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1. Introduction

Let G be graph having vertex set V = V(G) and edge set E = E(G), then the adjacency matrix
associated to the graph G, is

[A(G)] =
{

1 if vi is adjacent to v j,

0 otherwise.

Sum of absolute values of the eigenvalues associated to A(G) is known as energy of the graph G denoted
by E(G) and the Largest eigenvalue of A(G) is called Spectral radius of the graph G and it is denoted
by ℘(G). For details and references relating to Spectral radii, follow [2–4]. The motivation of E(G)
was initiated by Gutman in 1978 [1] but the idea could not get attention until 2000. Since 2003, rapid
development in technology and computer awoke significant interests in these areas. The problem of
determining extreme values of spectral radius has been extensively investigated, [5]. Partial solutions to
these problems can be traced in [6–11]. Fiedler and Nikiforov [6] gave tight sufficient conditions for the
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existence of Hamilton paths and cycles in terms of the spectral radius of graphs or the complement of
graphs. Lu et al. [7] studied sufficient conditions for Hamilton paths in connected graphs and Hamilton
cycles in bipartite graphs in terms of the spectral radius of a graph. Some other spectral conditions for
Hamilton paths and cycles in graphs have been given in [12–16].

Horn et al. [17] and Gatmacher [18] used matrix analysis to relate it with graph energies. Balkr-
ishnan, in [19], computed the sharp bounds for energy of a k-regular graph and proved that for n ≥ 3,
there always exists two equi-energetic graphs having order 4n which are not co-spectral. Bapat et al.
proved that E(G) can not be an odd integer, [20] whereas Pirzada et al. [21] proved that it can not be
square root of an odd integer. Jones [22] discussed E(G) of simple graphs relating it with closuring
and algebraic connectivity. Different kinds of matrices energies associated to a graph are presented by
Meenakshi et al. [23]. Nikiforov [24] obtained various results related to bounds of energies. Samir
et al. [25] constructed 1-splitting and 1-shadow graph of any simple connected graph and proved that
adjacency energies of these newly constructed graphs is constant multiple of the energies of the orig-
inal graph. Samir et al. [26] then generalized the idea of 1-splitting and 2-shadow graph to arbitrary
s-splitting and s-shadow graph where s > 0 and obtained similar kind of general results for adjacency
energies. Liu et al. [27] discussed distance and adjacency energies of multi-level wheel networks. Chu
et al. [28] computed Laplacian and signless Laplacian spectra and energies of multi-step wheels.

In 2015, Liu et al. [29] discussed asymptotic Laplacian energy like invariants of lattices. In 2016,
Hosamani et al. [30] presented degree sum energy of a graph and obtained some lower bounds for this
energy. In 2018, Basavanagoud et al. [31] computed the characteristic polynomial of the degree square
sum matrix of graphs obtained by some graph operations as well as some bounds for spectral radius
for square sum eigenvalue and degree square sum energy of graphs. In 2018, Rad et al. [32] presented
Zagreb energy and related Estrada index of various graphs. In 2019, Gutman et al. [33] discussed graph
energy and its applications, featuring about hundred kinds of graph energies and applications in diverse
areas. For further details and basic ideas of graph energies, we refer [20, 21, 34–36]. Interconnection
and various applications of graph energy in chemistry of unsaturated hydrocarbons can be traced in
[37–39]. Applications of different graph energies in crystallography can be found in [40,41], theory of
macro molecules in [42, 43], protein sequences in [44–46], biology in [47], applied network analysis
in [47–52], problems of air transportation in [48], satellite communications in [50] and constructions
of spacecrafts in [52].

In the present article we produce new results about maximum degree spectral radii and minimum
degree spectral radii of m-splitting and m-shadow graphs. In fact we relate these spectral radii of new
graph operations with spectral radii of original graphs. The article is organized as follows. Section
2 gives basic definitions and terminologies to lay foundations of our results. In Section 3, we derive
maximum degree spectral radii and minimum degree spectral radii of generalized splitting graph con-
structed on any basic graph. In Section 4 we proceed to find similar results but for generalized shadow
graph of the given regular graph.

2. Preliminaries

In this part we outline main ideas and preliminary facts, for details see [53, 54]. The matrix M(G)
is the maximum degree matrix of the graph G defined in [53] as
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M(G) =
{

max(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
Here di and d j are the degrees of vertices vi and v j respectively. Eigenvalues of maximum degree

matrix of the graph G are denoted as η1, η2, · · · ηn. Maximum degree spectral radius is defined as

℘M(G) =
n

max
i=1

∣∣∣ηi

∣∣∣ ,
where η1, η2, ..., ηn are the eigenvalues of maximum degree matrix. The matrix MI(G) is called the
minimum degree matrix of the graph G is defined in [54] as

MI(G) =
{

min(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
Minimum degree spectral radius is defined as

℘MI(G) =
n

max
i=1

∣∣∣ηi

∣∣∣ ,
where η1, η2, ..., ηn are the eigenvalues of minimum degree matrix. If we add a new vertex v′ to each
vertex v of the graph G, v′ is connected to every vertex that is adjacent to v in G then we obtain the
splitting graph (spl1(G)). Take two copies G′ and G′′ of the graph G , then (sh2(G)) is constructed if
we join each vertex in G′ to the neighbors of the corresponding vertices in G′′. Let UϵRm×n , VϵRp×q

the tensor product (Kronecker product), U
⊗

V is defined as the matrix.

U
⊗

V =


a11V . . .a1nV
. . . .

. . . .

. . . .

an1V . . .annV


Proposition 1.1. Let UϵMm, VϵMn and α be an eigenvalue of U and η be an eigenvalue of V , then αη
is an eigenvalue of U

⊗
V [25]. Now we move towards the main results.

3. Spectral radii of generalized splitting graph

In this part we relate maximum degree spectral radius and minimum degree spectral radius of gen-
eralized splitting graph with original graph G. Here again we emphasis that G is any regular graph.

Theorem 1. Let G be any n-regular graph and ℘M(S plm(G)) is the maximum degree spectral radius
of m-splitting graph G, then

℘M(S plm(G)) = ℘M(G)(
(m + 1)(1 +

√
1 + 4m)

2
).
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Proof. Maximum degree matrix is given by M(G) where

M(G) =
{

max(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
M(S plm(G)) can be written in block matrix form as

M(S plm(G)) =
{

(m + 1)M i f i = 1, j ≥ 1 and j = 1, i ≥ 1,
0 elsewhere.

}

= M
⊗{

(m + 1) i f i = 1, j ≥ 1 and j = 1, i ≥ 1,
0 elsewhere.

}
Let

A =
{

(m + 1) i f i = 1, j ≥ 1 and j = 1, i ≥ 1,
0 elsewhere.

}
m+1

Now we compute the eigenvalues of A Since matrix A is of rank two, so A has two non-zero eigenval-
ues, say α1 and α2. Obviously,

α1 + α2 = tr(A) = m + 1. (3.1)

Considering

A2 =

{
(m + 1)3 i f i = 1 and j = 1,
(m + 1)2 elsewhere.

}
m+1

Then
α2

1 + α
2
2 = tr(A2) = (m + 1)3 + m((m + 1)2). (3.2)

Solving Eqs (3.1) and (3.2), we have

α1 =
(m + 1)(1 +

√
1 + 4m)

2
.

and

α2 =
(m + 1)(1 −

√
1 + 4m)

2
.

So we have,

specA =
 0 (m+1)(1+

√
1+4m)

2
(m+1)(1−

√
1+4m)

2
m − 1 1 1

 (3.3)

Using Eq (3.3) we have

specA =
 0 (m+1)(1+

√
1+4m)

2
(m+1)(1−

√
1+4m)

2
m − 1 1 1

 .
Mathematical Biosciences and Engineering Volume 19, Issue 10, 10108–10121.
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Since M(S plm(G)) = M(G)
⊗

A then by Proposition 1.1, we have

℘M(S plm(G)) = Maxn
i=1 |(specA)) ηi|

℘M(S plm(G)) = Maxn
i=1|ηi|[

(m + 1)(1 +
√

1 + 4m)
2

]

℘M(S plm(G)) = ℘M(G)(
(m + 1)(1 +

√
1 + 4m)

2
).

□

In the following corollaries, we obtain the maximum degree spectral radii of splitting graphs of Cn,
Kn, Cn,n and crown graph.

Corollary 2. If n ≥ 3 and G is a Cn graph, where Cn is cycle graph on n vertices, then

℘M(S plm(Cn)) = 4(
(m + 1)(1 +

√
1 + 4m)

2
).

Proof. If G is a cycle graph Cn(n ≥ 3), then ℘M(Cn) = 4. Since cycle graph is 2-regular graph so using
Theorem 1 we get the required result. □

Corollary 3. If G is a Kn graph, where Kn is complete graph on n vertices, then

℘M(S plm(Kn)) = (n − 1)2(
(m + 1)(1 +

√
1 + 4m)

2
).

Proof. If G is a complete graph on n vertices, then ℘M(Kn) = (n − 1)2. Since complete graph is
n − 1-regular graph so using Theorem 1 we get the required result. □

Corollary 4. If G is a complete bipartite graph Kn,n, then

℘M(S plm(Kn,n)) = (n)2(
(m + 1)(1 +

√
1 + 4m)

2
).

Proof. If G is a complete bipartite graph Kn,n, then ℘M(Kn,n) = (n)2. Using Theorem 1 we get the
required result. □

Corollary 5. If G is a crown graph on 2n vertices, then

℘M(S plm(G)) = (n − 1)2(
(m + 1)(1 +

√
1 + 4m)

2
).

Proof. If G is a crown graph on 2n vertices, then ℘M(G) = (n − 1)2. Using Theorem 1 we get the
required result. □

Theorem 6. Let G be any n-regular graph and ℘MI((S plm(G)) is the minimum degree spectral radius
of m-splitting graph G, then

℘MI(S plm(G)) = ℘MI(G)(
m + 1 +

√
m2 + 6m + 1
2

).
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Proof. Minimum degree matrix is given by

MI(G) =
{

min(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
MI(S plm(G)) can be written in block matrix form as follows:

MI(S plm(G)) =


(m + 1)MI i f i = 1 and j = 1

MI i f i = 1, j ≥ 2 and j = 1, i ≥ 2,
0 elsewhere.


= MI

⊗
(m + 1) i f i = 1 and j = 1

1 i f i = 1, j ≥ 2 and j = 1, i ≥ 2,
0 elsewhere.


Let

A =


(m + 1) i f i = 1 and j = 1

1 i f i = 1, j ≥ 2 and j = 1, i ≥ 2,
0 elsewhere.


m+1

Now we compute the eigenvalues of A Since matrix A is of rank two, so A has two non-zero eigenval-
ues, say α1 and α2. Obviously,

α1 + α2 = tr(A) = m + 1. (3.4)

Considering

A2 =


(m + 1)2 + m i f i = 1 and j = 1,

m + 1 i f i = 1, j ≥ 2 and j = 1, i ≥ 2,
1 elsewhere.


m+1

Then
α2

1 + α
2
2 = tr(A2) = (m + 1)2 + 2m. (3.5)

Solving Eqs (3.4) and (3.5) we have

α1 =
m + 1 +

√
m2 + 6m + 1
2

.

α2 =
m + 1 −

√
m2 + 6m + 1
2

.

So we have,

specA =
 0 m+1+

√
m2+6m+1
2

m+1−
√

m2+6m+1
2 .

m − 1 1 1

 (3.6)
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Using Eq (3.6) we have

specA =
 0 m+1+

√
m2+6m+1
2

m+1−
√

m2+6m+1
2 .

m − 1 1 1

 .
Since MI(S plm(G)) = MI(G)

⊗
A then by Proposition 1.1, we have

℘MI(S plm(G)) = Maxn
i=1 |(specA)) ηi|

℘MI(S plm(G)) = Maxn
i=1|ηi|[

m + 1 +
√

m2 + 6m + 1
2

]

℘MI(S plm(G)) = ℘MI(G)(
m + 1 +

√
m2 + 6m + 1
2

).

□

In the following corollaries, we obtain the minimum degree spectral radii of splitting graphs of Cn,
Kn, Cn,n and crown graph.

Corollary 7. If n ≥ 3 and G is a Cn graph, where Cn is cycle graph on n vertices, then

℘MI(S plm(Cn)) = 4(
m + 1 +

√
m2 + 6m + 1
2

).

Proof. If G is a cycle graph Cn(n ≥ 3), then ℘MI(Cn) = 4. Since cycle graph is 2-regular graph so
using Theorem 6 we get the required result.

□

Corollary 8. If G is a Kn graph, where Kn is complete graph on n vertices, then

℘MI(S plm(Kn)) = (n − 1)2(
m + 1 +

√
m2 + 6m + 1
2

).

Proof. If G is a complete graph on n vertices, then ℘MI(Kn) = (n − 1)2. Since complete graph is
n − 1-regular graph so using Theorem 6 we get the required result. □

Corollary 9. If G is a complete bipartite graph Kn,n, then

℘MI(S plm(Kn,n)) = (n)2(
m + 1 +

√
m2 + 6m + 1
2

).

Proof. If G is a complete bipartite graph Kn,n, then ℘MI(Kn,n) = (n)2. Using Theorem 6 we get the
required result. □

Corollary 10. If G is a crown graph on 2n vertices, then

℘MI(S plm(G)) = (n − 1)2(
m + 1 +

√
m2 + 6m + 1
2

).

Proof. If G is a crown graph on 2n vertices, then ℘MI(G) = (n − 1)2. Using Theorem 6 we get the
required result. □

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10108–10121.
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4. Energies and spectral radii of generalized shadow graph

In this part we relate maximum degree spectral radius and minimum degree spectral radius of gen-
eralized Shadow graph with original graph G. Here again we emphasis that G is any regular graph.

Theorem 11. Let G be any n-regular graph and ℘M(S hm(G)) is the maximum degree spectral radius
of m-shadow graph G, then

℘M(S hm(G)) = ℘M(G)((m)2).

Proof. Maximum degree matrix is given by

M(G) =
{

max(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
Then M(S hm(G)) can be written in block matrix form as follows:

M(S hm(G)) =
{

(m)M ∀ i and j.
}

= M
⊗{

m ∀ i and j.
}

Let
A =

{
m ∀ i and j.

}
m

Now we compute the eigenvalues of A Since matrix A is of rank one, so A has one non-zero eigenvalue,
say α1 = (m)2.

So we have,

specA =
(

0 (m)2

m − 1 1

)
(4.1)

Using Eq (4.1) we have

specA =
(

0 (m)2

m − 1 1

)
.

Since M(S hm(G)) = M(G)
⊗

A then by Proposition 1.1, we have

℘M(S hm(G)) = Maxn
i=1 |(specA)) ηi|

℘M(S hm(G)) = Maxn
i=1|ηi|[(m)2]

℘M(S hm(G)) = ℘M(G)((m)2).

□

In the following corollaries, we obtain the maximum degree spectral radii of shadow graphs of Cn,
Kn, Cn,n and crown graph.
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Corollary 12. If n ≥ 3 and G is a Cn graph, where Cn is cycle graph on n vertices, then

℘M(S hm(Cn)) = 4((m)2).

Proof. If G is a cycle graph Cn(n ≥ 3), then ℘M(Cn) = 4. Since cycle graph is 2-regular graph so using
Theorem 11 we get the required result. □

Corollary 13. If G is a Kn graph, where Kn is complete graph on n vertices, then

℘M(S hm(Kn)) = (n − 1)2((m)2).

Proof. If G is a complete graph on n vertices, then ℘M(Kn) = (n − 1)2. Since complete graph is
n − 1-regular graph so using Theorem 11, we get the required result. □

Corollary 14. If G is a complete bipartite graph Kn,n, then

℘M(S hm(Kn,n)) = (n)2((m)2).

Proof. If G is a complete bipartite graph Kn,n, then ℘M(Kn,n) = (n)2. Using Theorem 11, we get the
required result. □

Corollary 15. If G is a crown graph on 2n vertices, then

℘M(S hm(G)) = (n − 1)2((m)2).

Proof. If G is a crown graph on 2n vertices, then ℘M(G) = (n − 1)2. Using Theorem 11, we get the
required result. □

Theorem 16. Let G be any n-regular graph and ℘MI(S hm(G)) is the minimum degree spectral radius
of m-shadow graph G, then

℘MI(S hm(G)) = (m)2℘MI(G).

Proof. Minimum degree matrix is given by

MI =
{

min(di, d j), i f vi and v j are ad jacent,
0, elsewhere.

}
Then MI(S hm(G)) can be written in block matrix form as follows:

MI(S hm(G)) =
{

(m)MI ∀ i and j.
}

= MI
⊗{

m ∀ i and j.
}

Let
A =

{
m ∀ i and j.

}
m

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10108–10121.
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Now we compute the eigenvalues of A Since matrix A is of rank one, so A has one non-zero eigenvalue,
say α1 = (m)2.

So we have,

specA =
(

0 (m)2

m − 1 1

)
(4.2)

Using Eq (4.2) we have

specA =
(

0 (m)2

m − 1 1

)
.

Since MI(S hm(G)) = MI(G)
⊗

A then by Proposition 1.1, we have

℘MI(S hm(G)) = Maxn
i=1 |(specA)) ηi|

℘MI(S hm(G)) = Maxn
i=1|ηi|[(m)2]

℘MI(S hm(G)) = ℘MI(G)((m)2).

□

In the following corollaries, we obtain the minimum degree spectral radii of shadow graphs of Cn,
Kn, Cn,n and crown graph.

Corollary 17. If n ≥ 3 and G is a Cn graph, where Cn is cycle graph on n vertices, then

℘MI(S hm(Cn)) = 4((m)2).

Proof. If G is a cycle graph Cn(n ≥ 3), then ℘MI(Cn) = 4. Since cycle graph is 2-regular graph so
using Theorem 16 we get the required result. □

Corollary 18. If G is a Kn graph, where Kn is complete graph on n vertices, then

℘MI(S hm(Kn)) = (n − 1)2((m)2).

Proof. If G is a complete graph on n vertices, then ℘MI(Kn) = (n − 1)2. Since complete graph is
n − 1-regular graph so using Theorem 16 we get the required result.

□

Corollary 19. If G is a complete bipartite graph Kn,n, then

℘MI(S hm(Kn,n)) = (n)2((m)2).

Proof. If G is a complete bipartite graph Kn,n, then ℘MI(Kn,n) = (n)2. Using Theorem 16, we get the
required result. □

Corollary 20. If G is a crown graph on 2n vertices, then

℘MI(S hm(G)) = (n − 1)2((m)2).

Proof. If G is a crown graph on 2n vertices, then ℘MI(G) = (n − 1)2. Using Theorem 16 we get the
required result. □
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5. Conclusions

The spectral radius of graph has vast range of applications in computer related areas. It also connects
graph theory and chemistry. In this article we have related the spectral radii of the generalized shadow
and splitting graph of any regular graph with spectral radius of the given graph. In particular we have
proved that the Spectral Radius of the new graph is a multiple of spectral radius of the given regular
graph.
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