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Abstract: We introduce a distributed-delay differential equation disease spread model for COVID-19
spread. The model explicitly incorporates the population’s time-dependent vaccine uptake and incor-
porates a gamma-distributed temporary immunity period for both vaccination and previous infection.
We validate the model on COVID-19 cases and deaths data from the state of Michigan and use the cali-
brated model to forecast the spread and impact of the disease under a variety of realistic booster vaccine
strategies. The model suggests that the mean immunity duration for individuals after vaccination is 350
days and after a prior infection is 242 days. Simulations suggest that both high population-wide adher-
ence to vaccination mandates and a more-than-annually frequency of booster doses will be required to
contain outbreaks in the future.
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1. Introduction

The novel coronavirus SARS-CoV-2 was first identified in Wuhan, China during December 2019
and within months became the deadliest pandemic since the 1918 Spanish flu. Since the beginning of
the COVID-19 pandemic, assessing and predicting the epidemiological characteristics, transmission
routes, and disease dynamics has been a primary focus of mathematicians, theoretical biologists, and
epidemiologists alike [1, 2]. A common mathematical modeling framework for tracking and forecast-
ing the disease’s spread has been that of compartmental models which incorporate at least the suscep-
tible, infectious and recovered individuals [3]. Such SIR-type models have been utilized to estimate
key epidemiological parameters of SARS-CoV-2, such as the transmission rate and basic reproduction
number [4–7]; forecast disease spread under a variety of public policy interventions, including uni-
versal face-masking, school closures, and lockdowns [8–11]; and predict the disease burden under a
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variety of vaccine rollout strategies [12–14]. Incorporating spatial aspects of disease spread has also
been considered in [15–17]. Despite this significant research attention and the unprecedented haste
of vaccine development, however, COVID-19 has continued to spread widely even in regions with
relatively high vaccination rates.

A key factor in the persistence of COVID-19 is suspected to be waning immunity, whereby indi-
viduals become less protected from infection the further they are away from a previous infection or
from their last inoculation [18, 19]. How to best incorporate waning immunity into SIR-type models
of COVID-19 spread, however, remains unsettled. A typical approach has been to incorporate waning
immunity through a direct transition back to the susceptible class [1, 20, 21]. This leads to an expo-
nential distribution for the waiting time for loss of immunity which is peaked at time zero. Evidence,
however, suggests that previous COVID-19 infection and vaccination provide good protection for most
people for several months before waning.

An alternative formulation is to suppose that every individual in the population obtains absolute
immunity for the same fixed period of time. This was the approach of Brauer and Castillo-Chavez [22]
who considered the following system of delay differential equations (DDE) where S (t), I(t) and R(t)
are the susceptible, infectious and recovered individuals at time t:

dS
dt

= −βS (t)I(t) + αI(t − ω),

dI
dt

= βS (t)I(t) − αI(t),

dR
dt

= αI(t) − αI(t − ω),

(1.1)

where β is the transmission rate, α represents the recovery rate and the temporary immunity period
of fixed length is ω. In this model, recovered individuals return to the susceptible class after a fixed
length of time, ω, so that the immunity period distribution is peaked as a point mass at ω. The model
has several drawbacks as a realistic model of disease spread. The authors showed that the endemic
equilibrium undergoes a Hopf bifurcation, leading abruptly to the emergence of periodic solutions,
which makes it difficult for policy makers to plan healthcare logistics and allocate resources. Further-
more, significant person-to-person variability in the duration of vaccine-induced immunity has been
observed, both in longitudinal studies of COVID-19 vaccine antibody responses [19] and real-world
vaccine efficacy [18].

Given the shortcomings of the exponentially and point-mass distributed immunity periods, we pro-
pose an intermediate gamma-distributed immunity period. Specifically, we propose a formulation that
uses a distributed delay on the immunity periods:

α

∫ t

−∞

I(u)gp
a(t − u) du

where gp
a(τ) is the gamma distribution

gp
a(τ) =

apτp−1e−aτ

Γ(p)
.

with rate parameter a > 0 and shape parameter p > 0. The gamma distribution is a natural choice as it
provides a bridge between the classical exponential distribution resulting from a direct transition back
to susceptibility and the point-mass distribution resulting from a fixed-delay as in (1.1) (see Figure 1).
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Figure 1. Gamma distributions (2.7) with various values of p and a = 5/p so that mean
is fixed at µ = p/a = 5. The case p = 1 (red) gives an exponential distribution which
arises from the incorporation of a direct edge from recovery to susceptibility in the ordinary
differential equation model. As p increases, the peak moves to the right and becomes more
concentrated around the mean. In the limit as p → ∞ (green) we have a point mass at µ = 5
corresponding to a fixed-time delay (1.1). The intermediate case p = 20 (blue) is utilized in
our simulations.

We note that other approaches have been taken for incorporating waning immunity into disease
spread models, including partial differential equation and other delay-differential equation models. In
work by Carlsson et al., an age structured model consisting of partial differential equations incorpo-
rated waning immunity following natural infection or immunization [23]. In a study by Hamami et
al., waning immunity was found to be associated with periodic large outbreaks of mumps in Scot-
land [24]. A general framework for modeling SIRS dynamics, while monitoring the immune system
status of individuals and including waning immunity and immune system boosting was proposed by
Barbarossa [25]. Furthermore, under certain assumptions their framework reduces to a delay differen-
tial equation model with constant delay that was studied by Taylor et al. in [26]. A five-stage loss of
immunity model, which is equivalent to a gamma-distributed waning immunity period, has also been
recently presented in [27].

In this paper, we propose a mathematical model consisting of a system of distributed delay differ-
ential equations to assess the effect of temporary immunity from COVID-19 infection and vaccina-
tion. The model builds off existing work on COVID-19 modeling by using a more realistic distributed
delay for waning immunity, allows for the study of the entwined dynamics of infection-based and
vaccination-based immunity and how they influence disease spread and mitigation strategies. We cal-
ibrate the model to COVID-19 case and vaccination data from Michigan, show the model’s efficacy,
and study the sensitivity of the model trajectories with respect to the temporary immunity period and
other model parameters. We use the calibrated model to forecast disease burden under different booster
shot intervals and population-wide uptake rates.
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2. Mathematical model

In this section, we introduce our mathematical model for incorporating vaccination uptake and
temporary immunity, describe our model for vaccination uptake, and conduct basic model analysis,
including determining the basic reproduction number of the model.

2.1. Vaccination with temporary immunity model

We consider a compartmental model where S (t), I(t), H(t), R(t) and D(t) represent the number of
susceptible, infectious, hospitalized, recovered, and deceased individuals at time t, and V(t) represent
the total number of fully vaccinated individuals at time t. We introduce the following vaccination
with temporary immunity model which incorporates waning immunity from vaccination and previous
infection:

Susceptible
(S )

Infectious
(I)

Hospitalized
(H)

Vaccinated
(V)

Recovered
(R)

Deceased
(D)

β(t)

V′(t)

h

γ δ
γ

◦ g
p
ay ◦

gp
ax (2.1)

where solid arrows . . correspond to direct exponentially-distributed transitions, and squiggly
arrows . .◦ correspond to delayed gamma-distributed transitions. In the model (2.1), suscep-
tible individuals become infectious when they come in contact with infectious individuals at a rate
controlled by β(t). Infectious individuals can either recover at rate γ, or become hospitalized at rate
h. Hospitalized individuals in turn either recover at rate γ, or become deceased at rate δ. Susceptible
individuals vaccinate at a rate V ′(t), the time-derivative of the cumulative vaccination uptake curve
V(t), and return to susceptibility at a delayed rate. Recovered individuals also return to susceptibility at
a delayed rate. Note that, for model simplicity, we have assume infected individuals are immediately
infectious (i.e., there is no latency period of exposed class), that infectious and hospitalized individuals
recover at the same rate γ, and that only hospitalized individuals may become deceased.

To build a dynamical model from (2.1), we assume that the transition rates follow the classical
mass action law and that the periods of temporary immunity granted by vaccination and infection
follow a gamma distribution with the same shape parameter p, but different rate parameters ax and
ay, respectively. The system of delay differential equations corresponding to the vaccination with
temporary immunity model (2.1) are consequently the following:

dS
dt

= −
β(t)
N

S I −
dV
dt

+

∫ t

−∞

dV(u)
dt

gp
ay

(t − u) du + γ

∫ t

−∞

(I(u) + H(u)) gp
ax

(t − u) du,

dI
dt

=
β(t)
N

S I − (h + γ)I,

dH
dt

= hI − (γ + δ)H,

dD
dt

= δH.

(2.2)
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Note that we do not include an explicit equation for the recovered class R(t). Rather, individuals are
removed from the infectious and hospitalized classes at a rate proportion to γ and then return to the
susceptible class at a delayed gamma-distributed rate.

Initial conditions are prescribed by:

(S (s), I(s),H(s),D(s)) = (φ1(s), φ2(s), φ3(s), φ4(s)) (2.3)

where φi, i = 1, 2, 3, 4, are bounded continuous functions and s ∈ (−∞, 0]. See Table 1 for fur-
ther explanation of the model parameters, their units, and their interpretations. To accommodate the
changing transmission dynamics due to changes in public policy and social behavior, we include a
time-dependent piecewise-constant transmission rate

β(t) =

β1 0 ≤ t ≤ t f it

β2 t f it < t.
(2.4)

This transmission rate function allows the disease’s transmission rate in a population to be changed
once at a predetermined time t f it. Note that both the transmission rates β1 and β2 and the transition
time t f it can be fit to data.

2.2. Vaccination uptake curve

To model the vaccination uptake curve, we use the Richards’ curve [28]:

V(t) =
M(

1 + ae−r(t−tv)) 1
a

. (2.5)

We only consider fully vaccinated individuals so that the curve V(t) corresponds to the cumulative
people who have received their second dose of Pfizer-BioNTech or Moderna or their first shot of John-
son & Johnson by time t. M represents the maximum number of fully vaccinated individuals, r is the
vaccination uptake rate, a represents a vaccination shape parameter, and tv corresponds to a time shift.
The time-derivative of (2.5) is given by:

dV
dt

=
Mre−r(t−tv)(

1 + ae−r(t−tv)) 1+a
a

(2.6)

and gives the number of new vaccinations per day. We elect to use the Richards’ curve for its simplicity
and quality of fit to the vaccination data (see Figure 2). The Richards’ curve was previously used to
model the uptake rate of first and second vaccination doses in [14]. We point out the nonnegativity
of solutions is dependent on the vaccination uptake function, V(t). That is, it’s possible that V(t)
could drive the susceptible individuals negative if the delay is sufficiently long. However, since we are
determining V(t) based on real-world data and not theoretical considerations we leave it as an open
problem to determine the theoretical restrictions required on the form of V(t) and its relation to the
delays needed for nonnegativity of solutions.
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Table 1. List of model variables and parameters along with their corresponding units and
interpretations for the vaccination with temporary immunity model (2.2).

Variable/Parameter Units Interpretation
N people Population size (total)
S (t) people Susceptible individuals at time t
I(t) people Infectious individuals at time t
H(t) people Hospitalized individuals at time t
D(t) people Deceased individuals at time t
V(t) people Vaccinated individuals at time t
r days−1 Vaccination uptake rate
M people Maximum vaccination total
M/N none Maximum vaccination proportion
tv days Vaccination time shift
a none Vaccination shape parameter
β(t) days−1 Baseline transmission rate for unvaccinated
t f it days t at which β(t) changes (see (2.4))
γ days−1 Recovery rate
h days−1 Hospitalization rate
δ days−1 Death rate
ax none Rate parameter for disease-induced immunity
ay none Rate parameter for vaccine-induced immunity
p none Shape parameter for immunity

2.3. Gamma-distributed immunity period

To better understand the delay-distributed terms in (2.2), we note that the substitution u = t − τ
yields: ∫ t

−∞

(I(u) + H(u)) gp
ax

(t − u) du =

∫ ∞

0
(I(t − τ) + H(t − τ)) gp

ax
(τ) dτ.

Therefore, removed individuals revert back to the susceptible class after spending a mean time of p
ax

time units in R, given by the gamma distribution. However, instead of a discrete delay as in (1.1), τ is
distributed according to the gamma probability distribution with rate parameter ax and shape parameter
p:

gp
ax

(τ) =
ap

xτ
p−1e−axτ

Γ(p)
(2.7)

where Γ(p) =
∫ ∞

0
xp−1e−x dx is the gamma function (see Figure 1). A similar argument shows that

vaccinated individuals revert back to the susceptible class τ units later based on a gamma probability
distribution with shape parameters p and ay. We note that we use the same parameter p for both
temporary immunity granted from vaccination and infection, but different shape parameters ax and ay.

If the shape parameter p is an integer (i.e., p = 1, 2, . . . , n) then we may transfer the gamma-
distributed delays into a sequence of direct exponentially-distributed delays through a process known as
the linear chain trick [29–31]. This can be seen by noticing that, if p is an integer, then the distribution
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(2.7) reduces to the Erlang distribution

gp
ax

(τ) =
ap

xτ
p−1e−axτ

(p − 1)!
. (2.8)

The functions (2.8) satisfy the initial-value problem
dg1

a(u)
du

= − ag1
a(u), g1

a(0) = a

dg j
a(u)

du
=a

(
g j−1

a (u) − g j
a(u)

)
, g j

a(0) = 0
(2.9)

for j = 2, . . . , p. This allows us to transform the integral distributed delays in (2.2) into a system of
ordinary differential equations. To accomplish this, we introduce the variables

X j(t) =

∫ t

−∞

(I(u) + H(u)) g j
ax

(t − u) du

Y j(t) =

∫ t

−∞

dV(u)
dt

g j
ay

(t − u) du,

for j = 1, 2, . . . , p. Differentiating (2.3) and using (2.9) converts the model (2.2) into the following
equivalent system of ordinary differential equations:

dS
dt

= −
β(t)
N

S I −
dV
dt

+ Yp(t) + γXp(t)

dI
dt

=
β(t)
N

S I − (h + γ)I

dH
dt

= hI − (γ + δ)H

dD
dt

= δH



dX1

dt
= ax(I(t) + H(t) − X1)

dX j

dt
= ax(X j−1 − X j), 2 ≤ j ≤ p

dY1

dt
= ay

(
dV(t)

dt
− Y1

)
dY j

dt
= ay(Y j−1 − Y j), 2 ≤ j ≤ p.

(2.10)

Initial conditions are calculated using

(S (0), I(0),H(0),D(0)) = (φ1(0), φ2(0), φ3(0), φ4(0)) (2.11)

where φi, i = 1, 2, 3, 4, are defined above in (2.3) and

X j(0) =

∫ ∞

0
(φ2(−s) + φ3(−s)) g j

ax
(s)ds, 1 ≤ j ≤ p

Y j(0) =

∫ ∞

0
φ5(−s)g j

ay
(s)ds, 1 ≤ j ≤ p

(2.12)

where initial histories φ2(s) and φ3(s) are estimated by interpolation based on the available case data.
φ5(s) is calculated by interpolating vaccination case data prior to the start date, 20 February 2021.
Due to unavailable hospitalization data, φ3(s) was set to zero but φ3(0) = 300. Integration in (2.12)
was performed using the trapezoidal rule and its built-in MATLAB implementation trapz. S (0) was
calculated based on the following formula:

S (0) = N − I(0) − H(0) − D(0) − R(0) − V(0)
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where R(0) and V(0) are the initially recovered and vaccinated individuals, respectively. For simplicity
in initial conditions, we assume that there are no reinfections or infected vaccinated individuals by time
t = 0. This transformation to a system of ordinary differential equations allows one to easily simulate
the model using numerical schemes designed for systems of ordinary differential equations.

The linear chain trick corresponds to replacing the gamma-delayed transitions R S◦ and

V S◦ in (2.1) with the following sequence of p direct exponentially-delayed transitions:

.
Recovered

(X1)
X2.

· · · Xp.
Susceptible

(S )

.
Vaccinated

(Y1)
Y2.

· · · Yp.
Susceptible

(S )

γ ax ax ax ax

V′(t) ay ay ay ay

That is, we break the recovered and vaccinated classes into holding states X1, . . . , Xp, and Y1, . . . ,Yp

which delay the conversion from R to S and V to S , respectively. Intuitively, this fits well with the
understanding of the Erlang distribution as the waiting time for the pth occurrence of an exponentially-
distributed event; in this case, it is the waiting time for passing through p exponentially-distributed
holding states.

2.4. Basic and effective reproduction number

The basic reproduction number is the average number of new cases arising from one primary in-
fectious individual in an entirely susceptible population. The reproduction number can be calculated
using the next generation matrix method [32,33]. For model (2.2) the basic reproduction number takes
the form:

R0 =
β(0) (N − V(0))

N (h + γ)

where V(0) is the number of individuals vaccinated at the start of the simulation. To account for the
dynamics of the spread of the disease over time, we compute the effective reproduction number:

Rt =
β(t)S (t)

N (h + γ) .
(2.13)

2.5. Model fitting techniques

We first fit the Richards curve (2.5) to vaccination data to estimate M, a, r and tv (see Figure 2)
using R Studio [34]. We utilize vaccination uptake data from [35] which has a live version available at
https://github.com/owid/covid-19-data/tree/master/public/data/vaccinations. We consider vaccinated
to be fully vaccinated, which at the time of this study corresponded to two vaccine shots of Pfizer-
BioNTech or Moderna or one shot of Johnson & Johnson. We use daily cumulative case and death
data of COVID-19 from the state of Michigan between 20 February 2021 and 16 October 2021 taken
from [36].
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Using the fitted parameters from the Richards Eq (2.5), we numerically solve model (2.10) using
the built-in MATLAB function ode45 with p = 20 and a given parameter vector θ (see Table 2 for
parameters in θ), and fit the model to Michigan COVID-19 cumulative case and death data from 20
February 2021 to 17 October 2021. Specifically, we let x̂(ti, θ) be the model solution for the rate
of change of the cumulative cases given parameter vector θ at time point ti = 1, . . . ,T (in days).
We denote the model solution corresponding to the cumulative deaths as ŷ(ti, θ). We let x = [xi] be
the corresponding vector of the rate of change of the cumulative COVID-19 cases and y = [yi] be
the cumulative deaths. The built-in MATLAB functions fminsearch and multistart were used to
minimize the following normalized objective function that accounts for daily new cases and cumulative
deaths [37]:

E(x, y, x̂(t, θ), ŷ(t, θ)) =

T∑
i=1

(xi − x̂(ti, θ))2

µ
+

(yi − ŷ(ti, θ))2

ν
,

where T is the total number of data points,

µ =

T∑
i=1

x2
i and ν =

T∑
i=1

y2
i .

For further reading on estimating parameters in delay differential equations see [38].

3. Main results

In this section, we outline the main results obtained from fitting the vaccination with temporary
immunity model (2.2) to vaccination and COVID-19 cases data using the techniques outlined in Section
2.5.

3.1. Model fitting

We fit the Richards’ curve to the cumulative number of daily vaccinations that resulted in an in-
dividual becoming fully vaccinated in the state of Michigan. This gave us an estimation for dV

dt . We
use 20 February 2021 and 17 October 2021 as the starting and ending date, respectively. The best fit
curve is shown in Figure 2 where the curve V(t) is represented as a proportion of the entire Michigan
population. Parameter estimates are: M = 5, 115, 000, a = 0.7279, r = 0.0323 and tv = 52.82.

Solution trajectories of model (2.10) corresponding to the fitted model parameters using the proce-
dure discussed in Section 2.5 are shown in Figure 3. Fitted parameters are summarized in Table 2. We
find that the mean duration of immunity for vaccination and natural immunity are 350 days and 242
days, respectively.

Model trajectories capture the overall trend of the new observed cases and cumulative cases COVID-
19 in Michigan over the simulated time period. However, we note that the model fitting for deceased
data is an overestimate near the end of the simulation. We believe this phenomenon can be accounted
for by improvements in medical practices and resource availability, which have lowered the disease
mortality rate. This is not accounted for in our model.

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10122–10142.
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Figure 2. Proportion of the population that is fully vaccinated in Michigan (circles) and
the fitted Richards’ curve (2.5) (line). Parameter estimates: M = 5, 115, 000, a = 0.7279,
r = 0.0323 and tv = 52.82. Proportions were calculated based on the total population size of
Michigan N = 9, 987, 000. Dates range from 20 February 2021 to 17 October 2021.

3.2. Local sensitivity analysis

Sensitivity analysis is a method for determining which output variables are most sensitive to small
parameter perturbations. By observing that small changes to a parameter induce small changes to
model dynamics and therefore the output variables, one can feel confident about overall conclusions
even if the parameter is unknown in the literature. In contrast, a parameter that when perturbed slightly
produces a large change in the model dynamic shows that that parameter is very influential in the model
and should be carefully estimated. In addition, sensitivity analysis allows quantitative insights into how
model predictions change as parameters are changed. This can be useful in understanding how slight
changes in real-world processes can influence the dynamics of COVID-19.

We use the following derivative-based method to calculate local sensitivity functions of model out-
puts. Let y(t, θ) be the output variable at time t with vector of parameters θ = (θ1, θ2, ..., θk) from a
model with k parameters. Then the normalized sensitivity function of y with respect to parameter θi is
given by [39] as:

si(t) =
θi

y(t; θ)
∂y(t; θ)
∂θi

. (3.1)

Notice that the sensitivity function with respect to θi is a function of t. Since these are normalized
sensitivity functions, we interpret the results of si(t) in terms of percent increase or decrease. That is,
a 1% increase in θi would result in a si(t)% change in the model output variable y(t, θ) at time t. In
addition to understanding how parameters influence model dynamics, sensitivities also tell us which
parameters have similar effects on model dynamics. We point readers to [40] for sensitivity analysis of
dynamical systems with time-lags.
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Figure 3. Results of fitting the vaccination with temporary immunity model (2.10) to vac-
cination uptake and COVID-19 case and deaths data from the state of Michigan. Top Left:
Model fitting (blue line) to new observed cases of COVID-19 in Michigan (black circles).
Top Right: Model trajectory of the cumulative cases (blue line) and observed cumulative
case data (black circles). Bottom Left: Model fitting (blue line) to deceased individual data
(black circles). Bottom Right: Model trajectory of new hospitalizations (blue line). The
approximately linear increase of new observed cases is caused by the gamma-distributed
reintroduction of susceptible individuals from the recovered and vaccinated compartments.
Dates range from 20 February 2021 to 17 October 2021.

We approximated the derivative in (3.1) with a finite difference approximation:

si(t) =
θi

y(t; θ)
∂y(t; θ)
∂θi

≈
θi

y(t; θ)

(
y(t; θi + ∆θi) − y(t; θi)

∆θi

)
. (3.2)

Our analysis shows the model is quite sensitive to vaccination-related parameters (Figure 4) and
with intuitive outcomes. In particular, a 1% increase in the maximum vaccination total (M), resulted in
a 5% decrease in cumulative cases near the end of November. In general, small increases in M, result
in decreases in cumulative cases. Additionally, an increase in vaccination uptake (r) caused a decrease
in the number of cumulative cases. We found that a 1% increase in M resulted in a decrease in the
effective reproduction number between March and September 2021. After September, the sensitivity
index for Rt increased to a maximum of around 2% at the end of November. In a similar fashion,
small increases to vaccination uptake (r) resulted in a maximum of 0.4% decrease between March and
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Table 2. Best fitting parameters for the vaccination with temporary immunity model (2.10)
fit to vaccination uptake and COVID-19 case and deaths data from the state of Michigan.

Initial conditions
Variable Value Source
S (0) 9, 408, 038 assumed

I(0) 2670 assumed
H(0) 300 assumed
R(0) 500 assumed
D(0) 16, 332 assumed
V(0) 5.5916 × 105 fitted
X j(0) see (2.12) fitted
Y j(0) see (2.12) fitted

Parameters
Parameter Value Source
N 9, 987, 000 [41]
β0 0.396441 fitted
β1 0.7174886 fitted
h 0.133054 fitted
γ 0.162684 fitted
δ 0.003647 fitted
ax 0.082529 fitted
ay 0.057143 fitted
p 20 assumed
t f it 116.4170 fitted

September. After September, the sensitivity index for Rt increased to a maximum of 0.7% near the start
of November. See Figure 4 for more details.

In general, hospitalization rate and recovery rate decrease cumulative cases. However, h and γ

impact the effective reproduction number in a non-trivial way. For example, increases to recovery rate
ultimately introduces more susceptible individuals and can increase the effective reproduction number.
See Figure 4 for more details.

Lastly, we investigated the cumulative cases and effective reproduction number with respect to the
gamma distribution rate parameters ax and ay. Our findings suggest that cumulative cases are more
sensitive with respect to ay than ax. This is most likely due to the larger number of fully vaccinated
individuals when compared to the total number of infected individuals that recovered. We find that,
small increases to either ax or ay produce increases in cumulative cases. Intuitively, these findings
suggest that a decrease in temporary immunity duration (either natural or vaccination induced) have
an overall increasing effect on cumulative cases and disease transmission. We note that the effective
reproduction number is influenced in a non-trivial way by ax and ay, but becomes more sensitive later
in the simulation when recovered or vaccinated individuals re-enter the susceptible class. See Figure 4
for more details.

3.3. Perturbations to the mean duration of immunity

Motivated by the sensitivity analysis results, in this section we investigate the model predictions
based on changes to the immune duration period that is given by either infection or vaccination. In
this spirit, we perturb the rate parameters ax and ay by 25% of their fitted values from Table 2. These
perturbations result in a mean natural immunity period range of 194 and 323 days. These changes
to the mean result in an increase of 223,000 cumulative cases by 25 December 2021 or a decrease
in 249,000 cumulative cases, respectively. Similarly, we obtain a mean vaccination immunity period
of 280 and 467 days. These changes to the mean result in an increase of 1,666,800 cumulative cases
or a decrease in 600,000 cumulative cases, by 25 December 2021, respectively. New observed cases
from the model prediction suggest that the model is highly sensitive to changes in ay and therefore the
vaccination immunity period. In contrast, perturbations to the ax and therefore the immunity period
given by natural immunity is not as sensitive. Plots of the model trajectories are displayed in Figure 5.
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Figure 4. Sensitivity analysis using Eq (3.1) on the cumulative cases of COVID-19 in Michi-
gan (left column) and Rt (the effective reproduction number, right column) with respect to
vaccination parameters (M, a, r and tv), hospitalization and recovery rates (h and γ) and rate
parameters (ax and ay). We notice that the effective reproduction number changes in a non-
trivial matter with respect to hospitalization and recovery rates. Furthermore, we expect the
maximum number of vaccinated individuals to have a substantial effect on cumulative cases.
This is supported by seeing that M has the greatest effect on cumulative cases.

3.4. Predictions based on different vaccine strategies

We use the model to simulate different scenarios of vaccination coverage and forecast solutions into
the future. Specifically, we introduce a 5 and 10% increase or decrease to the maximum vaccination
total, M, after t = 0. That is, these simulations use initial conditions based on an unperturbed maximum
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Figure 5. Forecasts for the spread of COVID-19 in Michigan under different durations for
vaccine- and infection-induced immunity. Top Row: New observed cases (left) and cumu-
lative cases (right) of COVID-19 in Michigan based on different means of diseased induced
immunity duration. Middle Row: New observed cases (left) and cumulative cases (right)
of COVID-19 in Michigan based on different means of vaccine induced immunity (natural
immunity) duration. Means were calculated based on a 25% increase or decreased of the
baseline parameter ax and ay, see Table 2 for values. Observe that model trajectories are
highly sensitive to the immune period given by vaccination. Bottom Row: New observed
cases (left) and cumulative cases (right) of COVID-19 in Michigan under different immunity
scenarios: 1) no waning immunity 2) waning vaccine-induced immunity 3) waning natural
immunity and 4) waning in both vaccine-induced and natural immunity.
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Figure 6. Forecasts for the cumulative cases of COVID-19 in Michigan (left) and COVID-
19 related deaths (right) in Michigan based on different maximum vaccination totals, M.
Changes to M are based on a 5 and 10% increase or decreased of the baseline parameter, see
Table 2.

vaccination total, M. Model predictions are presented in Figure 6. We see that with a population that is
10% less vaccinated would have resulted with an additional 300,000 cases of COVID-19 by December
25, 2021. In addition, due to the temporary immunity to the disease we see an earlier increase in
cumulative cases roughly starting around the beginning of August. In contrast, the model predicts that
a 10% increase in vaccination would have resulted in a 1,361,000 reduction in COVID-19 cases by 25
December 2021. We have also included the model predictions for 5% increase and decreases to M in
Figure 6. These changes resulted in a 128,000 increase and 502,500 decrease in cumulative cases by
25 December 2021.

3.5. Disease burden explorations based on vaccination strategies

We use the calibrated model to make future predictions of disease burden based on different vac-
cination strategies. We run the model through 1 January 2024 and simulate four scenarios: 1) three
vaccination programs that are 280 days apart and with 90% of the original number of vaccinated
individuals participating; 2) three vaccination programs that are 280 days apart and with 90% of the
previous vaccinated cohort participating; 3) three vaccination programs that are 365 days apart and with
60% of the original number of vaccinated individuals participating; 4) three vaccination programs that
are 365 days apart and with 60% of the previous vaccinated cohort participating. We decided to in-
clude scenarios 2 and 4 to forecast the disease spread based on waning interest in receiving the vaccine.
That is, we model the possibility that social sentiment of the severity of COVID-19 and the need for
vaccination shots may change over time. Specifically, we define the number of new vaccinations per
day as

dV
dt

=

3∑
j=0

Mirie−ri(t−tvi )(
1 + ae−ri(t−tvi )

) 1+a
a

where i = 0, 1, 2, 3, correspond to the ith vaccination program and i = 0 is the original vaccination
program. We define M0 = M and r0 = r (see (2.6)). In summary, we model each succeeding vacci-
nation program using the Richards’ curve from (2.6). We specify parameters used in each vaccination
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Figure 7. Model predictions for COVID-19 spread in Michigan through 1 January 2024
based on different vaccination strategies. Scenario 1 (top left): 90% of the original vac-
cinated population receives the vaccine 280 days apart. Scenario 2 (bottom left): 90% of
the previous vaccinated cohort receives the vaccine 280 days apart. Scenario 3 (top right):
60% of the original vaccinated population receives the vaccine annually. Scenario 4 (bottom
right): 60% of the previous vaccinated cohort receives the vaccine annually.

program in Table 3.
Results from the four vaccination scenarios create multiple waves of infection due to loss of im-

munity and resurgence in the disease (see Figure 7). However, scenarios 1 and 2 provide time periods
where the infection is nearly cleared, which realistically could result in stochastic extinction of the
disease. In contrast, scenarios 3 and 4 produce endemic situations where the vaccination programs
cannot eliminate the disease. Scenarios 2 and 4 (waning interest in vaccination participation) produce
two different outcomes based on the percent of individuals previously vaccinated. This suggests that
having a high participation rate in the vaccination program is essential to creating scenarios where the
disease can be stochastically eliminated.

4. Discussion

This simulation study used an epidemic compartmental model that included susceptible, infectious,
hospitalized, removed and deceased individuals to understand COVID-19 dynamics in Michigan. Our
model accounted for temporary immunity of COVID-19 from both vaccination and previous infection
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Table 3. Parameter values for model predictions for COVID-19 spread in Michigan through
1 January 2024 based on different vaccination strategies. For simulations, see Figure 7.

Scenario Duration between vaccine shots Parameters
1 280 days Mi = .9M and ri = .9r
2 280 days Mi = .9Mi−1 and ri = .9ri−1 for i = 1, 2, 3
3 365 days Mi = .6M and ri = .6r
4 365 days Mi = .6Mi−1 and ri = .6ri−1 for i = 1, 2, 3

by using a distributed DDE framework. Assuming that both the distributed delays follow a gamma
distribution, we used the linear chain trick to convert the distributed DDE system into a multi-stage or-
dinary system of differential equations [29,31,42]. We then calibrated the model to Michigan COVID-
19 cases, death, and vaccination data from 20 February 2021 to 17 October 2021 to understand and
quantify how temporary immunity influences disease dynamics.

Our choice to use a gamma distribution to model the immune duration is based on mathemati-
cal simplicity and the fact that it allows the distributed delay differential equation system (2.2) to be
converted into a multi-stage system of ordinary differential equations through the linear chain trick.
However, recent work has generalized the linear chain trick for other distributions [29, 43, 44].

Our main modeling assumption in this paper is based on studies which suggest that individuals that
have received immunity, either from an infection or a vaccine, will lose that immunity over a period of
time. However, the cause of this loss of immunity is not specified in our model. In fact, there are many
possible reasons why immunity might be lost. One possible reason is the evolution of the virus to a
different variant which may reduce the effectiveness of vaccines or natural immunity from a previous
strain. For example, the rise of COVID-19 variants such as B.1.1.7 (alpha), B.1.617.2 (delta), and
B.1.1.529 (omicron) [45]. Another possible reason is the natural decline of COVID-19 antibodies in a
vaccinated individual over time [46]. In absence of temporary immunity (so that recovered individuals
do not return to S ), we find that the model vastly underestimates the number of daily COVID-19 cases
(bottom row, Figure 5), suggesting that temporary immunity is a significant mechanism for understand-
ing the spread of COVID-19 in the future.

Between 1 July 2021 to 1 November 2021 we notice a more linear increase in the number of new
observed cases in Michigan (see Figures 3 and 5). Our modeling exercise suggests that immunity dura-
tion and the distribution it follows can lead to linear growth in observed cases through the mechanism
of gradually reintroducing removed individuals to the susceptible class. We add that, linear and poly-
nomial growth of daily cases for infectious diseases have been observed in multiple case studies with
different transmission mechanisms during the initial ascending phase [47, 48].

Multiple reasons may explain the increase in the transmission rate from 0.39 to 0.71 days−1 at the
estimated value t f it ≈ 116 days, which corresponds to July 16, 2021, in the simulation. We find that
the timing in the increase of the transmission rate happens around the emergence and rise of B.1.617.2
(delta) in Michigan and may be one explanation for this change in transmission [49]. Another reason
may be the lifting of face mask requirements and capacity restrictions a month before on June 22 in
Michigan [50]. Moreover, by including waning immunity, we obtain a better model fit to the data
with fewer changes to the transmission rate than what was found in a study of COVID-19 spread in
Virginia [14].
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The mathematical model that we used in this study is subject to limitations. Most importantly, our
modeling effort relies heavily on the distribution of the temporary immune period, which we assumed
for simplicity follows a gamma distribution. Our model is strictly designed to consider temporary
immunity from natural and vaccine-induced immunity, it does not incorporate demographic processes
such as birth and natural death processes. In addition, the model does not include mitigating effects
that occur from policy changes such as lock-downs or travel restrictions. However, the increase in
the piece-wise transmission rate, β(t), could be interpreted as an increase in transmission rate due to
school openings or decreased social distancing practices (see Table 2). In addition, at the time of
this modeling, B.1.617.2 (delta), became the dominant strain in Michigan and our model does not
incorporate multiple strains of COVID-19. We believe the above are fruitful directions to consider for
future research.
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