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Abstract: Glucose management for people with type 2 diabetes mellitus is essential but challenging 

due to the multi-factored and chronic disease nature of diabetes. To control glucose levels in a safe 

range and lessen abnormal glucose variability efficiently and economically, an intelligent prediction 

of glucose is demanding. A glucose trajectory prediction system based on subcutaneous interstitial 

continuous glucose monitoring data and deep learning models for ensuing glucose trajectory was 

constructed, followed by the application of personalised prediction models on one participant with 

type 2 diabetes in a community. The predictive accuracy was then assessed by RMSE (root mean 

square error) using blood glucose data. Changes in glycaemic parameters of the participant before 

and after model intervention were also compared to examine the efficacy of this intelligence-aided 

health care. Individual Recurrent Neural Network model was developed on glucose data, with an 

average daily RMSE of 1.59 mmol/L in the application segment. In terms of the glucose variation, 

the mean glucose decreased by 0.66 mmol/L, and HBGI dropped from 12.99 × 102 to 9.17 × 102. 

However, the participant also had increased stress, especially in eating and social support. Our 
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research presented a personalised care system for people with diabetes based on deep learning. The 

intelligence-aided health management system is promising to enhance the outcome of diabetic 

patients, but further research is also necessary to decrease stress in the intelligence-aided health 

management and investigate the stress impacts on diabetic patients. 

Keywords: diabetes; deep learning; home blood glucose monitoring; intelligence-aided health 

management 

 

1. Introduction 

Type 2 diabetes mellitus is one of the most prevalent, multifactorial chronic diseases with a high 

rate of disability and mortality, which badly demands lifelong cost-efficient personalised 

management [1,2]. Blood glucose control is essential to postpone disease progression and alleviate 

symptoms [3,4]. 

RT-CGM (Real-time continuous glucose monitor), a portable subcutaneous interstitial glucose 

detector, enables long-term glucose control for its benefits in less puncture and more holistic pictures 

of blood glucose [5]. However, this CGM system limits its leverage due to its gap in glucose 

prediction [6], which can be filled by glucose trajectory prediction, such as deep learning tools. In 

this way, people can take action beforehand to eliminate imminent events, such as hyperglycaemic 

crisis and hypoglycaemic coma [7,8]. 

LSTM-RNN (long short-term memory - recursive neural network), the deep learning model 

fitting long sequence data such as continuous glucose [9], has the potential competence to provide a 

more accurate glucose trajectory prediction [10]. Previously, Sadegh Mirshekarian et al. presented an 

RNN approach with LSTM units to learn a physiological model of blood glucose [11]. And Mario 

Munoz-Organero also proposed, implemented, validated and compared a new hybrid deep learning 

model to mimic the metabolic behaviour of physiological blood glucose methods [12]. These studies 

indicated that deep learning contained the power to predict health-related parameters. Besides, the 

differential equations for carbohydrate and insulin absorption in physiological models were also 

modelled using LSTM cells. Rabby et al. proposed a novel approach to predict blood glucose levels 

with a stacked LSTM based on a deep RNN model considering sensor fault [13]. Based on these 

studies, we believe that LSTM-RNN would improve glucose prediction in diabetic patients with a 

stronger prediction power. 

Although the precise prediction of glucose among patients suffering from type 2 diabetes is 

necessary and many researchers have verified the accuracy of deep learning models [14], only 

limited studies have tested the detailed effects of these potentially burden-free, 

deep-learning-involved care in the community [15]. Besides, only a few studies paid attention to the 

ethnoracial disparity, not to mention the inter-personal variation of glucose management with the 

deep-learning models [16]. Furthermore, scarce studies cared for the mental conditions of patients 

who utilise these deep learning-based health management models. Hence, we would like to explore 

whether this personally developed deep-learning model supported glucose management would 

improve the health of type 2 diabetes, both physically and mentally. 

In this study, we would apply a personalized glucose prediction model to test the merits of the 

deep learning-assisted personalised health management pattern, aimed to support the management 
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strategies for type 2 diabetic patients in the community. Firstly, we represented the development of 

individual deep learning models for blood glucose trajectory prediction. Then we exhibited a 

participant receiving personalised diabetes self-management in a real-world scenario who finally 

showed well-controlled blood glucose data despite increased stress. 

2. Materials and methods 

2.1. Participant 

A 42-year man (the Han Chinese; living at home) with a history of type 2 diabetes for four years 

expressed interest in our management strategy in a review at Tianjin Medical University Metabolic 

Diseases Hospital. His body mass index (BMI) was 26.23 kg/m2. With fasting blood glucose (FBG) 

of 8.2 mmol/L and glycosylated haemoglobin (HbA1c) of 9.2 × 10-2 mmol/mol (8.4%), he was 

treated with Metformin 0.5 g three times a day. There was no history of diabetic retinopathy, 

neuropathy, carcinoma or any other comorbidities except a history of mild depression for four years. 

He was a non-smoker, and he seldom drank alcohol. His diabetes management aimed to control 

fasting glucose from 4.4 mmol/L to 7.0 mmol/L. With a clear consciousness and independent ability 

in daily life, the person agreed to participate and signed the consent for engagement and publication. 

In addition, the medical jargon was explained in the supplement file. 

2.2. The intelligence-aided personalised health management for diabetic patients 

In this paradigm (Figure 1(a)), the person was armed with RT-CGM (FreeStyle® Libre, Abbott 

Diabetes Care Ltd.) and instructed to submit relevant data each day (for adjustment, Sec 0, 

day0–day3). The predicted trajectory by the personalised deep learning model, which was transferred 

from general glucose models, was not returned (for monitoring, Sec 1, day4–day8) until the ninth day, 

following the model application (Sec 2, day9–day13) and regular follow-up. 

2.3. The development of individual LSTM-RNN deep learning prediction model  

The individual LSTM-RNN model was transferred from naïve LSTM-RNN models (Prem) and 

developed from personal RT-CGM data. Naïve LSTM-RNN models were created and evaluated with 16 

cases of CGM data (17,182 sets of glucose data) from the CGM system, whose interval was about 15 

minutes. We chose three top models (Model a-c in Figure 1(a)) from ten replications of naïve models 

in case of the disparate features between cases in the naïve model development and the person 

applied the personalised prediction model. While in the following progressing and prediction 

sections, only the top model was employed to acquire personalised super-parameters, even though 

we tripled each forecast to assess the stability of the models. In these prediction models, the 

independent variables were a sequence of glucose obtained from CGM data, and the dependent 

variables were the glucose trajectory in the ensuing two hours. The core of the prediction models was 

iterated by Adam gradient optimization [17,18] and assessed by RMSE [19]. 

Personalised models were transferred (Tran) and fine-tuned (Tune) from naïve models by 

RT-CGM data in the adjustment section (Sec 0). And the individual LSTM-RNN models were 

progressed (Prog) during the monitoring section (Sec 1). Then the appendix 2-hour prediction was 

applied (Appl) on time for the 3rd section by three individual LSTM-RNN models. 
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Figure 1. Overview of deep learning customised self-management. (a) The architecture 

of individual LSTM-RNN (Long short-term memory recurrent neural network) models [9] 

facilitated self-management. The participant recorded and submitted real-world data such 

as food intake, physical activity, and continuous glucose, followed by glucose prediction 

and feedback by individual models for on-time application. Individual LSTM-RNN 

models were transferred (Tran) from naïve models, the top three models in ten 

replications with the best performance. Then, they were fine-tuned (Tune) and progressed 

(Prog) by personal CGM (continuous glucose monitor) data. The naïve models processed 

entire glucose sequence (length n) in steps, in which networks predicted appendix 2-hour 

glucose through 30-min triplicate recurrences by optimised weights through memory data 

(ct-1) and input data (xt), filtered by gates. Each prediction was made on the top model in 

Prog and Appl sections and tested in triplicate. (b) Model performance during individual 

model progression. RMSE (Root mean standard error) was compared between real-time 

CGM data and predicted glucose data (Model_Prediction, in which Glucose data were 

predicted in 30-min recurrence, green), and simulated application of appendix 2-hour 

glucose data generated through 30-min recurrence (Model_Application, blue). 
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2.4. Efficacy of the intelligence-aided health management paradigm 

Since blood glucose is commonly acknowledged in the short-term management of diabetic 

patients, some glucose-related parameters were chosen, including average glucose, daily 

hyperglycaemic time, daily time of high glucose and high blood glucose index [10,20]. Besides, 

fasting glucose, glycosylated haemoglobin, and BMI were used to contrast the lasting efficacy of this 

interference. Moreover, we also inspected psychological disturbance by the PAID (the Problem Area 

in Diabetes) scale, a reliable psychometric examiner for diabetes-related emotional distress [21]. 

Further description of the parameters used above was in the supplement file. 

2.5. Statistics 

RMSE (Root Mean Square Error) was calculated to evaluate the model accuracy. The student’s 

T test was applied for continuous data with Gaussian distribution (mean ± SEM), and the chi-square 

test was used for those non-Gaussian distribution data. As for the individual application results, data 

were reported directly for scarce cases. 

3. Results 

3.1. Model construction 

The fine-tuned models had an average RMSE of 0.99 mmol/L for glucose prediction. And the 

simulation of on-time application was followed with an average RMSE of 0.98 mmol/L. The 

progressed models had a lower average RMSE (0.75 mmol/L) in on-time simulation. 

3.2. Model application 

Compared with before application (Sec 1), the daily average glucose of this participant was 

decreased with the incorporation of a personalised self-management strategy in daily glucose level 

(Sec 2) (8.68 mmol/L ± 0.24 mmol/L to 8.02 mmol/L ± 0.11 mmol/L, mean ± SEM, P < 0.05), 

especially at night monitoring during 18:00 to 6:00 the next day (8.99 mmol/L ± 0.34 mmol/L to 7.65 

mmol/L ± 0.13 mmol/L, mean ± SEM, P < 0.01). The measurements are exhibited in Figure 2(a,b). 

Mean of daily difference tended to be lower (from 0.15 mmol/L ± 0.66 mmol/L to 0.05 mmol/L ± 0.35 

mmol/L). Time in the target range (3.9 mmol/L to 10.0 mmol/L) increased from 19.40 hours to 21.70 

hours per day, along with less high glucose (Alert, CGM in a range of 10.0 mmol/L to 13.9 mmol/L, 1.70 

hours per day; Clinically significant 0.55 hour per day). The hyperglycaemic risk was alleviated for 

high blood glucose index (HBGI) has dropped from 12.99 × 102 to 9.17 × 102, with a mild decrease 

in glucose variation (standard deviation, from 1.81 mmol/L to 1.59 mmol/L). The measured results 

are shown in Figure 2(c–e). 

Furthermore, the follow-up questionnaire in 3 months displayed a dropped BMI (24.69 kg/m2), 

less energy intake, more physical exercise, and better sleep. Besides, the participant had a lower 

FBG (6.7 mmol/L) and HbA1c 7.9 × 10-2 mol/mol, with a regimen of Trajenta 5.0 mg in the morning 

and Metformin 1.0 g at night. The measurements are shown in Figure 2(f–h) and Table 1. More 

diabetes-associated distress was revealed by PAID scale, with a total increase of 6.25%, especially in 
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the diet facet (sense of dietary deprivation), attributing to more than half of the rise. Others were related 

to social support (less safety) and emotion, like loneliness and depression (Table 2). 

 

Figure 2. Efficacy of deep learning aided self-management. (a–e) Data obtained from 

the real-time CGM (continuous glucose monitoring) system were compared between 

the 2nd section (Sec 1, day4–day8) and the 3rd section (Sec 2, day9–day13). (a,b) 

Average blood glucose. Average blood glucose dropped significantly daily and at night 

(18 o’clock to 6 o’clock the next day). (c) Average hyperglycaemic volume, high 

glucose multiplied by time (hours), representing clinical risk, alert (CGM data > 10.0 

mmol/L, CGM data < 13.9 mmol/L) and clinically significant (CGM data ≥ 13.9 

mmol/L) [10]. (d) High glucose time, the time (hours) of glucose higher than specific 

levels. (e) High blood glucose index, reflecting the risk of hyperglycaemia [22]. (f–h) 

Changes between baseline and 3-month follow-up. (f) Glycated haemoglobin. (g) 

Fasting blood glucose. (h) Body mass index. Asterisk mark (* and **) represents 

significance (Wilcox’s test) P < 0.05 and P < 0.01 separately. 
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Table 1. The participant’s physical status between the baseline and 3-month follow-up. 

Physical status Baseline Follow-up 

BMI (kg/m2) 26.23 24.69 
FBG (mmol/L) 8.2 6.7 
HbA1c (mol/mol) 9.2 × 10-2 7.9 × 10-2 

Table 2. Diabetes-associated stress between the baseline and 3-month follow-up. 

PAID (%) Baseline Follow-up 

Emotional  26.25  27.50  
Therapeutic  12.50  12.50  
Dietary  18.75  22.50  
Social supporting  15.00  16.25  
total  72.50  78.75  

Note: Diabetes-associated distress data assessed by PAID scale (Problem Areas In Diabetes) were compared 

between baseline and follow-up in three months [21]. 

4. Discussion 

Efficient and economical life-long glucose control is vital for people with diabetes in the 

community. This case depicts the construction of personalised deep learning models for on-time 

application. It suggests that deep learning customised glucose prediction may be a potential remedy 

for the CGM system in glucose forecast for life-long health management. And the application of the 

predicted system also requires the proper support from health care providers.  

Personalised deep learning models are a potential supplement to CGM with kind of accuracy 

(Figure 2(b,c)). The individual may avoid abnormal hyperglycaemia glucose actively by more 

physical activity and less food intake, learning how to control his glucose appropriately. Moreover, 

the significant decrease of glucose (Figure 2(a–e)) and the mild change of glucose variation crossing 

two segments, along with the average daily RMSE (1.59 mmol/L) in the application segment, also 

support the applicability of deep learning in glucose prediction as insertion of the CGM system. 

However, the specific role of deep learning customised diabetes control still needs more cases engaged. 

Deep learning customised glucose prediction can be more accurate with more data and 

advanced artificial intelligence techniques. Customised models built from 16 instances of CGM data 

and personal historical CGM data had a limited performance in this case. Considering the data 

reliance on prediction models, we believe that with more training data, multiple information involved 

in the era of big data and cutting-edge artificial intelligence techniques [23–25], the accuracy of deep 

prediction models will be higher, accomplishing individual healthcare step-by-step [26]. 

Deep learning customised glucose prediction with a CGM system may be a feasible 

personalised self-management strategy in the community. The participant has experienced a 

promising change in glucose after two sessions, which was sustained and with a lower BMI in 3 

months, together with more physical activity and less food intake (Figure 2(f–h)). Besides, due to the 

limited accessibility of caregivers, the deep learning prediction provides optional guidance on how to 

act before the occurrence of abnormal glucose and to alleviate burdens in labour and economics.  

Despite the promising results of this strategy mentioned above, attention must be paid to aspects 
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such as stress. The participant suffered more stress both during the monitoring fortnight and 3-month 

follow-up. Researches indicate that the intervention efforts of diabetes stress were helpful in the 

comprehensive diabetes care, contributing to behaviour changes [27], elevated diabetes-associated 

stress might barricade the responsibility to beneficial intervention [28], and may increase depression 

burden [29]. The prolonged impact on glucose and behaviours, together with the condition of his 

mental health and stress, requires support from peers and healthcare providers [30,31]. Moreover, 

this strategy also demands a regular follow-up. Increasing the size of the participant samples, will 

help reinforce the certainty of the results., the one tailored for the personalised management of 

diabetes. Therefore, we would incorporate more patients to further research. We believe that more 

participants involved in more strictly designed clinical trials integrated with deep learning 

prediction would improve the outcome of patients with diabetes and march on the development of 

health management. 

5. Conclusions 

In summary, deep learning customised glucose prediction may be accessible to personalised 

health care in the long-term management of type 2 diabetes, for example, by aiding in the CGM 

system. This would be beneficial for people suffering from this chronic disease, since a promising 

outcome (i.e., a decrease of glucose into a safer range, as shown above) might also occur on them 

using this care pattern, though more cases should be involved to test the validity of this caring pattern 

and more clinical settings should also be tested. Furthermore, the diabetes stress should be 

emphasized too, which seems to require a periodical care from the healthcare providers and the 

family members of patients. 
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Supplementary 

S1. Medical jargon and metrics 

Except for general clinical glucose metrics like fasting glucose and glycosylated haemoglobin, 

body mass index was also applied to contrast the lasting efficacy of the intelligence-assisted health 

management. 

Furthermore, continuous glucose parameters were included to evaluate the short-dated efficacy of 

glucose management, such as average glucose, daily hyperglycaemic time, daily time of high glucose 

and high blood glucose index. 

Average glucose: the arithmetic average of glucose. 

SD, standard deviation, evaluating the glucose variation. 

Daily time of high glucose: the total time of glucose above range each day. 

daily hyperglycaemic time: glucose multiplied by the time of glucose above range each day. The 

glucose above range were sectioned by clinical risk, alert (CGM data > 10.0 mmol/l, CGM data < 13.9 

mmol/l) and clinically significant (CGM data ≥ 13.9 mmol/l). 

High blood glucose index: a metric reflecting the risk of hyperglycaemia, calculated by 

functions below. 

���� =  
∑ ��.�� ∙ �����

�

�
, �(��) = ln(��)

�.���  – 5.381, �� �(��) ≥ 0 for glucose readings x1,…, xn 

measured in mg/dl.  

MODD, the mean of daily differences, evaluating intraday variability from all 24h intervals2. 

S2. Deep learning model construction 

Deep learning has leapt into the public view since the triumph of AlphaGo and got unceasing 

victories from diabetic retinopathy identification, medical events or outcomes prediction, and health 

care opmisation. The recurrent neural network (RNN), designed to sequence data, is powerful for 

long sequences after the incorporation of Long Short-Term Memory (LSTM), the one proposed to 

solve the “long-term dependencies” problem. We then described the LSTM-RNN models to predict 

glucose trajectories for diabetes management. 

S2.1. The CGM data set 

Continuous glucose data by CGM (continuous glucose monitor) system (FreeStyle® Libre, 

Abbott Diabetes Care Ltd.) from December 2014 to September 2017 were collected from16 cases 

(up to 15 days per case). These data were arranged as daily glucose from 0 to 24 O’clock, at an interval of 

about 15 mins. Missing values were imputed by the likelihood StructTS method on the R 3.4 platform. 

S2.2. Participant data 

Real-time monitoring data of this participant were obtained from CGM system (FreeStyle® 

Libre, Abbott Diabetes Care Ltd.) in September 2017. Fortnight average glucose from CGM was 8.9 

mmol/L (160 mg/dL), with an estimated haemoglobin of 7.2% (55 mmol/mol). The distribution of 
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glucose was 0 in Very Low, 0 in Low Alert, 77.0% in Target Range, 18.2% High Alert, and 4.8% in 

Very High4. About 23% of the glucose points were above the normal range. The utilisation rate of 

the CGM system was 99%, with an average of 53 times scans a day. No insulin was used during the 

two-weeks monitoring, which was assured by the assignment. 

S2.3. Naïve LSTM-RNN models 

Model architecture referred to previous works. Input and output layers were 1-dimensional 

glucose data, and prediction of appendix 2-hour glucose by recurrence was iterated by Adam 

gradient optimization. The formula of naïve LSTM-RNN models was composed here where input 

gate, forget gate, and output gate were sigmoid function, while those of input and output block were 

hyperbolic tangent functions. The CGM data set was divided into two groups for the construction of 

naïve models (Prem), in which 14,878 (13 cases) in 17,182 data were put in the training set in python 3.6. 

Block input: �� = ���ℎ(�� ∙ [����, ��] + ��) 

Input gate: �� = �(�� ∙ [����, ��] + ��) 

Forget gate: �� = ���� ∙ [����, ��] + ��� 

Cell: �� = �� ∙ �� + ���� ∙ �� 

Output gate: �� = �(�� ∙ [����, ��] + ��) 

Block output: �� = ���ℎ(��) ∙ �� 

�� = �� 

S2.4. Progression of the individual LSTM-RNN model 

Transferring model (Tran): I, load three best models; train three days, test 1 day, chose 

superparameters with the best RMSE. 

Fine-tuned model (Tune): II, super-parameters fine-tuned based on those output from I, and 

each selected 3 top models with ten replications; train three days, test 1 day, chose superparameters 

with the best RMSE. 

Progressing model (Prog): III, super-parameters fine-tuned based on the top model from II, 

though each prediction was tested in triplicate to assess the accuracy. Each one was re-built for three 

times; train seven days, test 1day (all past personalised data). 

On-time application (Appl): V, super-parameters fine-tuned based on the top models from III, 

though each prediction was tested in triplicate to assess the accuracy; train N-1 days (all past 

personalised data), test for 2-hour trajectory. 
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