε)(µε + uε)|t| → 0 (t → 0),

where µε, uε are upper bounds for µ(s, E), u(s, E) at [0, L − ε] respectively.
When s ∈ (L − ε, L), it can be obtained that∫ L

L−ε
|F1(v, c)(s + t) − F1(v, c)(s)|ds

≤

∫ L

L−ε

cg(0)
g(s)

∣∣∣∣ exp
{
−

∫ s+t

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}

+ exp
{
−

∫ s

0

µ(θ, E(v)) + u(θ, E(v))
g(θ)

dθ
}∣∣∣∣ds

≤
2cg(0)ε

M2
→ 0 (ε→ 0).

From the extended definition of function in F(Kr), if γ ≥ L, then |s| > γ ≥ L, it can be obtained that

‖F(v, c)‖ = ‖F1(v, c)‖ + F2(v, c) = 0.

According to Fréchet-Kolmogorov theorem, it can be obtained that C(Mr) is relatively compact.
Thirdly, prove F(v, c) , λ(v, c) for ‖(v, c)‖ = r > 0 and λ > 1.
If F(v, c) = λ(v, c), from the definition of the mapping F, then

λv(s) = c exp
{
−

∫ s

0
µ(r,E(v))+u(r,E(v))+g′(r)

g(r) dr
}
,

λc = c
g(0)

∫ L

0
β(s, E(v)) exp

{
−

∫ s

0
µ(r,E(v))+u(r,E(v))+g′(r)

g(r) dr
}
ds,

(2.5)

from the first equation in (2.5), when c = 0, then v(s) = 0 which is absurd due to ‖(v, c)‖ = r > 0.
In the following, consider the cases of c , 0.
(i) If F(v, c) = λ(v, c) for ∀‖(v, c)‖ = r,∃λ > 1. By the first equation in (2.5), it can be obtained that

‖v‖ ≤ λ‖v‖ = c
∥∥∥∥ exp

{
−

∫ s

0

µ(r, E(v)) + u(r, E(v)) + g′(r)
g(r)

dr
}∥∥∥∥ ≤ cLg(0)

M2
:= K,

thus ‖(v, c)‖ = ‖v‖+ c ≤ (1 + K)c, it implies ‖(v, c)‖ → 0 when c→ 0, contradictory with the condition
‖(v, c)‖ = r > 0;

(ii) If F(v, c) = λ(v, c) for ∀λ > 1,∃‖(v, c)‖ = r. From Eq (2.5), it can be obtained that

c =
1

g(0)

∫ L

0
β(s, E(v))v(s)ds ≤

M1

g(0)
‖v‖,
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and

v(s) =
c
λ

exp
{
−

∫ s

0

µ(r, E(v)) + u(r, E(v)(r)) + g′(r)
g(r)

dr
}
,

when λ→ +∞, then ‖v‖ → 0, it implies r = ‖(v, c)‖ = ‖v‖ + c→ 0, contradictory with the conditions.
Finally, prove the following.
There are exist ρ ∈ (0, r), e ∈ K\{0} such that z − Fz , λe for all ‖z‖ = ρ.
Suppose the opposite of the conclusion is true and treat the peoblem in the four cases:
(i)∀ρ ∈ (0, r), ∃ (v, c) ∈ K\{0} such that (v, c) − F(v, c) = λ(v, c) for all λ > 0 and some (v, c)

satisfying ‖(v, c)‖ = ρ. From the definition of mapping F, then v(s) − c exp{−
∫ s

0
µ(r,E(v))+u(r,E(v))+g′(r)

g(r) dr} = λv(s),

c − c
g(0)

∫ L

0
β(s, E(v)) exp{−

∫ s

0
µ(r,E(v))+u(r,E(v))+g′(r)

g(r) dr}ds = λc,

‖(v.c)‖ → 0 when ρ→ 0, which implies ‖(v.c)‖ → 0, it contradicts ‖(v, c)‖ = r > 0;
(ii)∀ρ ∈ (0, r), ∃ (v, c) ∈ K\{0} such that (v, c) − F(v, c) = λ(v, c) for some λ0 > 0 and all (v, c)

satisfying ‖(v, c)‖ = ρ. Then
(v, c) − F(v, c) = λ0(v, c),

let ρ→ 0, then λ0(v, c) = 0, contradictory with λ0(v, c) , 0;
(iii)∃ ρ ∈ (0, r), ∀(v, c) ∈ K\{0} such that (v, c) − F(v, c) = λ(v, c) for some λ0 > 0 and all (v, c)

satisfying ‖(v, c)‖ = ρ. Let (v, c) = 2
λ0

(v, c), then F(v, c) = −(v, c), which is absurd due to F(v, c) is
non-negative;

(iv)∃ ρ ∈ (0, r), ∀(v, c) ∈ K\{0} such that (v, c) − F(v, c) = λ(v, c) for all λ > 0 and some (v, c)
satisfying ‖(v, c)‖ = ρ. Let λ→ 0, then (v, c) = F(v, c), it implies (v, c) is the positive equilibrium of F.

In summary, F satisfies all the conditions in Lemma 2.1, then F has at least one non-zero fixed point
p1, which is the positive equilibrium of the system (2.1). �

3. The stability of positive equilibrium

In this section, we demonstrate the stability conditions of positive equilibrium of system (2.1). Now
introducing the variation for positive equilibrium p1(s)

w(s, t) = p(s, t) − p1(s),

which satisfies the following differential equation

∂w(s, t)
∂t

+
∂g(s)w(s, t)

∂s
=
∂p(s, t)
∂t

+
∂g(s)p(s, t)

∂s
−
∂g(s)p1(s)

∂s
,

where
∂p(s, t)
∂t

+
∂g(s)p(s, t)

∂s
= −µ(s, E(p))p(s, t) − u(s, E(p))p(s, t),

∂g(s)p1(s)
∂s

= −µ(s, E(p1))p1(s) − u(s, E(p1))p1(s),
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then

∂w(s, t)
∂t

+
∂g(s)w(s, t)

∂s
= −µ(s, E(p))p(s, t) − u(s, E(p))p(s, t)

+µ(s, E(p1))p1(s) + u(s, E(p1))p1(s),

after linearizing in E(p1), it can be obtained that

∂w(s, t)
∂t

+
∂g(s)w(s, t)

∂s
= −[µ(s, E(p1)) + u(s, E(p1))]w(s, t)

−[µ′E(s, E(p1)) + u′E(s, E(p1))]p1(s)E(w).

When g(0) = 1, then

w(0, t) = p(0, t) − p1(0)

=

∫ L

0
β(s, E(p1))w(s, t)ds +

∫ L

0
β′E(s, E(p1))p1(s)dsE(w).

Assume above linear problem has solutions of the form w(s, t) = eλtW(s), and applying the notation
W = E(W)(s), then

W ′(s) = −W(s)
µ(s, E(p1)) + u(s, E(p1)) + g′(s) + λ

g(s)

−W
[µ′E(s, E(p1)(s)) + u′E(s, E(p1))]p1(s)

g(s)
,

(3.1)

W(0) =

∫ L

0
β(s, E(p1))W(s)ds + W

∫ L

0
β′E(s, E(p1))p1(s)ds. (3.2)

The solution of (3.1) and (3.2) is

W(s) =
(
W(0) −

∫ s

0

W[β′E(a, E(p1)) + u′E(a, E(p1))]p1(a)
g(a)

× exp
{ ∫ a

0

µ(r, E(p1) + u(r, E(p1)) + g′(r) + λ

g(r)
dr

}
da

)
× exp

{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
.

(3.3)

Substituting (2.3) into (3.3) and integrating from 0 to L, then

W = A11(λ)W(0) + A12(λ)W,

where

A11(λ) =

∫ L

0
exp

{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
ds,
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A12(λ) = − p1(0)
∫ L

0
exp

{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
×

∫ s

0

µ′E(a, E(p1)) + u′E(a, E(p1))
g(a)

exp
{ ∫ a

0

λ

g(r)
dr

}
dads.

Substituting W(s) into (3.2), it can be obtained that

W(0) = W(0)A21(λ) + WA22(λ),

where

A21(λ) =

∫ L

0
β(s, E(p1)) exp

{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
ds,

A22(λ) =p1(0)
∫ L

0

(
exp

{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a)
g(a)

da
}
β′E(s, E(p1))

− exp
{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
β(s, E(p1))

×

∫ s

0

µ′E(a, E(p1)) + u′E(a, E(p1))
g(a)

exp
{ ∫ a

0

λ

g(r)
dr

}
da

)
ds.

Then obtain the following linear system and the Lemma 3.1

W(0)A11(λ) + (A12(λ) − 1)W = 0,

W(0)(A21(λ) − 1) + A22(λ)W = 0.

Lemma 3.1. in [19]: The positive equilibrium p1(s) is asymptotically stable (resp. unstable) if all the
roots of the following equation have a negative real part (resp. it has a root with a positive real part)

K(λ) = A11(λ)A22(λ) − A12(λ)A21(λ) + A12(λ) + A21(λ) = 1.

Next prove the stability result for the positive equilibrium.

Theorem 3.2. In the case of g(0)=1, cos(yΓ(s)) > 0, the positive equilibrium p1(s) is asymptotically
stable if µ′E + u′E = 0.

Proof. Introduce the following notations

T (s, E(p1), λ) = exp
{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a) + λ

g(a)
da

}
,

T (s, E(p1)) = exp
{
−

∫ s

0

µ(a, E(p1)) + u(a, E(p1)) + g′(a)
g(a)

da
}
, Γ(s) =

∫ s

0

1
g(a)

da.

Then

A11(λ) =

∫ L

0
T (s, E(p1), λ)ds, A21(λ) =

∫ L

0
β(s, E(p1))T (s, E(p1), λ)ds,
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A12(λ) = − p1(0)
∫ L

0
T (s, E(p1), λ)

∫ s

0

[µ′E(a, E(p1)) + u′E(a, E(p1))] exp{λΓ(a)}
g(a)

dads,

A22(λ) =p1(0)
∫ L

0
T (s, E(p1))β′E(s, E(p1)) − T (s, E(p1), λ)β(s, E(p1))

×

∫ s

0

[µ′E(a, E(p1)) + u′E(a, E(p1))]
g(a)

exp{λΓ(a)}dads.

Thus, the following characteristic equation can be derived

K(λ) =p1(0)
∫ L

0
T (s, E(p1)) exp{−λΓ(s)}ds

∫ L

0
T (s, E(p1))β′E(s, E(p1))ds

+

∫ L

0
T (s, E(p1), λ)β(s, E(p1))ds.

The real part of all roots of the characteristic equation K(λ) are negative, assume that there exists a
root λ = x + iy, if x ≥ 0, it can be obtained that

Re(K(λ)) =p1(0)
∫ L

0
T (s, E(p1)) exp{−xΓ(s)} cos(yΓ(s))ds

∫ L

0
T (s, E(p1))β′E(s, E(p1))ds

+

∫ L

0
T (s, E(p1)β(s, E(p1)) exp{−xΓ(s)} cos(yΓ(s))ds

=1.

Let

Q(p1) = p1(0)
∫ L

0
T (s, E(p1)) exp{−xΓ(s)} cos(yΓ(s))ds,

for x ≥ 0, and exp{−xΓ(s)} ≤ 1, 0 < cos(yΓ(s)) ≤ 1, then

Re(K(λ)) ≤ Q(p1)
∫ L

0
T (s, E(p1))β′E(s, E(p1))ds +

∫ L

0
T (s, E(p1)β(s, E(p1))ds

= Q(p1)
∫ L

0
T (s, E(p1))β′E(s, E(p1))ds + g(0)

< 1.

Contradictory with K(λ) = 1, it means that the positive equilibrium p1(s) is asymptotically stable if
µ′E + u′E = 0. �

4. The stability of zero equilibrium

The linearization of the system (2.1) in the zero equilibrium is as follows
∂p
∂t +

∂gp
∂s = −µ(s, 0)p(s, t) − u(s, 0)p(s, t), (s, t) ∈ Q,

g(0)p(0, t) =
∫ L

0
β(s, 0)p(s, t)ds, t ∈ (0,∞),

p(s, 0) = p0(s), s ∈ [0, L].

(4.1)
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Consider the system (4.1) has solutions of the form p(s, t) = eλtP(s), by the first equation in the
system (4.1), it can be obtained that

λP(s) + g′(s)P(s) + g(s)P′(s) = −[µ(s, 0) + u(s, 0)]P(s),

and

P(s) = P(0) exp
{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a) + λ

g(a)
da

}
.

Let exp{λΓ(s)} = exp{−
∫ s

0
λ

g(r)dr}, it can be obtained that the following characteristic equation

1 = K(λ) =
1

g(0)

∫ L

0
β(s, 0) exp

{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a) + λ

g(a)
da

}
ds

=
1

g(0)

∫ L

0
β(s, 0) exp

{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a)
g(a)

da
}

exp{−λΓ(s)}ds.

Theorem 4.1. (i) The zero equilibrium of system (2.1) is unstable if K(0) > 1; (ii) the zero equilibrium
of system (2.1) is asymptotically stable if K(0) < 1, moveover, it is globally asymptotically stable when
µ(s, 0) + u(s, E) ≥ β(s, 0), a.e. s ∈ (0, L).

Proof. From the characteristic equation, it is clear that K(λ) is a strictly monotone decreasing function
with respect to λ, it can be obtained that lim

λ→∞
K(λ) = 0 when K(0) > 1. Therefore, when K(0) > 1,

characteristic equation has a unique positive characteristic root λ0, which means that the zero
equilibrium of system (2.1) is unstable.

On the other hand, the characteristic equation has only negative real roots when K(0) < 1, denoted
as λ0, assume that there are exist another root λ = x + iy, then x ≤ λ0, if x > λ0, it can be obtained that

1 =
∣∣∣∣Re

1
g(0)

∫ L

0
β(s, 0) exp

{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a)
g(a)

da
}

exp{−(x + iy)Γ(s)}ds
∣∣∣∣

≤
1

g(0)

∫ L

0

∣∣∣∣ exp
{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a)
g(a)

da
}

exp{−xΓ(s)} cos(yΓ(s))
∣∣∣∣ds

≤
1

g(0)

∫ L

0
exp

{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a)
g(a)

da
}

exp{−xΓ(s)}ds

<
1

g(0)

∫ L

0
exp

{
−

∫ s

0

µ(a, 0) + u(a, 0) + g′(a)
g(a)

da
}

exp{−λ0Γ(s)}ds

=1.

Contradictory with K(λ) = 1.
Establish the Liapunov function V(p(t)) =

∫ L

0
p(s, t)ds, when µ(s, 0) + u(s, E) ≥ β(s, 0), a.e. s ∈
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[0.L], then

dV
dt

=

∫ L

0

∂P
∂t

ds = −

∫ L

0
[
∂gp
∂s

+ µ(s, E(p))p(s, t) + u(s, E(p))p(s, t)]ds

=

∫ L

0
[β(s, E(p)) − µ(s, E(p)) − u(s, E(p)(s, t))]p(s, t)ds

<

∫ L

0
[β(s, 0) − µ(s, 0) − u(s, E(p)]p(s, t)ds

<0,

it is clear that the zero equilibrium is globally asymptotically stable. �

5. Numerical examples

Selected parameters as L = T = 10, α = 0.5, growth rate g(s) = 1 − 0.025s, mortality as follows

µ(s, E) =

{
2 sin2(3s) + 0.009E, 0 ≤ s ≤ 8;
+∞, otherwise.

Fertility function

β(s, E) =

{
0.8[cos2(2s) + 0.8], 1 ≤ s ≤ 8;
0, otherwise.

Harvesting effort function

u(s, E) =

{
0.12(1 − s) − 0.004E, 1 ≤ s ≤ 8;
0, otherwise.

Initial distribution of population

p1
0(s) =

{
2(9 − s)2[sin2(2s + π

3 ) + 1], 0 ≤ s ≤ 8;
0, otherwise.

after calculation, obtain K1(0) = 0.1717. If other parameters are the same, select initial distribution
p2

0(s) = 2(9 − s)2sin2(s + π
4 ), then K2(0) = 0.6697.

Choose L = T = 10, α = 0.5, g(s) = 1 − 0.025s, initial distribution of population p3
0(s) = 3(9 −

s)2cos2(s + π
4 ) and the mortality function as follows

µ(s, E) =

{
3 sin2(s + π

3 ) + 0.004E, 0 ≤ s ≤ 8;
+∞, otherwise.

Fertility function

β(s, E) =

{
0.5[cos2(4s) + 0.7], 1 ≤ s ≤ 8;
0, otherwise.
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Harvesting effort function

u(s, E) =

{
u(s, E) = 0.12(1 − s) − 0.002E, 1 ≤ s ≤ 8;
0, otherwise.

It can be obtained that K3(0) = 0.8906, select initial distribution of population
p4

0(s) = (8 − s)2[sin2(s + π
3 ) + 0.8], then K4(0) = 0.9309.
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Figure 1. K1(0) = 0.1717.
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Figure 2. K2(0) = 0.6697.
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Figure 3. K3(0) = 0.8906.
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Figure 4. K4(0) = 0.9309.

In these cases, K1(0) is close to 0, K2(0) belong to the middle of [0,1], K3(0) and K4(0) is close to 1.
From Figures 1–4, it can be seen that the initial distribution of population p0(s) has multiple peaks.
However, all the initial distribution of populations gradually approach zero as time goes by, moreover,
p0(s) no longer fluctuates with time after tend to zero, it means that the zero equilibrium is stable.

Selected parameters as L = T = 10, α = 0.7, growth rate g(s) = 1 − 0.001s, harvesting effort
function u(s, E) = 0.1(1− s)− 0.35E, initial distribution of population p5

0(s) = 0.5(10− s)2 sin2(s + π
3 ),

mortality function as follows

µ(s, E) =

{
0.35[cos2(s + π

4 ) + 1.003E + 1.1], 0 ≤ s ≤ 8;
+∞, otherwise.
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Fertility function

β(s, E) =

{
0.5[cos2(s + π

4 ) + 1.6], 1 ≤ s ≤ 8;
0, otherwise.

after calculation, obtain K5(0) = 1.1347.
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Figure 5. K5(0) = 1.1347.
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Figure 6. K6(0) = 4.4981.

Choose L = T = 10, α = 0.3, g(s) = 1 − 0.001s, initial distribution of population p6
0(s) = 0.5(12 −

s)2 sin2(s + π
3 ), and the parameters β(s, E), µ(s, E), u(s, E) as follows

β(s, E) = 0.48[sin2(3s +
π

4
) + 0.9];
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µ(s, E) = 0.2[sin2(s) + 1.003E + 1.7];

u(s, E) = 0.1(1 − s) − 0.2E.

Then K6(0) = 4.4981. The stability results of the zero equilibrium are shown by the figures.
In these cases, K5(0) is close to 1 and K6(0) is much larger than 1. From Figures 5–6, it can be

seen that as time goes by the initial distribution of population p0(s) gradually deviate from the zero
equilibrium surface, it means that p0(s) is in runaway state. Thus the zero equilibrium is unstable. The
results of above figures are consistent with the conclusions in Theorem 4.1.
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