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Abstract: A mathematical model for the population invasion of Canada goldenrod is proposed, with
two reproductive modes, yearly periodic time delay and spatially nonlocal response caused by the
influence of wind on the seeds. Under suitable conditions, we obtain the existence of the rightward
and leftward invasion speeds and their coincidence with the minimal speeds of time periodic traveling
waves. Furthermore, the invasion speeds are finite if the dispersal kernel of seeds is exponentially
bounded and infinite if dispersal kernel is exponentially unbounded.
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1. Introduction

Being introduced to Nanjing, Shanghai and other places in China since 1935, Canada goldenrod, as
an ornamental flower, showed strong adaptability to the environment and related reports have appeared
in many provinces in China [1]. It’s able to survive in a wide range of environmental conditions and
invade wasteland, river banks and newly planted forest land [2]. The huge number of seeds, lightly
pappus and the nature that can spread with the wind, accelerates its spread effectively and efficiently [3].
As a clone plant, Canada goldenrod has a developed underground cloning system, which can produce
a large number of clonal plants through underground stems and squeeze out the living space of native
plants [2]. In places invaded by Canada goldenrod, the species diversity index of the plant community
decreased with the expansion of it and the stability of the plant community was worse than that of areas
without it. All these indicate that this species has greater ecological risk. Shen et al. [4] investigated
the coverage of Canada goldenrod in some areas up to 100%, which caused great damage to species
diversity. Therefore, it is meaningful to study the nature of the invasion of Canada goldenrod.

*In memory of Professor Stephen A. Gourley.
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Canada goldenrod is perennial and has various organs of general plants and winter-dormant rhi-
zomes [3]. During the invasion process, Canada goldenrod can first form multi-satellite populations
through seed propagation, and then fill the gaps through underground stem clonal propagation, eventu-
ally forming a single dominant population to crowd out native plants. It was found in [5] that Canada
goldenrod has the following growth characteristics.

(i) Under natural conditions, the germination season of Canada goldenrod lasts from March to
October, with a germination peak in April and May. Vegetative growth was especially vigorous during
the summer season. Most Canada goldenrod flower between September and January, and fruit in late
October. After the seeds mature, the pedicels and the tops of the branches of the plant gradually dry
and die;

(ii) Canada goldenrod reproduces asexually by underground rhizomes and nodes on the stem base
to recruit new individuals, and uses this reproductive strategy to produce clonal shoots in plants that
experience mechanical damage.

Based on these characteristics, one may see there are three periods in the whole life cycle: the seed
period, the immature period and the mature period, as shown in Figure 1. In view of the perennial
nature of Canada goldenrod, winter-dormant rhizomes underground can be regarded as the other kind
of seed, which is asexual reproduction. In more detail, the population density of immaturity partly
comes from seeds and rhizomes, produced by sexual and asexual reproduction, respectively. In this
way, growth cycle for Canada goldenrod can be regarded as an annual cycle.

Figure 1. Schematic illustration of the life cycle for Canada goldenrod.

In this paper we make an attempt to use nonlocal and delayed differential equations to model the
rapid invasion of Canada goldenrod. For this purpose, we first recall a partial list of related works
by Stephen Gourely and his collaborators. In 1993, Gourley and Britton [6] studied a single-species
population model where the animals are moving, leading to a nonlocal term in the nonlinearity. Al-
Omari and Gourley [7] derived a partially coupled diffusive population model, in which the mature
population is a delay differential equation. They proved the monotonicity of travelling fronts. Gourley
and Kuang [8] formulated and studied a single-species diffusive delay population model. Gourley and
Ruan [9] investigated a two-species competition model described by a reaction-diffusion system with
nonlocal delays. For more related works on delayed nonlocal diffusive models, we refer to the survey
articles [10–12] and references therein.

The nonlocal dispersal had been found to be appropriate to account for long distance moving, for
example, cane toads [13], Reid’s paradox of tree migration [14], the European green crab [15], as well
as infectious individuals [16], and so on. Szymańska et al. [17] also focused on the role of nonlocal
kinetic terms modelling competition for space and degradation with nonlocal terms describing the
interactions between cancer cells and the host tissue. Garnier [18] studied the spreading properties of
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the solutions of an integro-differential equation of the form

ut = J ∗ u − u + f (u).

He proved that for kernels J(x), which decrease to 0 slower than any exponentially decaying func-
tion, the level sets of the solution u propagate with an infinite asymptotic speed. More recently, Pan
et al. [19] studied the influence of seasonal successions on propagation of an age-structured invasive
species by poincaré map, where delay is time periodic and there is no nonlocal diffusion. They found
that time delay decreases the speed and its periodicity may further do so. Pan et al. [20] investigated
the propagation of a system, defined by iterations of the Poincaré map of a population model with sym-
metric nonlocal dispersal and periodic time delay. They showed that the system admits the spreading
speed c∗ ∈ (0,+∞] that coincides with the minimal speed of traveling waves, where c∗ = +∞ if J(x) is
symmetrically decreasing and has a fat tail that is bigger than any exponential functions, which further
gives rises to an accelerating propagation.

Why does the goldenrod spread so fast? From its lifecyle, we see that its seeds can spread by wind
and its rhizomes can also expand locally. According to its biological performance, we may ideally
divide its growth cycle into Seed dispersal, Rhizome expansion, Germinating season and Maturation
season.

Figure 2. As the seasons change, there are different growth periods for Canada goldenrod
in a year, where [α, β] is the nonlocal dispersal season of seeds, [γ, η] is the local diffusion
period of rhizomes, [rα, rβ] is the germinating season, and [tα, tβ] is the maturation season.

According to the biological characteristics of Canada goldenrod, we reasonably establish the fol-
lowing assumptions.

(B1) τ1(t) represents the duration from Seed dispersal to Germinating season, τ̂1(·) represents the du-
ration from Rhizome expansion to Germinating season and τ2(·) represents the duration from
Germinating season to Maturation season, as shown in the Figure 2.

(B2) Seeds and rhizomes germinate in the same germination season, as shown in Figure 2.
(B3) An individual at time t belongs to the immature class if and only if its age exceeds 0 but does not

exceed τ2(t). An individual at time t belongs to the mature class if and only if its age exceeds
τ2(t).

Start from these biological assumptions, we will propose a nonlocal reaction-diffusion model, see
(2.8) in the next section. In this model, two dispersal mechanisms are involved; one is the nonlocal
dispersal that models the long distance flying of seeds with the help of winds, the other is the local
dispersal that models the gradual spread of rhizomes under the ground. The established formula (5.4)
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for leftward/rightward spreading speed implies that seeds and rhizomes have their unique contributions
to the successful invasion; in particular, seeds can fly with a long distance (i.e., the dispersal kernel J
has a fat tail), which can result in rapid and even accelerated invasion, see Theorem 5.2(ii). Also, from
the formula (5.4) and the properties ofK (see (3.11) and (3.12) and Lemma 4.1), we may see that even
without seeds the goldenrod still can spread by their rhizomes sinceK consists of two parts; one part is
due to seed dispersal, the other part is due to rhizome dispersal (see the expression (3.11) ofK). These
findings may further suggest the following control strategy: to prevent rapid invasion of goldenrod one
can choose to remove the aboveground inflorescence of goldenrod before the seeds are fully matured,
and to stop the invasion of goldenrod one needs additionally to pull out and destroy the underground
rhizomes.

The rest of this paper is organized as follows. Section 2 is devoted to derivation of model. In Sec-
tion 3, we investigate the global dynamics for the corresponding spatially homogeneous system by the
Poincaré map. Section 4 consists of several properties for kernel, in cases of exponential bounded and
unbounded dispersal kernels, that will be essential for study of propagation properties. In Section 5, by
appealing to the dynamical system theory we establish the existence of rightward/leftward spreading
speeds and their characterizations. In Section 6, we go back to the original continuous system and es-
tablish propagation dynamics for the mature and immature growth stages of Canada goldenrod. Finally
a short summary and discussion concludes the paper.

2. Derivation of model

Recall the following growth law for age-structured populations (e.g., [21]):(
∂

∂t
+
∂

∂a

)
ρ(t, a, x) = −d(t, a)ρ(t, a, x), (2.1)

where ρ(t, a, x) denotes the density of Canada goldenrod of age a at time t and location x, d(t, a) is the
death rate. Presently, we can define the density of species in different life period.

I(t, x) =
∫ τ2(t)

0
ρ(t, a, x)da, M(t, x) =

∫ +∞

τ2(t)
ρ(t, a, x)da.

d(t, a) =

 dI(t), a ∈ (0, τ2(t)];
dM(t), a ∈ (τ2(t),+∞).

where dI(t) and dM(t) are the death rate of the immature and mature Canada goldenrod, respectively.
From a biological point of view, the density of the species goes to zero when age tends to infinity, that
is ρ(t,+∞, x) = 0. Differentiating t in the above equations then yields

∂

∂t
I(t, x) = −dI(t)I(t, x) + ρ(t, 0, x) −

(
1 − τ′2(t)

)
ρ
(
t, τ2(t), x

)
,

∂

∂t
M(t, x) = −dM(t)M(t, x) +

(
1 − τ′2(t)

)
ρ
(
t, τ2(t), x

)
.

(2.2)

Now we are in position to computing ρ(t, 0, x) and ρ
(
t, τ2(t), x

)
by employing an evolution view-

point. A key step is to establish ρ(t, 0, x), stemming from the evolution of seeds and rhizomes, as
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illustrated in Figures 1 and 2. To do this, we introduce u1(r, x) = ρ̃1
(
t − τ1(t) + r, r − τ1(t), x

)
with

r ∈
(
0, τ1(t)

]
and u2(r, x) = ρ̃2

(
t − τ̂1(t) + r, r − τ̂1(t), x

)
with r ∈

(
0, τ̂1(t)

]
to represent the densities of

seeds and rhizomes, respectively. Starting from the spread of seeds and rhizomes, we get the following
evolution systems:


∂

∂r
u1(r, x) =DS (t − τ1(t) + r)(J ∗ u1 − u1)(r, x) − dS (t − τ1(t) + r)u1(r, x), r ∈

(
0, τ1(t)

]
,

u1(0, x) =ρ̃1
(
t − τ1(t),−τ1(t), x

)
,

(2.3)


∂

∂r
u2(r, x) =DR(t − τ̂1(t) + r)

∂2u2(r, x)
∂x2 − dR(t − τ̂1(t) + r)u2(r, x), r ∈

(
0, τ̂1(t)

]
,

u2(0, x) =ρ̃2
(
t − τ̂1(t),−τ̂1(t), x

)
,

(2.4)

where DS (t − τ1(t) + r) and DR(t − τ̂1(t) + r) are the diffusive rate of seeds and rhizomes, respectively.
dS (t − τ1(t) + r) and dR(t − τ̂1(t) + r) are the death rate of seeds and rhizomes, respectively. In view of
seeds are produced by mature individuals, ρ̃1

(
t − τ1(t),−τ1(t), x

)
= b1

(
t − τ1(t),M

(
t − τ1(t), x

))
, where

b1 is the birth function of seeds. Similarly, ρ̃2
(
t − τ̂1(t),−τ̂1(t), x

)
= b2

(
t − τ̂1(t),M

(
t − τ̂1(t), x

))
, where

b2 is the birth function of rhizomes. Write KS
(
t − τ1(t) + r, t − τ1(t), x

)
and KR

(
t − τ̂1(t) + r, t − τ̂1(t), x

)
as the Green functions of (2.3) and (2.4), respectively. Thus,

ρ(t, 0, x) =KS
(
t, t − τ1(t), ·

)
∗ b1

(
t − τ1(t),M

(
t − τ1(t), ·

))
(x)

+ KR
(
t, t − τ̂1(t), ·

)
∗ b2

(
t − τ̂1(t),M

(
t − τ̂1(t), ·

))
(x). (2.5)

Next, we move forward to solve ρ
(
t, τ2(t), x

)
by introducing v(r, x) = ρ

(
t − τ2(t) + r, r, x

)
with

r ∈
(
0, τ2(t)

]
, we then see that v(r, x) obeys the following laws by (2.1).


∂

∂r
v(r, x) = −dI(t − τ2(t) + r)v(r, x), r ∈

(
0, τ2(t)

]
,

v(0, x) = ρ
(
t − τ2(t), 0, x

)
.

(2.6)

We first focus on ρ
(
t − τ2(t), 0, x

)
. As shown in Figures 1 and 2, immature individuals originate from

the evolution of two parts: seeds and rhizomes. To simplify writing, we define

τ(t) = τ2(t) + τ1
(
t − τ2(t)

)
and τ̂(t) = τ2(t) + τ̂1

(
t − τ2(t)

)
. (2.7)

It then follows from (2.5) that

ρ
(
t − τ2(t), 0, x

)
=KS

(
t − τ2(t), t − τ(t), ·

)
∗ b1

(
t − τ(t),M

(
t − τ(t), ·

))
(x)

+ KR
(
t − τ2(t), t − τ̂(t), ·

)
∗ b2

(
t − τ̂(t),M

(
t − τ̂(t), ·

))
(x).
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Write KI
(
t − τ2(t) + r, t − τ2(t)

)
as the Green function of (2.6). System (2.2) thus becomes

∂

∂t
I(t, x) = − dI(t)I(t, x) + KS

(
t, t − τ1(t), ·

)
∗ b1

(
t − τ1(t),M

(
t − τ1(t), ·

))
(x)

+ KR
(
t, t − τ̂1(t), ·

)
∗ b2

(
t − τ̂1(t),M

(
t − τ̂1(t), ·

))
(x)

−
(
1 − τ′2(t)

)
KI

(
t, t − τ2(t)

)
·
[
KS

(
t − τ2(t), t − τ(t), ·

)
∗ b1

(
t − τ(t),M

(
t − τ(t), ·

))
(x)

+ KR
(
t − τ2(t), t − τ̂(t), ·

)
∗ b2

(
t − τ̂(t),M

(
t − τ̂(t), ·

))
(x)

]
,

∂

∂t
M(t, x) = − dM(t)M(t, x) +

(
1 − τ′2(t)

)
KI

(
t, t − τ2(t)

)
·
[
KS

(
t − τ2(t), t − τ(t), ·

)
∗ b1

(
t − τ(t),M

(
t − τ(t), ·

))
(x)

+ KR
(
t − τ2(t), t − τ̂(t), ·

)
∗ b2

(
t − τ̂(t),M

(
t − τ̂(t), ·

))
(x)

]
,

(2.8)

Noticing that the equation of mature population is decoupled from the others, we first focus on the
dynamics of mature equation. Define

R1

(
t,M

(
t − τ(t), ·

))
(x) + R2

(
t,M

(
t − τ̂(t), ·

))
(x)

=
(
1 − τ′2(t)

)
KI

(
t, t − τ2(t)

)
KS

(
t − τ2(t), t − τ(t), ·

)
∗ b1

(
t − τ(t),M

(
t − τ(t), ·

))
(x)

+
(
1 − τ′2(t)

)
KI

(
t, t − τ2(t)

)
KR

(
t − τ2(t), t − τ̂(t), ·

)
∗ b2

(
t − τ̂(t),M

(
t − τ̂(t), ·

))
(x).

(2.9)

Then the solution map of mature population in (2.8) can be written as the following integral form

M(t, x) = KM(t, 0)M(0, x) +
∫ t

0
KM(t, l)

[
R1

(
l,M

(
l − τ(l), ·

))
+ R2

(
l,M

(
l − τ̂(l), ·

))]
(x)dl, (2.10)

where KM(t, l) = e−
∫ t

l dM(ω)dω.
According to (B1)–(B3) and the law of growth of Canada goldenrod, we further make the following

reasonable assumptions mathematically:

(A1) (Seasonality) DS > 0, DR > 0, dS > 0, dR > 0, dI > 0, dM > 0, τ1 > 0, τ2 > 0, b1 ≥ 0, b2 ≥ 0,
J ≥ 0 are all C1 functions and T -periodic in time.

(A2) (Distinct breeding, germinating and maturation seasons) Assume that 0 < α, γ ≤ β, η < rα ≤ rβ <
tα ≤ tβ < T , where tα, tβ satisfy

tα − τ2(rα) = rα, tβ − τ2(rβ) = rβ,

tα − τ2(tα) − τ1
(
tα − τ2(tα)

)
= α, tβ − τ2(tβ) − τ1

(
tβ − τ2(tβ)

)
= β,

tα − τ2(tα) − τ̂1
(
tα − τ2(tα)

)
= γ, tβ − τ2(tβ) − τ̂1

(
tβ − τ2(tβ)

)
= η.

Further, we assume that b1(t,M) = p(t)h(M) and b2(t,M) = q(t)g(M), where p ≥ 0, q ≥ 0, h ≥ 0,
g ≥ 0 and p(t) ≡ 0 for t ∈ [0, α] ∪ [β,T ]. However, q(t) ≡ 0 for t ∈ [0, γ] ∪ [η,T ].

(A3) (Ordering in immaturation and maturation) τ′1(t) < 1, τ̂′1(t) < 1 and τ′2(t) < 1.
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(A4) (Unimodality of birth function) Assume that h ∈ C1, g ∈ C1, h(0) = 0 = h(+∞), g(0) = 0 =
g(+∞) and there exits z∗1 and z∗2 such that h(z) is increasing for z ∈ [0, z∗1) and decreasing for
z ∈ [z∗1,+∞) and and g(z) is increasing for z ∈ [0, z∗2) and decreasing for z ∈ [z∗2,+∞). Define
z∗ := min{z∗1, z

∗
2}.

(A5) (Subhomogeneous) h(λz) ≥ λh(z) and g(λz) ≥ λg(z) for z ≥ 0 and λ ∈ (0, 1).

3. Dynamics of spatially homogeneous map

From an evolution viewpoint, the mature population experience only natural death, so the poincaré
map of (2.10) during the year [0,T ] is

QT (ϕ) = KM(T, 0)ϕ +
∫ tβ

tα
KM(T, l) ·

[
R1

(
l,KM

(
l − τ(l), 0

)
ϕ
)
+ R2

(
l,KM

(
l − τ̂(l), 0

)
ϕ
)]

(x)dl. (3.1)

It is easy to see that QT maps M
(
(n − 1)T, x

)
to M(nT, x) for n ≥ 1.

Define the map Q̄T : R→ R by

Q̄T [z] = zKM(T, 0) +
∫ tβ

tα
KM(T, l) ·

[
R̄1

(
l, zKM

(
l − τ(l), 0

))
+ R̄2

(
l, zKM

(
l − τ̂(l), 0

))]
dl.

Define

L :=
KM(T, 0)

1 − KM(T, 0)

∫ tβ

tα

∂ϕR̄1(l, 0)
KM

(
l, l − τ(l)

) + ∂ϕR̄2(l, 0)
KM

(
l, l − τ̂(l)

)dl, (3.2)

where ∂ϕR̄1(t, 0) = ∂ϕR̃1(t, 0)K̄S
(
t − τ2(t), t − τ(t)

)
,

∂ϕR̄2(t, 0) = ∂ϕR̃2(t, 0)K̄R
(
t − τ2(t), t − τ̂(t)

)
,

(3.3)

with
∂ϕR̃1(t, 0) =

(
1 − τ′2(t))KI

(
t, t − τ2(t)

)
p
(
t − τ(t)

)
h′(0), (3.4)

∂ϕR̃2(t, 0) =
(
1 − τ′2(t))KI

(
t, t − τ2(t)

)
q
(
t − τ̂(t)

)
g′(0). (3.5)

and
K̄S (t, l) =

∫
R

KS (t, l, x)dx, K̄R(t, l) =
∫
R

KR(t, l, x)dx. (3.6)

Theorem 3.1. Assume that (A1)–(A5) hold. Then the following statements are valid:

(i) If L > 1, then Q̄T admits at least one positive fixed point. Denote the minimal one by M∗. Then
lim

n→+∞
Q̄n

T [z] = M∗ provided that z ∈ (0,M∗], M∗KM(α, 0) ≤ z∗ and M∗KM(γ, 0) ≤ z∗, where z∗

defined in (A4).
(ii) If L < 1, then lim

n→+∞
Q̄n

T [z] = 0 for z > 0.

Proof. (i) It is easy to see that

lim
z→0

R̄1(l, zKM(l − τ(l), 0))
zKM(l − τ(l), 0)

= ∂ϕR̄1(l, 0), uniformly in l ∈ [0,T ]. (3.7)
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lim
z→0

R̄2(l, zKM(l − τ̂(l), 0))
zKM(l − τ̂(l), 0)

= ∂ϕR̄2(l, 0), uniformly in l ∈ [0,T ]. (3.8)

Note that

1
zKM(T, 0)

(
Q̄T [z] − z

)
=

1
zKM(T, 0)

{
KM(T, 0)z − z +

∫ tβ

tα
KM(T, l)

[
R̄1

(
l, zKM

(
l − τ(l), 0

))
+ R̄2

(
l, zKM

(
l − τ̂(l), 0

))]
dl

}
=1 −

1
KM(T, 0)

+

∫ tβ

tα

KM(T, 0)R̄1(l,KM(l − τ(l), 0)z)
zKM(T, 0)KM (l, l − τ (l)) KM(l − τ(l), 0)

dl

+

∫ tβ

tα

KM(T, 0)R̄2(l,KM(l − τ̂(l), 0)z)
zKM(T, 0)KM (l, l − τ̂ (l)) KM(l − τ̂(l), 0)

dl

→


[
1 − 1

KM(T,0)

]
(1 − L), z→ 0,

1 − 1
KM(T,0) < 0, z→ +∞.

(3.9)

If L > 1, then Q̄T admits at least one positive fixed point. Denote the minimal one by M∗. If,
additionally, M∗KM(α, 0) ≤ z∗ and M∗KM(γ, 0) ≤ z∗, then Q̄[z] is non-decreasing in z ∈ [0,M∗], which
implies that lim

n→+∞
Qn[z] exists, denoted by z∞. It is then easily to see that z∞ = M∗.

(ii) From the calculation of (3.7) and (3.9) and the subhomogeneity of R1 and R2, we infer that

Q̄T [z] − z
zKM(T, 0)

≤

[
1 −

1
KM(T, 0)

]
(1 − L) < 0, L < 1. (3.10)

Naturally, there exists δ ∈ (0, 1) such that Q̄T [z] ≤ (1 − δ)z for z > 0. Further, we get Q̄n
T [z] ≤

(1 − δ)nz, which gives lim
n→+∞

Q̄n
T [z] = 0 for z > 0. The proof is complete. □

Define

K(y) := KM(T, 0)δ(y) +
∫ tβ

tα
KM(T, l)

[
∂ϕR1(l, 0)KM

(
l − τ(l), 0

)
+ ∂ϕR2(l, 0)KM

(
l − τ̂(l), 0

)]
dl, (3.11)

where δ(y) is the Dirac measure and∂ϕR1(t, 0) = ∂ϕR̃1(t, 0)KS
(
t − τ2(t), t − τ(t), x

)
,

∂ϕR2(t, 0) = ∂ϕR̃2(t, 0)KR
(
t − τ2(t), t − τ̂(t), x

)
,

(3.12)

with ∂ϕR̃1(t, 0) and ∂ϕR̃2(t, 0) defined in (3.4) and (3.5), respectively.

4. Properties of kernel K defined in (3.11)

In what follows, we make the following Hypothesis:

Hypothesis (H): L > 1,M∗KM(α, 0) ≤ z∗ and M∗KM(γ, 0) ≤ z∗, where z∗ is defined in (A4).

Hypothesis (J): J(x, t) > 0 with
∫
R

J(x, t)dx = 1, J(x, t) = J(x, t + T ) and J is nonincreasing in
|x| for every fixed t ∈ R.
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Hypothesis (J) is consistent with the nature of seeds spreading with the wind. Recall that K̄S (t, l) and
K̄R(t, l) are defined in (3.6).

Define

[ ∫ t

l
DS (l)J(l, x)dl

]
(n)

:=


[ ∫ t

l
DS (l)J(l, x)dl

]
∗ · · · ∗

[ ∫ t

l
DS (l)J(l, x)dl

]
︸                                                       ︷︷                                                       ︸

n times

, n ≥ 1;

Dirac measure, n=0.

(4.1)

Lemma 4.1. Assume that Hypothesis (J) is satisfied. Then K̄S and KS have the following explicit
expressions:

K̄S (t, l) = e−
∫ t

l dS (ζ)dζ; (4.2)

KS (t, l, x) = K̄S (t, l)e−
∫ t

l DS (ζ)dζ
{ +∞∑

n=0

[ ∫ t

l
DS (ξ)J(ξ, x)dξ

]
(n)

n!

}
. (4.3)

Proof. Recall that KS is the Green function of ∂tρ = DS (t)(J ∗ ρ − ρ) − dS (t)ρ. It follows that

ρ(t, x : l, ϕ) =
∫
R

KS (t, l, x − y)ϕ(y)dy, t > l, x ∈ R, (4.4)

where ρ(t, x; l, ϕ) is the solution of ρ with initial value ϕ from time l to t. If ϕ ≡ 1, then ρ(t, x; l, ϕ) =∫
R

KS (t, l, y)dy. Besides, ρ(t, x; l, 1) satisfies ∂tρ = −dS (t)ρwith ρ(l) = 1, which means that ρ(t, x; l, 1) =

e−
∫ t

l dS (ξ)dξ .
Next, we derive (4.3) and write the details of proof here. Let us consider the following iteration

system. 
∂tρk+1(t, x) = DS (t)[J(·, t) ∗ ρk(t, ·)](x),
ρ0(s, x) = ϕ(x),
ρk(l, x) = ϕ(x),

t > s ≥ l ≥ 0, k ≥ 0, x ∈ R. (4.5)

By direct calculation, we obtain that

ρ1(t, x) − ρ1(l, x) =
[ ∫ t

l
DS (ξ)J(ξ, ·)dξ

]
∗ ϕ(x) := F(t, ·) ∗ ϕ(x), (4.6)

Then by differential properties of convolution, we have

ρ2(t, x) − ρ2(l, x)

=

∫ t

l
DS (ξ)J(ξ, ·) ∗ [F(ξ, ·) ∗ ϕ(x) + ρ1(l, ·)]dξ(x)

=
[ ∫ t

l
F′ξ(ξ, ·) ∗ F(ξ, ·)dξ

]
∗ ϕ(x) +

[ ∫ t

l
DS (ξ)J(ξ, ·)dξ

]
∗ ρ1(l, x)

=
F(t, ·) ∗ F(t, ·) ∗ ϕ(x)

2
+ F(t, ·) ∗ ϕ(x).

As such, by an induction argument, we conclude that

ρk(t, x; l, ϕ) =
{ k∑

n=0

[
∫ t

l
DS (ξ)J(ξ, ·)dξ](n)

n!

}
∗ ϕ(·)(x), for t > l ≥ 0, x ∈ R, k ≥ 0. (4.7)
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By hypothesis (J), there holds[∫ t

l
DS (l)J(l, ·)dl

]
(n)
≤

[∫ t

l
DS (l)J(l, 0)dl

] [∫ t

l
DS (l)dl

]n−1

.

Then let k→ +∞, it follows that for x ∈ R,

+∞∑
n=0

[
∫ t

l
DS (l)J(l, ·)dl](n)(x)

n!
≤

+∞∑
n=0

∫ t

l
DS (l)J(l, 0)dl

[∫ t

l
DS (l)dl

]n−1

n!
=

∫ t

l
DS (l)J(l, 0)dl∫ t

l
DS (l)dl

e
∫ t

l DS (l)dl.

Applying the Weierstrass convergence theorem, we see that for any t0 > l, the series∑+∞
n=0

[
∫ t

l DS (l)J(l,·)dl](n)(x)
n! convergence uniformly for all x ∈ R and t ∈ [l, t0]. Consequently,

ρ(t, x; l, ϕ) = e−
∫ t

l dS (ξ)+DS (ξ)dξ
{ +∞∑

n=0

[
∫ t

l
DS (l)J(l, ·)dl](n)(x)

n!

}
∗ ϕ. (4.8)

The proof is complete. □

Corollary 1. K̄R and KR have the following explicit expressions:

K̄R(t, l) = e−
∫ t

l dR(ζ)dζ; (4.9)

KR(t, l, x) = K̄R(t, l)
1√

4π
∫ t

l
DR(s)ds

e
− x2

4
∫ t
l DR(s)ds . (4.10)

Note that J(x, t) is asymmetric on x. Before presenting the properties of K , we recall a definition
on the decay rate of dispersal kernel J(x, t).

Definition 4.2. (see e.g., [18]) We say J(x, t) is exponentially bounded if there exists µ > 0 such that∫
R

J(x, t)eµ|x|dx < +∞ for every fixed t ∈ R. We say J(x, t) is exponentially unbounded if for any µ > 0
there exists xµ ∈ R such that J(x, t) ≥ e−µ|x|, |x| ≥ xµ for every fixed t ∈ R.

Lemma 4.3. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied.. Then the following
statements holds.

(i) K is nonincreasing, continuous in |x| ∈ R+/0 and∫
R

K(y)dy ∈ (1,+∞). (4.11)

(ii) If J(x, t) is exponential bounded, then for any µ ∈ (0, µ∗1) and µ ∈ (0, µ∗2),∫
R

K(y)eµydy < +∞ and
∫
R

K(y)e−µydy < +∞, (4.12)
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respectively, where µ∗1 and µ∗2 are defined as

µ∗1 = sup

µ :
∫
R

J(x, t)eµydy < +∞

 (4.13)

and

µ∗2 = sup

µ :
∫
R

J(x, t)e−µydy < +∞

 . (4.14)

(iii) If J(x, t) is exponential unbounded, then∫
R

K(y)eµ|y|dy = +∞. (4.15)

Proof. (i) By (3.2), (3.3), (3.11), (3.12), (4.2) and Fubini’s theorem, we get∫
R

K(y)dy =KM(T, 0) +
∫
R

∫ tβ

tα
KM(T, l) ·

[
∂ϕR1(l, 0)KM(l − τ(l), 0) + ∂ϕR2(l, 0)KM(l − τ̂(l), 0)

]
dldy

=KM(T, 0) +
∫ tβ

tα
KM(T, l)

[
∂ϕR̄1(l, 0)KM(l − τ(l), 0) + ∂ϕR̄2(l, 0)KM(l − τ̂(l), 0)

]
dl

=KM(T, 0) + [1 − KM(T, 0)]L
=1 + (L − 1)[1 − KM(T, 0)].

Clearly, KM(T, 0) ∈ (0, 1), then
∫
R
K(y)dy > 1 due to L > 1, as previously assumed.

(ii) We use the comparison argument to prove this item. Let I[−1,1] be characteristic function on
[−1, 1]. We consider the following evolution system.ρt = DS (t)(J(t, ·) ∗ ρ − ρ)(x) − dS (t)ρ, t > l, x ∈ R,

ρ(l, x) = I[−1,1](x).
(4.16)

From the proof of Lemma 3.1, we know that

ρ(t, x) =
∫
R

KS (t, l, x − y)I[−1,1](y)dy =
∫ 1

−1
KS (t, l, x − y)dy. (4.17)

In view of the asymmetry of J(x, t) on x and (4.1), there exists σ(x) ∈ [−1, 1] such that

ρ(t, x) =
∫ 1

−1
KS (t, l, x − y)dy ≥ KS (t, l, x + σ), x ∈ R. (4.18)

Now we consider the eigenvalue problem of (4.16). Looking for w(t)eλt−µx solving ρt(t, x) =
DS (t) (J(t, ·) ∗ ρ̄ − ρ̄) (x) − dS (t)ρ̄, we deduce that

w′(t)
w(t)

+ λ = DS (t)
[ ∫
R

J(t, y)eµydy − 1
]
− dS (t), (4.19)
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which is well defined for µ ∈ (0, µ∗1). Choosing

λ =
1
T

∫ T

0
DS (ξ)

[ ∫
R

J(ξ, y)eµydy − 1
]
dξ −

1
T

∫ T

0
dS (ξ)dξ. (4.20)

Then we can obtain a positive periodic function w(t) by solving (4.19). Choosing ζ > 0 such that
w(0)e−µ(x−ζ) ≥ I[−1,1](x). Applying comparison principle, we obtain that

ρ(t, x) ≤ w(t)eλt−µ(x−ζ).

Further,
KS (t, l, x) ≤ ρ(t, x − σ) ≤ w(t)eλt+µ(ζ+1)−µx := c1(t, µ)e−µx,∀x ∈ R.

It then follows from (3.11), (3.12) and (4.10) that there exists c2(t, µ) > 0 such that K(y) ≤ c2(t, µ)e−µx

and thus
∫
R
K(y)eµydy < +∞ for any µ ∈ (0, µ∗1), where µ∗1 is defined in (4.13). Similarly,∫

R
K(y)e−µydy < +∞ for any µ ∈ (0, µ∗2), where µ∗2 is defined in (4.14).
(iii) By (4.3) we get

KS (t, l, x) ≥ K̄S (t, l)e−
∫ t

l DS (ξ)dξ
∫ t

l
DS (ξ)J(ξ, x)dξ. (4.21)

If for any µ > 0 there exists xµ ∈ R such that J(x, t) ≥ e−µ|x|, |x| ≥ xµ for every fixed t ∈ R, it then
follows that

∫
R
K(y)eµ|y|dy = +∞. The proof is complete. □

5. The property of Spreading speeds

5.1. Notations

Denote the space C by

C := {ϕ : R→ R | ϕ is bounded and continuous}.

We equipCwith the compact open topology, that is, a sequence ϕn → ϕ inCmeans that ϕn(x) converges
to ϕ(x) uniformly for x in every compact set. Denote Cr := {ϕ ∈ C : r ≥ ϕ ≥ 0} for all r > 0. Define
the monotone function space

M := {ϕ : R→ R | ϕ(x) ≥ ϕ(y), x ≤ y}. (5.1)

which is also endowed with the compact open topology. Also, we may define the ordering inM. For
ϕ, ψ ∈ M, we write ϕ ≥ ψ if ϕ(x) − ψ(x) ≥ 0 for all x ∈ R. DenoteMr := {ϕ ∈ M : r ≥ ϕ ≥ 0} for
r > 0. Finally, a subset U of C is bounded if supu∈U ∥u∥ is finite. For u ∈ U and closed interval I ⊂ R,
define the function uI ∈ C(I,R) by uI(x) = u(x) for all x ∈ I. Given a bounded U ⊂ C, we use UI to
denote the set of {uI : u ∈ U}. We use the Kuratowski measure to define the noncompactness of UI

which is naturally endowed with the uniform topology. The measure is defined as follows.

α(UI) := inf{r > 0|UI has a finite open cover with diameter being less than r}. (5.2)

The set UI is precompact if and only if α(UI) = 0.
For any y ∈ R, we define a translation operator Ty onM by

Ty[ϕ](x) = ϕ(x − y),∀x ∈ R. (5.3)
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5.2. Existence of spreading speed and its variation form

Lemma 5.1. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied. Let z∗ be defined in
(A4), M∗ be defined in Theorem 3.1 and the initial value M0 ∈ C(R,R) satisfies 0 ≤ M0(x) ≤ M∗. Then
Q : CM∗ → CM∗ has the following six properties:

(i) TyQ = QTy, ∀y ∈ R;
(ii) Q is continuous with respect to compact open topology;

(iii) Q is order preserved in the sense that Q[u] ≥ Q[v] whenever u ≥ v in CM∗;
(iv) Q̄ : [0,M∗] → [0,M∗] admits two fixed points 0 and M∗, and for any γ ∈ (0,M∗) one has

Q[γ] > γ;
(v) α(Q[S ](0)) = α(S (0)) = 0 for any S ⊂ CM∗;

(vi) Q[λϕ] ≥ λQ[ϕ], ϕ ∈ CM∗ , λ ∈ (0, 1).

Proof. Item (i) is obvious. Item (iii) follows from the monotonicity of h on [0,M∗]. Item (iv) follows
from Theorem 3.1. Item (v) follows from the boundedness of CM∗ . Item (vi) follows from (A5) and it
then remains to check item (ii), that is, QT [ϕn]→ QT [ϕ] as ϕn → ϕ in CM∗ . In virtue of (A5), we have

|R1(l,KM(l − τ(l), 0)ϕn) − R1(l,KM(l − τ(l), 0)ϕ)| ≤ fξ(l)∂ϕR1(l, 0) ∗ |ϕn − ϕ|KM(l − τ(l), 0)

and

|R2(l,KM(l − τ̂(l), 0)ϕn) − R2(l,KM(l − τ̂(l), 0)ϕ)| ≤ gξ(l)∂ϕR2(l, 0) ∗ |ϕn − ϕ|KM(l − τ̂(l), 0),

where ∂ϕR1(l, 0) and ∂ϕR1(l, 0) are defined in (3.12). Then by the definition of QT in (3.1), (3.11) and
the Fubini’s theorem, we have

|QT [ϕn] − QT [ϕ]|

≤KM(T, 0)|ϕn − ϕ| +

∫ tβ

tα
KM(T, l)|R1(l,KM(l − τ(l), 0)ϕn) − R1(l,KM(l − τ(l), 0)ϕ)|dl

+

∫ tβ

tα
KM(T, l)|R2(l,KM(l − τ̂(l), 0)ϕn) − R2(l,KM(l − τ̂(l), 0)ϕ)|dl

≤KM(T, 0)|ϕn − ϕ| +

∫ tβ

tα
KM(T, l) fξ(l)∂ϕR1(l, 0) ∗ |ϕn − ϕ|KM(l − τ(l), 0)dl

+

∫ tβ

tα
KM(T, l)gξ(l)∂ϕR2(l, 0) ∗ |ϕn − ϕ|KM(l − τ̂(l), 0)dl

≤

∫
R

K(y)|ϕn − ϕ|(x − y)dy.

Define ψn := |ϕn − ϕ|. We claim that if ψn → 0, ψn ∈ CM∗ , then K ∗ ψn → 0, that is, for any ε > 0
and l > 0, there exists N = N(ε, l) such that K ∗ ψn < ε for |x| ≤ l and n ≥ N. Indeed, by (4.11), we
know that for any ε > 0, there exists c = c(ε) such that

∫
|y|≥c
K(y) ≤ ε

2M∗ . It then follows that

K ∗ ψn(x) =
∫
|y|≥c
K(y)ψn(x − y)dy +

∫
|y|≤c
K(y)ψn(x − y)dy

≤
ε

2
+

∫
|y|≤c
K(y)ψn(x − y)dy.
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For any l > 0, |x| ≤ l and |y| ≤ c imply that |x − y| ≤ l + c. For such l + c and ε, since ψn → 0, we see
that there exists N(ε, l) > 0 such that

ψn(s) <
ε

2
∫
R

K(y)dy
, |s| ≤ l + c, n ≥ N.

Therefore, K ∗ ψn ≤ ε for |x| ≤ l and n ≥ N. The proof is complete. □

In virtue of Lemma 5.1, QT is an operator on CM∗ satisfying item (i)–(vi) and let c∗ be its asymptotic
speed of spread. It is worth noting that J(x, t) is asymmetric on x, which implies that the rightward
direction of spreading is not equal to the leftward one. Define c∗+ and c∗− respectively, where c∗+ repre-
sents the rightward spreading speed. Similarly, c∗− defines the leftward spreading speed by choosing a
nondecreasing initial function ϕ in the phase space

{ϕ : R→ [0,M∗] | ϕ(x) ≤ ϕ(y), x ≤ y},

whose monotonicity is opposite to that of (5.1). Based on Lemma 4.3, the conclusions about spreading
speed are presented as follows.

Theorem 5.2. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied. Then Poincaré map
(3.1) admits leftward and rightward spreading speeds satisfying c∗− + c∗+ > 0. Furthermore,

(i) c∗+ < +∞ and c∗− < +∞ if J(x, t) is exponentially bounded, and they can be characterized by the
variational forms

c∗+ = inf
µ∈(0,µ∗1)

1
µ

ln
{∫
R

eµyK(y)dy
}
, c∗− = inf

µ∈(0,µ∗2)

1
µ

ln
{∫
R

e−µyK(y)dy
}
, (5.4)

where µ∗1, µ∗2 and K(y) are defined in (4.13), (4.14) and (3.11), respectively.
(ii) c∗+ = +∞ and c∗− = +∞ if J(x, t) is exponentially unbounded.

Proof. According to Lemma 5.1, we have the existence of the rightward spreading speed c∗+ and the
leftward one c∗− in sense of [22, Theorem 2.17]. We first claim that c∗+ + c∗− > 0. Let us postpone the
proof of the claim and quickly reach the conclusion.

Recall that the poincaré map QT of (2.10) during [0,T ] is defined in (3.1), where R1 + R2 is defined
in (2.9). Let LT be the poincare map of

∂

∂t
M(t, x) = −dM(t)M(t, x) + ∂ϕR1(t, 0) ∗ M(t − τ(t), x) + ∂ϕR2(t, 0) ∗ M(t − τ̂(t), x), (5.5)

where ∂ϕR1(t, 0) and ∂ϕR2(t, 0) are defined in (3.12). As a result of (A5), we know that QT is sublinear.
Then QT [ϕ] ≤ LT [ϕ] for all ϕ ∈ CM∗ . By (A2) and (A4), it is easily to check that for every ς ∈ (0, 1),
there is a positive number ϵ such that QT [ϕ] ≥ (1 − ς)LT [ϕ] for all ϕ ∈ Cϵ . Accordingly, the corollary
on page 371 of [23] tells us that if

∫
R

eµym(y; dy) converges for all µ, then the rightward spreading speed
c∗+ can be characterized in the following manner.

c∗+ = inf
µ>0

(1/µ)ln
{ ∫
R

eµym(y; dy)
}
. (5.6)
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It is easily checked that ∫
R

eµym(y; dy) =
∫
R

eµyK(y)dy,

where K is defined in (3.11). Further, [24, Theorem 2.1] says that the formula (5.6) is valid, with the
infimum taken only over the µ for which the integral converges, provided that

∫
R

eµym(y; dy) converges
for at least one positive value of µ. Thus, by Lemma 4.3 we infer that c∗+ < +∞ and c∗− < +∞ for
µ ∈ (0, µ∗), which can be characterized by (5.4).

Furthermore, in the light of [24, Theorem 2.2], combining with Lemma 4.3, we conclude that (ii)
holds.

Proof of the claim. Let A > 0 and define

KA
S (t, s, x) =

KS (t, s, x), −A ≤ x ≤ A,
0, otherwise,

In the form of QT [ϕ], we replace KS by KA
S , yielding an auxiliary map QA

T . Let K(y) be replaced by
KA(y). Then QA

T trivially admits leftward/rightward spreading speeds c∗±(A). Furthermore, it follows
from [23, Proposition 5.5] that c∗+ + c∗− > c∗+(A)+ c∗−(A), where A > 0 is sufficiently large to ensure that
item (iv) in Lemma 5.1 holds, as well as item (i) in Lemma 4.3, that is∫

R

KA(y)dy ∈ (1,+∞). (5.7)

Define

λA(µ) =
1
T

ln
{∫
R

eµyKA(y)dy
}
, (5.8)

where T is the period of system (2.8). In virtue of (3.1), (2.9) and the expression of KR, that is

KR(t, l, x) = K̄R(t, l)
1√

4π
∫ t

l
DR(s)ds

e
− x2

4
∫ t
l DR(s)ds ,

we infer that
lim
µ→+∞

1
µ
λA(µ) = +∞, lim

µ→+∞

1
µ
λA(−µ) = +∞.

Suppose that the minimum values of λ(±µ)
µ

are attained at µ1 > 0 and µ2 > 0 respectively, then by the
convexity of the principle eigenvalue (See Ref. [22]), we have that

c∗+(A) + c∗−(A) ≥
µ1 + µ2

µ1µ2
λA(0).

It then follows from (5.7) and (5.8) that the proof is complete. □

6. Propagation dynamics of model (2.8) when J(x, t) is exponentially bounded

Now we know the existence of spreading speeds and their variation expression. Further, we will
describe the coincidence of spreading speeds with the minimal wave speed by discussing the existence
of traveling waves. Besides, for the original model (2.8), the asymptotic property of periodic semiflow
is shown, as well as the existence of periodic traveling wave.
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6.1. The mature equation

Lemma 6.1. Assume that the conditions in Lemma 5.1 hold. Then the conclusions in Lemma 5.1 still
hold for QT with CM∗ being replaced byMM∗ . Further, QT maps left-continuous or right-continuous
functions to left-continuous or right-continuous functions, respectively.

Proof. It suffices to prove that QT : MM∗ → MM∗ maps left-continuous functions to left-continuous
functions because the conclusions in Lemma 5.1 are still valid with CM∗ being replaced byMM∗ , which
can be checked similarly with the proof of Lemma 5.1. Recall that

KS (t, l, x) = K̄S (t, l)e−
∫ t

l DS (ξ)dξ
+∞∑
n=0

[
∫ t

l
DS (l)J(l, ·)dl](n)

n!
(x), t > l ≥ 0. (6.1)

Note that
∑+∞

n=0
1
n! [

∫ t

l
DS (l)J(l, ·)dl](n) ∈ L1 in view of hypothesis (J). Applying the Lebesgue domi-

nated convergence theorem, we know that KS (t, l, ·) ∗ ϕ is left-continuous if ϕ is left-continuous, so is
KR(t, l, ·) ∗ ϕ. In view of (2.9) and (3.1), we know that QT maps left-continuous or right-continuous
functions to left-continuous or right-continuous functions, respectively. □

Applying the dynamical system theory in [25], we shall establish the existence of the minimal wave
speed and its coincide with c∗+/T , as well as the existence of T -periodic traveling wave.

Lemma 6.2. {Qt}t≥0 is T -periodic semiflow on CM∗ with QT being defined in (3.1).

Proof. It is worth noting that {Qt}t≥0 has an explicit expression for t ∈ [0,T ], in view of (2.10) and the
mature population experience only natural death. Obviously, Q0[v] = v,∀v ∈ CM∗ . It follows from a
standard argument that Q(t, v) := Qt[v] is continuous in (t, v) on [0,+∞) × CM∗ . Finally, as a special
case of [26, Lemma 3.5], it is easy to check that Qt+T [v] = Qt[QT [v]],∀t ≥ 0, v ∈ CM∗ , which completes
the proof. □

Let W1(t, x − ct) be a periodic traveling wave of the T -periodic semiflow {Qt}t≥0. We say that
W1(t, x − ct) connects M∗(t) to 0 if W1(t,−∞) = M∗(t) and W1(t,+∞) = 0. In view of Lemma 6.1, 6.2
and [25, Remark 3.7, Theorem 3.8], we obtain the following conclusions:

Theorem 6.3. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied. Suppose that J(x, t) is
exponentially bounded, that M∗ = M∗(0) and that c∗+ and c∗− are the rightward and leftward asymptotic
spread speeds of QT respectively, satisfying c∗− + c∗+ > 0. Then following statements are valid:

(i) For any c > c∗+/T and c′ > c∗−/T, if v ∈ CM∗ with 0 ≤ v ≤ M∗, and v(0, x) = 0 for x outside a
bounded internal, then

lim
t→+∞, x≥ct or x≤−c′t

Qt[v](x) = 0;

(ii) For any −c∗−/T < −c′ < c < c∗+/T and σ >> 0, if v ∈ CM∗ and v(0, x) ≥ σ for x on any internal of
length l > 0, then

lim
t→+∞, −c′t≤x≤ct

∣∣∣Qt[v](x) − M∗(t)
∣∣∣ = 0; (6.2)

(iii) For every c < c∗+/T, {Qt}t≥0 admits no T-periodic traveling wave W1(t, x− ct) connecting M∗(t) to
0, and for every c > c∗+/T, {Qt}t≥0 has a T-periodic traveling wave W1(t, x − ct) connecting M∗(t)
to 0 such that W1(t, s) is left-continuous and nonincreasing in s ∈ R;
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(iv) For any c < c∗−/T, {Qt}t≥0 admits no T-periodic traveling wave W2(t, x+ct) connecting 0 to M∗(t),
and for any c > c∗−/T, {Qt}t≥0 has a T-periodic traveling wave W2(t, x + ct) connecting 0 to M∗(t)
such that W2(t, s) is right-continuous and nondecreasing in s ∈ R.

6.2. The immature equation

Write the immature equation in (2.8) briefly as

∂

∂t
I(t, x) = − dI(t)I(t, x) + F1

(
t,M

(
t − τ1(t), ·

))
(x) + F2

(
t,M

(
t − τ̂1(t), ·

))
(x)

− R1

(
t,M

(
t − τ(t), ·

))
(x) − R2

(
t,M

(
t − τ̂(t), ·

))
(x), (6.3)

where R1 + R2 is defined in (2.9) and

F1

(
t,M

(
t − τ1(t), ·

))
(x) = KS

(
t, t − τ1(t), ·

)
∗ b1

(
t − τ1(t),M

(
t − τ1(t), ·

))
(x), (6.4)

F2

(
t,M

(
t − τ̂1(t), ·

))
(x) = KR

(
t, t − τ̂1(t), ·

)
∗ b2

(
t − τ̂1(t),M

(
t − τ̂1(t), ·

))
(x). (6.5)

We have used the evolution idea introduced in [25] to show that c∗+/T is the spreading speed and the
minimal speed of time periodic traveling waves for the mature population. Next we will use the con-
servation equality (see, e.g., [19]), to prove the same propagation dynamics of the immature population
as the mature.

We first prove a conservation equality whose biological meaning is immature population will be-
come mature in the same year as when they were born.

Lemma 6.4. Assume that (A1)–(A5) are satisfied. Let M(t, x) be a solution of the mature equation in
(2.8). Then ∫ T

0
KI(t, l)

(
F1

(
l,M

(
l − τ1(l), ·

))
(x) + F2

(
l,M

(
l − τ̂1(l), ·

))
(x)

)
dl

=

∫ T

0
KI(t, l)

(
R1

(
l,M

(
l − τ(l), ·

))
(x) + R2

(
l,M

(
l − τ̂(l), ·

))
(x)

)
dl, (6.6)

where KI(t, l) is the Green function of ∂tρ = −dI(t)ρ.

Proof. From the definition of R1 + R2 in (2.9), and combining with the group property of KI , we have

KI(t, l)
(
R1

(
l,M

(
l − τ(l), ·

))
(x) + R2

(
l,M

(
l − τ̂(l), ·

))
(x)

)
=
(
1 − τ′2(l)

)
KI

(
t, l − τ2(l)

)
·
[
KS

(
l − τ2(l), l − τ(l), ·

)
∗ b1

(
l − τ(l),M

(
l − τ(l), ·

))
(x)

+ KR
(
l − τ2(l), l − τ̂(l), ·

)
∗ b2

(
l − τ̂(l),M

(
l − τ̂(l), ·

))
(x)

]
.

(6.7)

Note that for l < [tα, tβ], R1(l, ϕ) ≡ 0 and R2(l, ϕ) ≡ 0. Similarly, for l < [rα, rβ], F1(l, ψ) ≡ 0 and
F2(l, ψ) ≡ 0. Besides, b1(l, ϕ) ≡ 0 for l < [α, β], as well as b2(l, ϕ) ≡ 0 for l < [γ, η]. It then follows
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from (6.7) and (2.7) that∫ T

0
KI(t, l)

(
R1

(
l,M

(
l − τ(l), ·

))
(x) + R2

(
l,M

(
l − τ̂(l), ·

))
(x)

)
dl

=

∫ tβ

tα
KI(t, l)

(
R1

(
l,M

(
l − τ(l), ·

))
(x) + R2

(
l,M

(
l − τ̂(l), ·

))
(x)

)
dl

=

∫ rβ

rα
KI(t, s)KS (s, s − τ1(s), ·) ∗ b1

(
s − τ1(s),M(s − τ1(s), ·)

)
(x)ds

+

∫ rβ

rα
KI(t, s)KR(s, s − τ̂1(s), ·) ∗ b2

(
s − τ̂1(s),M(s − τ̂1(s), ·)

)
(x)ds

=

∫ T

0
KI(t, s)

(
F1

(
s,M

(
s − τ1(s), ·

))
(x) + F2

(
s,M

(
s − τ̂1(s), ·

))
(x)

)
ds.

The proof is complete. □

Clearly, the immature equation is linear and inhomogeneous in (6.3). Then we write it as the
following integral form

I(t, x) = KI(t, 0)I(0, x) +
∫ t

0
KI(t, l)Y(l, x)dl, (6.8)

where

Y(l, x) :=F1

(
l,M

(
l − τ1(l), ·

))
(x) + F2

(
l,M

(
l − τ̂1(l), ·

))
(x)

− R1

(
l,M

(
l − τ(l), ·

))
(x) − R2

(
l,M

(
l − τ̂(l), ·

))
(x). (6.9)

Now we are in position to present the propagation dynamics of the immature population.

Theorem 6.5. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied and that J(x, t) is
exponentially bounded. Let M∗(t) be defined in (6.2) and M(t, x) be a solution of the mature equation
in (2.8). Then the following statements are valid:

(i) If M(t, x) ≡ M∗(t), then (6.3) admits the unique nontrivial bounded periodic solution, defined as
I∗(t);

(ii) If M(t, x) = W1(t, x−ct) is a periodic traveling wave, then (6.3) admits a unique periodic traveling
wave V1(t, x − ct) with V1(t,+∞) = 0 and V1(t,−∞) = I∗(t);

(iii) If M(t, x) = W2(t, x+ct) is a periodic traveling wave, then (6.3) admits a unique periodic traveling
wave V2(t, x + ct) with V2(t,−∞) = 0 and V2(t,+∞) = I∗(t).

Proof. In virtue of the proof of [19, Theorem 5.3], we first prove the uniqueness. We write down the
details here. If there are two solutions I1(x, t) and I2(x, t), then Ĩ := I1 − I2 satisfies Ĩt = −dI(t)Ĩ(t, x),
for which the only bounded solution is zero.

Next we prove the existence. Indeed, choosing I(0, x) ≡ 0, then (6.8) becomes

I(t, x) =
∫ t

0
KI(t, l)Y(l, ·)(x)dl. (6.10)

Now we proceed with two cases:
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(i) M(t, x) ≡ M∗(t). In this case, Y(l, x) and I(x, t) are respectively independent of x, written as Ȳ(t)
and I∗(t). Clearly, Ȳ(t) is periodic with

∫ T

0
KI(t, l)Ȳ(l)dl = 0 in virtue of (6.6) and (6.9). Then

I∗(t + T ) =
∫ t+T

0
KI(t + T, l)Ȳ(l)dl

=
[ ∫ T

0
KI(t, l)Ȳ(l)dl

]
KI(t + T, t) +

∫ t+T

T
KI(t + T, l)Ȳ(l)dl

=

∫ t

0
KI(t + T, r + T )Ȳ(r + T )d(r)

= I∗(t).

(6.11)

(ii) M(t, x) = W1(t, x − ct). Now

Y(l, x)

=F1

(
l,W1

(
l − τ1(l), · − cl + cτ1(l)

))
(x) + F2

(
l,W1

(
l − τ̂1(l), · − cl + cτ̂1(l)

))
(x)

− R1

(
l,W1

(
l − τ(l), · − cl + cτ(l)

))
(x) − R2

(
l,W1

(
l − τ̂(l), · − cl + cτ̂(l)

))
(x),

and we define

V1(t, ζ) :=
∫ t

0
KI(t, l)Y(l, ·)(ζ + ct)dl. (6.12)

Obviously, V1(t, x − ct) is a solution of (6.3). Next we prove that V1 is periodic in t. Indeed, note that
Y(l + T, x + cT ) = Y(l, x) in the light of W1(t, x − ct) is a periodic traveling wave. It then follows from
(6.8) that

V1(t + T, ζ) =
∫ t+T

T
KI(t + T, l)Y(l, ·)(ζ + ct + cT )dl

=

∫ t

0
KI(t + T, ζ + T )Y(ζ + T, · + cT )(ζ + ct)dζ (6.13)

= V1(t, ζ).

Finally, we prove V1(t,+∞) = 0 and V1(t,−∞) = I∗(t). Indeed,

Y(l,+∞) =F1

(
l,W1

(
l − τ1(l),+∞

))
(x) + F2

(
l,W1

(
l − τ̂1(l),+∞

))
(x)

− R1

(
l,W1

(
l − τ(l),+∞

))
(x) − R2

(
l,W1

(
l − τ̂(l),+∞

))
(x), (6.14)

which is uniformly in l ∈ R in view of the periodicity in l. Furthermore, in (6.12), passing ζ → +∞ we
obtain that

V1(t,+∞) =
∫ t

0
KI(t, l)Y(l,+∞)dl. (6.15)

Clearly, V1(t,+∞) = 0 and V1(t,−∞) = I∗(t) by (6.14), (6.11) and Hypothesis (A4).
(iii) M(t, x) = W2(t, x + ct). After the similar discussion as case (ii), we can easily get that (6.3)

admits the unique periodic traveling wave V2(t, x + ct) with V2(t,−∞) = 0, V2(t,+∞) = I∗(t). Then the
proof is complete. □
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Theorem 6.6. Assume that (A1)–(A5) and Hypotheses (H) and (J) are satisfied. Suppose that J(x, t)
is exponentially bounded and that ϕ ∈ C(R, [0,M∗]) \ {0} and has a nonempty compact support. If
M(t, x; ϕ) be a solution of the mature equation in (2.8) with rightward/leftward spreading speeds c∗±/T,
then, for any bounded initial condition ψ, I(t, x;ψ) in (2.8) has the following property:

(i) For any c > c∗+/T and c′ > c∗−/T,

lim sup
t→+∞, x≥ct or x≤−c′t

I(t, x;ψ) = 0; (6.16)

(ii) For any −c∗−/T < −c′ < c < c∗+/T,

lim sup
t→+∞, −c′t≤x≤ct

∣∣∣I(t, x;ψ) − I∗(t)
∣∣∣ = 0. (6.17)

Proof. We first claim that for any fixed (l, y) ∈ R+ × R, the following statements are valid:

(1) For every c > c∗+/T and c′ > c∗−/T ,

lim sup
t→+∞, x≥ct or x≤−c′t

bi (t − l,M(t − l, x − y)) = 0, i = 1, 2; (6.18)

(2) For any −c∗−/T < −c′ < c < c∗+/T ,

lim sup
t→+∞, −c′t≤x≤ct

|bi (t − l,M(t − l, x − y)) − bi (t − l,M∗(t − l))| = 0, i = 1, 2. (6.19)

Let us postpone the proof of the claim and reach the conclusion quickly. Define N := sup
x∈R
∥ψ(x)∥.

Define s1 = l+ τ1(t − l), ŝ1 = l+ τ̂1(t − l), s2 = l+ τ2(t − l), s = l+ τ(t − l) and ŝ = l+ τ̂(t − l), l ∈ [0, t].
Then by (6.8) and (2.8), we infer that

I(t, x) ≤NKI(t, 0) +
∫ t

0
KI(t, t − l)

∫
R

KS
(
t − l, t − s1, y

)
· b1

(
t − s1,M

(
t − s1, x − y

))
+ KR

(
t − l, t − ŝ1, y

)
· b2

(
t − ŝ1,M

(
t − ŝ1, x − y

))
dy −

(
1 − τ′2(t − l)

)
KI

(
t − l, t − s2

)
·

∫
R

[
KS

(
t − s2, t − s, y

)
b1

(
t − s,M

(
t − s, x − y

))
+ KR

(
t − s2, t − ŝ, y

)
b2

(
t − ŝ,M

(
t − ŝ, x − y

))]
dydl,

where KI(t, 0) = e−
∫ t

0 dI (ς)dς. In advantage of the reverse Fatou’s lemma and (6.18), we infer that (6.16)
holds. Using the same idea, we can prove that (6.17) holds, thanks to (6.19) and (6.11).

Proof of the claim. Thanks to (A4) and (A5),

b1 (t,M (t, x)) ≤ p
(
t
)
h′(0)M

(
t, x

)
and

b2 (t,M (t, x)) ≤ q (t) g′(0)M (t, x) .

Then by Theorem 6.3, we have

lim sup
t→+∞, x≥ct or x≤−c′t

bi (t,M (t, x)) = 0, i = 1, 2.

In virtue of the proof of [27, Theorem 3.2], (6.18) holds. Similarly, (6.19) holds thanks to Lipschitz
continuity of bi (t,M (t, x)) , i = 1, 2. □
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7. Conclusions

Based on the ecological characteristics of Canada goldenrod in literature, we ideally separate its
life cycle into distinct stages and propose a toy stage-structured population model with two kinds of
dispersal modes, see (2.8); trying to explain why the goldenrod can successfully invade with a fast
speed. It turns out that the locally rhizome growth helps the goldenrod persist and the seed dispersal
helps the goldenrod spread quickly.

More precisely, Theorem 3.1 establishes a threshold dynamics for the population persistence,
where the threshold parameter L consists of two parts; one is increasing in the seed reproduction
rate p(t − τ(t))h′(0) and the other is increasing in the rhizome growth rate. From this we can infer
that a large turbulence on the seed reproduction (i.e., p(t − τ(t)) might be small for some years) cannot
significantly affect the persistence of Canada goldenrod, since the rhizome growth usually is more ro-
bust. However, seed can disperse with a long distance by wind, and hence it can result in fast invasion.
By the variational characterization of the invasion speed established in Theorem 5.2, we see that the
invasion speed heavily depends on the seed dispersal kernel J; if J is exponentially bounded then the
speed is finite, while if J is exponentially unbounded then the speed is infinite. The later case may
result in an accelerating invasion, which will be studied in another work. When the invasion speed is
finite, a family of time periodic invasion front are established in Theorem 6.3.

As a non-native plant, Canada goldenrod is now invading many places in East and Central China.
For such an invasion phenomena, we found that few studies are done from mathematical modeling
viewpoint. In field study, the invasion process is much more complicated than the ideal scenario that
we assumed here. For example, the spatial heterogeneity is an important factor and it may cause various
complexities. We hope this work may stimulate further studies for this plant invasion.
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