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Abstract: In November 2019, there was the first case of COVID-19 (Coronavirus) recorded, and
up to 3rd of April 2020, 1,116,643 confirmed positive cases, and around 59,158 dying were recorded.
Novel antiviral structures of the SARS-COV-2 virus is discussed in terms of the metric basis of their
molecular graph. These structures are named arbidol, chloroquine, hydroxy-chloroquine, thalidomide,
and theaflavin. Partition dimension or partition metric basis is a concept in which the whole vertex set
of a structure is uniquely identified by developing proper subsets of the entire vertex set and named
as partition resolving set. By this concept of vertex-metric resolvability of COVID-19 antiviral drug
structures are uniquely identified and helps to study the structural properties of structure.

Keywords: COVID antiviral drug structure; vertex metric dimension; partition dimension; partition
locating number; partition locating set

1. Introduction

Cholera, flu and plague were the most terrifying pandemics in the past few centuries, these diseases
caused millions of inhabitants of this world to die. The first incidence of COVID-19 (Coronavirus) was
reported in November 2019, and by the third week of April 2020, there had been 1,116,643 confirmed
positive cases and roughly 59,158 deaths. These statistics are given by the world health Organization
(WHO). Not only the human health infected by this pandemic but also the economy of the world was
disrupted because it spread over the world after emerging from the seafood market of Wuhan city in
China [1]. The viral structure and genetic sequence of betacoronavirus (MERS-CoV) also known as
novel corona or 2019-nCoV shares with the MERS-CoV which is middle eastern respiratory syndrome
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coronavirus. As there are some specific drugs available for this pandemic virus currently, like Pfizer.
To tackle this pathogen there is an urgent need for strong antiviral agents. Researchers experimented
with some existing antiviral operatives [2–6] and obtained some productive outcomes to tackle the
transmission and infection of COVID-19. Theaflavin, hydroxychloroquine, chloroquine, thalidomide
and arbidol are some antiviral compounds.

Remdesivir (GS5734) helped to prevent the infection of the Ebola virus, having a broad spectrum
activity as a nucleotide analog drug [7]. It is reported in [8, 9], that chloroquine is considered an
antiviral drug that is also broad-spectrum. This antiviral helps to prevent autoimmune disease and
malaria. This antiviral tested for the treatment of corona-virus to lower the impact of infections of
fever and later on this was found helpful. By inhibiting T cell activation, hydroxy-chloroquine
supposed by cytokine storm conclusively reduces the acute evolution of COVID-19.
Hydroxychloroquine and chloroquine are approved by FDA as an emergency corona-virus treatment
on 30rd march of 2020, reported by Forbes [10]. The inhibitor production of corona-virus by using
theaflavin as a lead compound is researched and suggested by [4]. For hepatitis C, B, A viruses and
influenza, theaflavin shows a vast span of antiviral activity [11, 12]. For the medical benefit of black
tea, a polyphenol chemical is found liable.

By a molecular graph in this draft, we consider a transformation from a chemical structure to a
molecular graph by assuming atoms and chemical bonds between them are nodes and edges
respectively, and this theory is already established, for more detail, one can view some recent
literature [13–17].

Definition 1.1. In [18]“ Suppose ℵ (V (ℵ) , E (ℵ)) is an undirected graph of a chemical structure
(network) with V (ℵ) is called as set of principal nodes (vertex set) and E (ℵ) is the set of branches
(edge set). The distance between two principal nodes ζ1, ζ2 ∈ V (ℵ) , denoted as d (ζ1, ζ2) is the
minimum count of branches between ζ1 − ζ2 path.”

Definition 1.2. In [18] “Suppose R ⊂ V (ℵ) is the subset of principal nodes set and defined as
R = {ζ1, ζ2, . . . , ζs}, and let a principal node ζ ∈ V (ℵ) . The identification or locations r(ζ |R) of a
principal node ζ with respect to R is actually a s−ordered distances (d(ζ, ζ1), d(ζ, ζ2), . . . , d(ζ, ζs)). If
each principal node from V (ℵ) have unique identification according to the ordered subset R, then this
subset renamed as a resolving set of network ℵ. The minimum numbers of the elements in the subset R
is actually the metric dimension of ℵ and it is denoted by the term dim (ℵ) .”

Definition 1.3. In [19] “Let Rp ⊆ V (ℵ) is the s-elements proper set and
r
(
ζ |Rp

)
= {d(ζ,Rp1), d(ζ,Rp2), . . . , d(ζ,Rps)}, is the s-tuple distance identification of a principal

node ζ in association with Rp. If the entire set of principal nodes have unique identifications, then Rp

is named as the partition resolving set of the principal node of a network ℵ. The least possible count
of the subsets in that set of V (ℵ) is labeled as the partition dimension (pd (ℵ)) of ℵ.”

In the above definitions a graph or a chemical structure is shown with symbol ℵ, notation r(ζ |R)
shows the position of a vertex ζ with respect to the resolving set or locating set R, and for the partition
resolving set they used the symbol Rp, dim (ℵ) is used for the metric dimension of a graph ℵ, partition
dimension is notated by the symbol pd (ℵ) , furthermore, the notations are summarized in the Table 1.

Very few and recent literature on the topic of metrics and their generalization are given here. In [20],
polycyclic aromatic compounds are discussed on the topic of metric and its generalization. A chemical
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structure is discussed in [21], they mentioned two-dimensional lattice is discussed with the idea of
metric and of that structure. Cellulose network is considered in [22], by the same concept of distance-
based theory of graph. Generalized concepts are given by [23–26]. A computer network is discussed
in [27] with the concept of distance graph theory. Generalized families and structures of the graph are
detailed in [28–32].

Table 1. Basic notions.

Terminologies Notations
Structure GS tructure

Vertex set V (GS tructure)
Edge set E (GS tructure)
locating set ls
locating number ln
partition locating set lsp
partition locating number pln
location of a vertex with respect to partition locating set v l (v|lsp)

The partition dimension is quite a complex structure than the metric dimension, therefore, fewer
exact partitions are available and bounds are presented usually. In [33], presented bounds for the
partition of generalized class of convex polytopes and also in [34]. A chemical fullerene graph is
presented in [35] and bounds on another chemical structure are detailed in [36], some nanotubes and
sheets are presented in the form of partition sets in [37], the two-dimensional lattice structure is
available in [38]. Generalized structures and classes of families of graphs are detailed in [39–45].

The very first use of metric dimension in 1975 by Slater [46] and he named this concept as locating
set. Later in 1976, two independent researchers from the computer science field named this concept as
the resolving set found in [47]. This idea is also named the metric basis in the pure mathematical study
of graphs and structures, available in [48,49]. Instead of choosing a single subset from the vertex set of
a graph or structure, the researchers of [49], introduced a concept in which a vertex set is completely
arranged in the different disjoint subsets in such a manner to get unique identifications of vertices, and
this concept is known as partition resolving set or partition dimension.

Metric dimension has many applied ways in which combinatorial optimization, robot roving, in
complex games, image processing, pharmaceutical chemistry, polymer industry, and in the electric
field as well. All these applications are found in [19, 46, 50–52]. Robot roving is also attached with
the concept of applications of the partitioning of a vertex set in terms of metric [50], while
Djokovic-Winkler relation [53], verification, and discovery of a network, in chemistry [54], in
mastermind games [55], image processing, and pattern recognition, and in hierarchical of the data
structure are linked to the partition dimensions of a structure [56]. Further applications can be found
in the literature of [47, 57].

2. Main results

In this section, we will include our main results of partition locating set of some structures, for
example, arbidol, chloroquine, hydroxy-chloroquine, thalidomide and theaflavin.
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Given below are the node and bond set of arbidol COVID antiviral drug structure. The order (total
count of nodes) and size (total count of edges) of this arbidol structure is |V (GArbidol)| = 29,
|E (GArbidol)| = 31, respectively. Moreover, the molecular graph of Arbidol and labeling used in our
main results are shown in the Figure 1. Some of the topological properties of this structure are
available in the reference [58, 59].

V (GArbidol) ={$i : i = 1, 2, . . . , 29}
E (GArbidol) ={$i$i+1 : i = 1, 2, . . . , 13, i = 15, 16, . . . , 22, i = 24, 25} ∪ {$2$16, $4$18,

$5$29, $6$19, $9$14, $20$28, $17$24, $25$27}.

Theorem 2.1. Let GArbidol be a graph of arbidol COVID antiviral drug structure. Then the partition
locating number of GArbidol is less than or equal to four.

Proof. The partition locating number or partition dimension of graph of arbidol COVID antiviral drug
structure is less than or equal to four. To prove this statement we have chosen a partition locating set
with cardinality four and stated as lsp (GArbidol) = {lsp1, lsp2, lsp3, lsp4}, where lsp1 = {$10}, lsp2 =

{$23}, lsp3 = {$27}, and lsp4 = V (GArbidol) \ {$10, $23, $27}. Now to make this statement valid we
have provided the representations of each node of the arbidol COVID antiviral drug structure which
are given in the Table 2.

Table 2. Locations of the nodes of GArbidol.

l ($|lsp) lsp1 lsp2 lsp3 lsp4 i-range
$i 10 − i 10 − i 6 0 i = 1, 3
$i 10 − i 10 − i 5 0 i = 2, 4
$i 10 − i i + 1 6 0 i = 5
$i 10 − i i − 1 i z1 i = 6, . . . , 10
$i i − 10 i − 1 i 0 i = 11, 12
$i 10 − i 23 − i 24 − i 0 i = 13
$i i − 12 23 − i 24 − i 0 i = 14
$i 10 − i i − 1 i 0 i = 15, 16, 17
$i 24 − i 23 − i i − 14 0 i = 18, 19
$i i − 14 23 − i i − 14 z1 i = 20, 21, 22, 23
$i i − 16 i − 17 2 0 i = 24, 26
$i i − 16 i − 17 1 0 i = 25
$i 10 9 0 1 i = 27
$i 35 − i 4 7 0 i = 28
$i 35 − i 7 7 0 i = 29

where z1 =

 1, if i = 10, 23;

0, otherwise.

Given locations l ($|lsp) of each node of graph of arbidol COVID antiviral drug structure is distinct
and fulfill the definitions of partition locating set. This proved that the partition locating number
pln (GArbidol) ≤ 4 of graph of arbidol COVID antiviral drug structure.

Hence, proved that pln (GArbidol) ≤ 4. �
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Figure 1. Arbidol COVID antiviral drug structure.

Given below are the node and bond set of chloroquine COVID antiviral drug structure. The order
(total count of nodes) and size (total count of edges) of this chloroquine structure is

∣∣∣∣V (
GChloroquine

)∣∣∣∣ =

22,
∣∣∣∣E (

GChloroquine

)∣∣∣∣ = 23, respectively. Moreover, the molecular graph of Chloroquine and labeling
used in our main results are shown in the Figure 2. Some of the topological properties of this structure
are available in the reference [58, 59].

V
(
GChloroquine

)
={$i : i = 1, 2, . . . , 22}

E
(
GChloroquine

)
={$i$i+1 : i = 1, 2, . . . , 13, i = 15, i = 17, . . . , 20} ∪ {$2$21, $5$20,

$6$17, $8$22, $12$15}.
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Figure 2. Chloroquine COVID antiviral drug structure.
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Theorem 2.2. Let GChloroquine be a graph of chloroquine COVID antiviral drug structure. Then the
partition locating number of GChloroquine is three.

Proof. The partition locating number or partition dimension of graph of chloroquine COVID antiviral
drug structure is three. To prove this statement we have chosen a partition locating set with cardinality
three and stated as lsp

(
GChloroquine

)
= {lsp1, lsp2, lsp3}, where lsp1 = {$3}, lsp2 = {$14}, and lsp3 =

V
(
GChloroquine

)
\ {$3, $14}. Now to make this statement valid we have provided the representations of

each node of the chloroquine COVID antiviral drug structure which are given in the Table 3.

Table 3. Locations of the nodes of GChloroquine.

l ($|lsp) lsp1 lsp2 lsp3 i-range
$i |i − 3| 14 − i z2 i = 1, 2, . . . , 14
$i i − 5 i − 12 0 i = 15, 16
$i i − 13 i − 8 0 i = 17
$i 23 − i i − 8 0 i = 18, 19
$i 23 − i i − 10 0 i = 20, 21
$i i − 18 i − 15 0 i = 22

where z2 =

 1, if i = 3, 14;

0, otherwise.

Given locations l ($|lsp) of each node of graph of chloroquine COVID antiviral drug structure
is distinct and fulfill the definitions of partition locating set. This proved that the partition locating
number pln

(
GChloroquine

)
≤ 3 of graph of chloroquine COVID antiviral drug structure. To make this

assertion exact we need to prove that pln
(
GChloroquine

)
≥ 3 and following by contradiction we will have

pln
(
GChloroquine

)
= 2. Now, this is not true because this statement is reserved for path graph.

Hence, proved that pln
(
GChloroquine

)
= 3. �

Given below are the node and bond set of hydroxy-chloroquine COVID antiviral drug structure.
The order (total count of nodes) and size (total count of edges) of this hydroxy-chloroquine structure
is

∣∣∣∣V (
GHydroxy

)∣∣∣∣ = 23,
∣∣∣∣E (

GHydroxy

)∣∣∣∣ = 24, respectively. Moreover, the molecular graph of hydroxy-
chloroquine and labeling used in our main results are shown in the Figure 3. Some of the topological
properties of this structure are available in the reference [58, 59].

V
(
GHydroxy

)
={$i : i = 1, 2, . . . , 23}

E
(
GHydroxy

)
={$i$i+1 : i = 1, 2, . . . , 13, i = 15, 16, i = 18, . . . , 21} ∪ {$2$22, $5$21,

$6$18, $8$23, $12$15}.

Theorem 2.3. Let GHydroxy be a graph of hydroxy-chloroquine COVID antiviral drug structure. Then
the partition locating number of GHydroxy is three.

Proof. The partition locating number or partition dimension of graph of hydroxy-chloroquine COVID
antiviral drug structure is three. To prove this statement we have chosen a partition locating set with
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cardinality three and stated as lsp
(
GHydroxy

)
= {lsp1, lsp2, lsp3},where lsp1 = {$3}, lsp2 = {$14}, and

lsp3 = V
(
GHydroxy

)
\{$3, $14}.Now to make this statement valid we have provided the representations

of each node of the hydroxy-chloroquine COVID antiviral drug structure which are given in the Table 4.

Table 4. Locations of the nodes of GHydroxy.

l ($|lsp) lsp1 lsp2 lsp3 i-range
$i |i − 3| 14 − i z3 i = 1, 2, . . . , 14
$i i − 5 i − 12 0 i = 15, 16, 17
$i i − 14 i − 9 0 i = 18
$i 24 − i i − 9 0 i = 19, 20
$i 24 − i i − 11 0 i = 21, 22
$i i − 17 i − 16 0 i = 23

where z3 =

 1, if i = 3, 14;

0, otherwise.
Given locations l ($|lsp) of each node of graph of hydroxy-chloroquine COVID antiviral drug

structure is distinct and fulfill the definitions of partition locating set. This proved that the partition
locating number pln

(
GHydroxy

)
≤ 3 of graph of hydroxy-chloroquine COVID antiviral drug structure.

To make this assertion exact we need to prove that pln
(
GHydroxy

)
≥ 3 and following by contradiction

we will have pln
(
GHydroxy

)
= 2. Now, this is not true because this statement is reserved for path graph.

Hence, proved that pln
(
GHydroxy

)
= 3. �
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Figure 3. Hydroxy-Chloroquine COVID antiviral drug structure.
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Given below are the node and bond set of thalidomide COVID antiviral drug structure. The order
(total count of nodes) and size (total count of edges) of this thalidomide structure is |V (GThalidomide)| =
19, |E (GThalidomide)| = 21, respectively. Moreover, the molecular graph of Thalidomide and labeling
used in our main results are shown in the Figure 4. Some of the topological properties of this structure
are available in the reference [58, 59].

V (GThalidomide) ={$i : i = 1, 2, . . . , 19}
E (GThalidomide) ={$i$i+1 : i = 1, 2, . . . , 14, i = 16} ∪ {$2$17, $4$19, $7$18, $5$16, $6$14,

$8$13}.
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Figure 4. Thalidomide COVID antiviral drug structure.

Theorem 2.4. Let GThalidomide be a graph of Thalidomide COVID antiviral drug structure. Then the
partition locating number of GThalidomide is three.

Proof. The partition locating number or partition dimension of graph of Thalidomide COVID antiviral
drug structure is three. To prove this statement we have chosen a partition locating set with cardinality
three and stated as lsp (GThalidomide) = {lsp1, lsp2, lsp3}, where lsp1 = {$6}, lsp2 = {$18}, and lsp3 =

V (GThalidomide) \ {$6, $18}. Now to make this statement valid we have provided the representations of
each node of the Thalidomide COVID antiviral drug structure which are given in the Table 5.

Table 5. Locations of the nodes of GThalidomide.

l ($|lsp) lsp1 lsp2 lsp3 i-range
$i |i − 6| |7 − i| + 1 z4 i = 1, 2, . . . , 10
$i 15 − i 16 − i 0 i = 12, 13
$i 15 − i i − 13 0 i = 14
$i 2 i − 13 0 i = 15
$i i − 14 i − 12 0 i = 16, 17
$i i − 16 i − 18 1 i = 18
$i i − 16 i − 14 0 i = 19
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where z4 =

 1, if i = 6;

0, otherwise.

Given locations l ($|lsp) of each node of graph of Thalidomide COVID antiviral drug structure
is distinct and fulfill the definitions of partition locating set. This proved that the partition locating
number pln (GThalidomide) ≤ 3 of graph of Thalidomide COVID antiviral drug structure. To make this
assertion exact we need to prove that pln (GThalidomide) ≥ 3 and following by contradiction we will have
pln (GThalidomide) = 2. Now, this is not true because this statement is reserved for path graph.

Hence, proved that pln (GThalidomide) = 3. �

Given below are the node and bond set of theaflavin COVID antiviral drug structure. The order
(total count of nodes) and size (total count of edges) of this theaflavin structure is |V (GTheaflavin)| = 41,
|E (GTheaflavin)| = 46, respectively. Moreover, the molecular graph of Theaflavin and labeling used in
our main results are shown in the Figure 5. Some of the topological properties of this structure are
available in the reference [58, 59].

V (GTheaflavin) ={$i : i = 1, 2, . . . , 41}
E (GTheaflavin) ={$i$i+1 : i = 1, 2, . . . , 23, i = 25, 26, . . . , 30} ∪ {$1$39, $1$10, $3$8,

$4$40, $6$41, $11$31, $14$25, $30$38, $29$37, $27$36, $26$35, $13$28, $16$34,

$15$24, $18$23, $22$33, $20$32}.
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Figure 5. Theaflavin COVID antiviral drug structure.
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Theorem 2.5. Let GTheaflavin be a graph of Theaflavin COVID antiviral drug structure. Then the
partition locating number of GTheaflavin is three.

Proof. The partition locating number or partition dimension of graph of Theaflavin COVID antiviral
drug structure is three. To prove this statement we have chosen a partition locating set with cardinality
three and stated as lsp (GTheaflavin) = {lsp1, lsp2, lsp3}, where lsp1 = {$31}, lsp2 = {$41} and lsp3 =

V (GTheaflavin) \ {$31, $41}. Now to make this statement valid we have provided the representations of
each node of the Theaflavin COVID antiviral drug structure which are given in the Table 6.

Table 6. Locations of the nodes of GTheaflavin.

l ($|lsp) lsp1 lsp2 lsp3 i-range
$i i + 9 7 − i 0 i = 1, 2, . . . , 5
$i 19 − i i − 5 0 i = 6, 7, . . . , 15
$i 21 − i i − 5 0 i = 16, 17, 18
$i 23 − i 35 − i 0 i = 19, 20
$i 23 − i 35 − i 0 i = 21, 22
$i i − 21 35 − i 0 i = 23, 24
$i i − 19 37 − i 0 i = 25
$i i − 19 37 − i 0 i = 26, 27
$i i − 21 37 − i 0 i = 28
$i i − 21 38 − i 0 i = 29, 30
$i i − 22 38 − i 0 i = 31
$i i − 28 i − 16 0 i = 32
$i i − 33 i − 19 1 i = 33
$i i − 28 i − 22 0 i = 34
$i i − 27 47 − i 0 i = 35, 36
$i i − 28 47 − i 0 i = 37, 38
$i i − 28 i − 32 0 i = 39
$i i − 26 i − 36 0 i = 40
$i i − 27 i − 41 1 i = 41

Given locations l ($|lsp) of each node of graph of Theaflavin COVID antiviral drug structure is
distinct and fulfill the definitions of partition locating set. This proved that the partition locating
number pln (GTheaflavin) ≤ 3 of graph of Theaflavin COVID antiviral drug structure. To make this
assertion exact we need to prove that pln (GTheaflavin) ≥ 3 and following by contradiction we will have
pln (GTheaflavin) = 2. Now, this is not true because this statement is reserved for path graph.

Hence, proved that pln (GTheaflavin) = 3. �

Given below are the node and bond set of Remdesivir COVID antiviral drug structure. The order
(total count of nodes) and size (total count of edges) of this Remdesivir structure is |V (GRemdesivir)| = 41,
|E (GRemdesivir)| = 44, respectively. Moreover, the molecular graph of Remdesivir and labeling used in
our main results are shown in the Figure 6. Some of the topological properties of this structure are
available in the reference [58, 59].
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V (GRemdesivir) ={$i : i = 1, 2, . . . , 41}
E (GRemdesivir) ={$i$i+1 : i = 1, 2, . . . , 21, i = 23, 25, 28, 29, 31, 33, 34, 35, 36, 38} ∪ {$1$6,

$8$41, $8$28, $29$31, $31$33, $35$38, $11$25, $13$23, $23$25, $13$40, $17$22,

$14$22, $18$27}.
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Figure 6. Remdesivir COVID antiviral drug structure.

Theorem 2.6. Let GRemdesivir be a graph of Remdesivir COVID antiviral drug structure. Then the
partition locating number of GRemdesivir is less than or equal to four.

Proof. The partition locating number or partition dimension of graph of Remdesivir COVID antiviral
drug structure is less than or equal to four. To prove this statement we have chosen a partition locating
set with cardinality four and stated as lsp (GRemdesivir) = {lsp1, lsp2, lsp3, lsp4}, where
lsp1 = {$4}, lsp2 = {$27}, lsp3 = {$39}, and lsp4 = V (GRemdesivir) \ {$4, $27, $39}. Now to make
this statement valid we have provided the representations of each node of the Remdesivir COVID
antiviral drug structure which are given in the Table 7.
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Table 7. Locations of the nodes of GRemdesivir.

l ($|lsp) lsp1 lsp2 lsp3 lsp4 i-range
$i |4 − i| i + 12 i + 10 0 i = 1, 2, 3
$i |4 − i| 18 − i 16 − i z5 i = 4, 5, . . . , 8
$i |4 − i| 18 − i 18 − i 0 i = 9, 10, . . . , 14
$i |4 − i| 19 − i 18 − i 0 i = 15, 16
$i i − 5 19 − i i − 1 0 i = 17, 18
$i i − 5 i − 17 i − 1 0 i = 19
$i 33 − i i − 17 37 − i 0 i = 20, 21
$i i − 5 i − 19 37 − i 0 i = 22
$i i − 5 i − 17 i − 10 0 i = 23
$i i − 14 i − 17 i − 10 0 i = 24
$i i − 17 i − 18 i − 13 0 i = 25, 26
$i i − 13 i − 27 i − 9 1 i = 27
$i i − 23 i − 17 35 − i 0 i = 28, 29
$i i − 23 i − 17 i − 23 0 i = 30
$i i − 24 i − 18 i − 26 0 i = 31, 32
$i i − 25 i − 19 37 − i 0 i = 33, 34, 35
$i i − 25 i − 19 i − 33 0 i = 36, 37
$i i − 27 i − 21 39 − i z5 i = 38, 39
$i i − 30 i − 34 i − 26 0 i = 40
$i i − 36 i − 30 i − 32 0 i = 41

where z5 =

 1, if i = 4, 39;

0, otherwise.

Given locations l ($|ls) of each node of graph of Remdesivir COVID antiviral drug structure is
distinct and fulfill the definitions of partition locating set. This proved that the partition locating number
pln (GRemdesivir) ≤ 4 of graph of Remdesivir COVID antiviral drug structure.

Hence, proved that pln (GRemdesivir) ≤ 4. �

Given below are the node and bond set of Ritonavir COVID antiviral drug structure. The order
(total count of nodes) and size (total count of edges) of this Ritonavir structure is |V (GRitonavir)| = 50,
|E (GRitonavir)| = 53, respectively. Moreover, the molecular graph of Ritonavir and labeling used in our
main results are shown in the Figure 7. Some of the topological properties of this structure are available
in the reference [58, 59].

V (GRitonavir) ={$i : i = 1, 2, . . . , 50}
E (GRitonavir) ={$i$i+1 : i = 1, 2, . . . , 24, i = 27, 28, . . . , 32, 35, 36, . . . , 40, 43, 48}∪

{$21$25, $18$26, $16$27, $28$33, $15$34, $13$35, $36$41, $11$42, $10$43,

$43$45, $7$47, $48$50, $3$48, $1$5}.
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Theorem 2.7. Let GRitonavir be a graph of Ritonavir COVID antiviral drug structure. Then the partition
locating number of GRitonavir is less than or equal to six.

Proof. The partition locating number or partition dimension of graph of Ritonavir COVID antiviral
drug structure is six. To prove this statement we have chosen a partition locating set with cardinality
six and stated as lsp (GRitonavir) = {lsp1, lsp2, lsp3, lsp4, lsp5, lsp6}, where lsp1 = {$22}, lsp2 =

{$33}, lsp3 = {$43}, lsp4 = {$44}, lsp5 = {$50}, and lsp6 = V (GRitonavir)\{$22, $33, $43, $44, $50}.

Now to make this statement valid we have provided the representations of each node of the Ritonavir
COVID antiviral drug structure which are given in the Table 8.

Table 8. Locations of the nodes of GRitonavir.

l ($|lsp) lsp1 lsp2 lsp3 lsp4 lsp5 lsp6 i-range
$i i + 17 i + 14 i + 6 i + 7 i + 2 0 i = 1, 2
$i |22 − i| 19 − i 11 − i 12 − i i − 1 0 i = 3, 4, . . . , 10
$i |22 − i| 19 − i i − 9 i − 8 i − 1 0 i = 11, 12, . . . , 16
$i |22 − i| i − 13 i − 9 i − 8 i − 1 z6 i = 17, 18, . . . , 23
$i |22 − i| 34 − i 38 − i 39 − i 46 − i 0 i = 24
$i i − 23 34 − i 38 − i 39 − i 46 − i 0 i = 25
$i i − 21 i − 20 i − 16 i − 15 i − 8 0 i = 26
$i i − 20 i − 25 i − 19 i − 18 i − 11 0 i = 27
$i i − 20 i − 27 i − 19 i − 18 i − 8 0 i = 28, 29, . . . , 30
$i i − 20 33 − i i − 19 i − 18 i − 8 0 i = 31
$i 42 − i 33 − i 43 − i 44 − i 51 − i z6 i = 32, 33
$i 42 − i i − 29 i − 27 i − 28 i − 19 0 i = 34
$i i − 25 i − 28 i − 30 i − 29 i − 22 0 i = 35, 36, . . . , 39
$i 53 − i 50 − i 48 − i 49 − i 56 − i 0 i = 40, 41
$i i − 30 i − 33 i − 39 i − 38 53 − i 0 i = 42
$i i − 30 i − 33 i − 43 44 − i 53 − i 1 i = 43
$i i − 30 i − 33 i − 43 44 − i i − 33 1 i = 44
$i i − 31 i − 34 i − 44 i − 44 i − 34 0 i = 45
$i i − 31 i − 34 i − 42 i − 41 54 − i 0 i = 46, 47
$i i − 28 i − 31 i − 39 i − 38 i − 47 0 i = 48
$i 21 18 10 11 50 − i z6 i = 49, 50

where z6 =

 1, if i = 22, 33, 50;

0, otherwise.

Given locations l ($|ls) of each node of graph of Ritonavir COVID antiviral drug structure is distinct
and fulfill the definitions of partition locating set. This proved that the partition locating number
pln (GRitonavir) ≤ 6 of graph of Ritonavir COVID antiviral drug structure.

Hence, proved that pln (GRitonavir) ≤ 6. �
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Figure 7. Ritonavir COVID antiviral drug structure.

3. Conclusions

As we can see from our main results section, the partition dimension of arbidol, remdesivir is either
four or less, while chloroquine, hydroxy-chloroquine, thalidomide, and theaflavin can be three subsets
of their partition resolving sets. The vertex set of ritonavir can be partitioned into either six or less than
six subsets. In short, this article detailed a few COVID-19 antiviral structures in the form of molecular
graph theory with the metric of vertices. Moreover, the summary of the main results is given in Table 9.

Table 9. Summary of the results.

G pln
GArbidol ≤ 4
GChloroquine 3
GHydroxy 3
GThalidomide 3
GTheaflavin 3
GRemdesivir ≤ 4
GRitonavir ≤ 6
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