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Abstract: Controlling an epidemiological model is often performed using optimal control theory tech-
niques for which the solution depends on the equations of the controlled system, objective functional
and possible state and/or control constraints. In this paper, we propose a model-free control approach
based on an algorithm that operates in ‘real-time’ and drives the state solution according to a direct
feedback on the state solution that is aimed to be minimized, and without knowing explicitly the equa-
tions of the controlled system. We consider a concrete epidemic problem of minimizing the number
of HIV infected individuals, through the preventive measure pre-exposure prophylaxis (PrEP) given
to susceptible individuals. The solutions must satisfy control and mixed state-control constraints that
represent the limitations on PrEP implementation. Our model-free based control algorithm allows to
close the loop between the number of infected individuals with HIV and the supply of PrEP medication
‘in real time’, in such a manner that the number of infected individuals is asymptotically reduced and
the number of individuals under PrEP medication remains below a fixed constant value. We prove the
efficiency of our approach and compare the model-free control solutions with the ones obtained using a
classical optimal control approach via Pontryagin maximum principle. The performed numerical sim-
ulations allow us to conclude that the model-free based control strategy highlights new and interesting
performances compared with the classical optimal control approach.
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1. Introduction

The SICA (Susceptible-Infected-Chronic-AIDS) compartmental model for HIV/AIDS transmission
dynamics was proposed by Silva and Torres in their seminal paper [1]. Since then, the model has

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2022034


760

been extended to stochastic systems of differential equations [2, 3], to fractional-order [4, 5] as well as
discrete-time dynamics [6], and applied with success to describe very different HIV/AIDS epidemics,
like the ones in Cape Verde [7, 8] or Morocco [9]. For a survey see [10].

In this work, we consider a SICA epidemic problem of controlling the transmission of the human
immunodeficiency viruses (HIV), by considering not only the medical treatment with multiple an-
tiretroviral (ART) drugs, but also the pre-exposure prophylaxis (PrEP), which are medicines taken to
prevent getting HIV infection. According to the Centers for Disease Control and Prevention, PrEP
is highly effective for preventing HIV, when taken as prescribed, and reduces the risk of getting HIV
from sex and from injection drug use by about 99 and 74%, respectively [11].

The main contribution of this work is to propose a model-free based control algorithm that closes
the loop between the infected individuals with HIV and PreP medication, in such manner that the med-
ication is driven in ‘real-time’, according to the number of infected individuals that has to be asymp-
totically reduced. We highlight that model-free control offers the advantages of a simple Proportional-
Integral-Derivative (PID) controller in the framework of model-free design, that is, one whose param-
eters can be easily tuned without a precise knowledge of the controlled epidemiological model.

The model-free control methodology, originally proposed by Fliess and Join in [12], has been de-
signed to control a priori any “unknown” dynamical system in a “robust” manner, and is referred to
as “a self-tuning regulator” in [13]. This control law can be considered as an alternative to PI and
PID controllers [14] and the performances are really satisfactory taking into account that the control
is calculated based only on the information provided by the controlled input and the measured output
signal of the controlled systems. This control law has been extensively and successfully applied to
control many nonlinear processes: see, e.g., [12, 15, 16] and the references therein. In particular, some
applications have been dedicated to the control of chemistry and biological processes [15, 17–20], in-
cluding the development of an artificial pancreas [21]. A derivative-free-based version of this control
algorithm has been proposed by the first author in [22], for which some interesting capabilities of on-
line optimization have been highlighted. To the best of our knowledge, the application of model-free
control to SICA modeling has never been discussed before.

Here, we compare the solutions obtained by the model-free control method with the corresponding
solutions of an optimal control problem for HIV/AIDS transmission from [8], which has a mixed state-
control constraint. In [8], the control system is based on a SICAE (Susceptible, HIV-Infected, Chronic
HIV-infected under ART, AIDS-symptomatic individuals, E-under PrEP medication) model for the
transmission of HIV in a homogeneously mixing population. The control u represents the fraction of
susceptible individuals under PrEP, with 0 ≤ u(t) ≤ 1, that is, when u(t) = 0, no susceptible individual
takes PrEP at time t, and when u(t) = 1 all susceptible individuals are taking PrEP at time t. The
mixed state-control constraint refers to the fact that only people who are HIV-negative and at a very
high risk of HIV infection should take PrEP, and also to the high costs of PrEP medication. Therefore,
the number of susceptible individuals that takes PrEP, at each day, must be bounded by a positive
constant. Moreover, the cost functional, which is aimed to be minimized, represents a balance between
the number of HIV infected individuals and the costs associated with PrEP implementation.

The paper is structured as follows. In Section 2, we propose a model-free control method and the
procedure to minimize the HIV infected cases is described. In Section 3, we present some numerical
simulations and provide a comparison of the results obtained using the model-free based approach with
the ones in [8] from the Pontryagin maximum principle. Section 4 discusses and compares the results.
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Finally, some concluding remarks and possible directions for future work are given in Section 5.

2. Materials and methods

In this section, we propose our model-free based control method and apply it to an epidemiological
problem of minimizing HIV-infected individuals.

2.1. Principle of the model-free based control

Model-free control was introduced in 2008 and 2009 by Fliess and Join in [23,24]. It is an alternative
technique to control complex systems based on elementary continuously updated local modeling via
unique knowledge of the input-output behavior. The key feature of this approach lies in the fact that the
control system, which might be highly nonlinear and/or time-varying, is taken into account without any
modeling procedure [25]. The model-free based control approach has been successfully implemented
in concrete applications to diverse fields, ranging from intelligent transportation systems to energy
management, etc., see [12] and references cited therein. To the best of our knowledge, no one as yet
used this approach in the context of epidemiology.

Consider a nonlinear dynamical system f : u 7→ y to control:{
ẋ = f (x, u),
y = g(x),

(2.1)

where f is the function describing the behavior of a nonlinear system and x ∈ Rn is the state vector.
The proposed control is an application Cπ : (y, y∗) 7→ u, whose purpose is to control the output y
of system (2.1) following an output reference y∗. In simulation, the system (2.1) is controlled in its
“original formulation”, without any modification or linearization.

For any discrete moment tk, k ∈ N∗, one defines the discrete controller Cπ : (y, y∗) 7→ u as an
integrator associated to a numerical series (Ψk)k∈N∗ , symbolically represented by

uk = Cπ(yk, y∗k) = Ψk ·

∫ t

0
Ki(y∗k − yk−1) d τ (2.2)

with the recursive term
Ψk = Ψk−1 + Kp(kαe−kβk − yk−1),

where y∗ is the output (or tracking) reference trajectory; Kp and Ki are real positive tuning gains;
εk−1 = y∗k − yk−1 is the tracking error; and kαe−kβk is an initialization function, where kα and kβ are real
positive constants. In practice, the integral part is discretized using, for example, Riemann sums.

The set of the Cπ-parameters of the controller, is defined as the set of the tuning coefficients
{Kp,Ki, kα, kβ}.

2.2. Methodology

Consider the problem of minimizing the number of infected individuals with HIV, given by the
state trajectory I, through the control measure u associated to PrEP medication, and satisfying a mixed
state-control constraint S u ≤ γmax, where γmax is a positive constant.
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The control sequence is divided into two steps, in order to manage, separately, the increasing u
transient and the associated decreasing u transient that must decrease afterwards both the infected
cases and the control input u to lower values on u and I. Concerning the control input u, it is expected
that u(t > t f ) = 0, where t f is the time from which the medication is stopped.

• A first sequence, associated to the setting up of the medication, aims to progressively increase
the medication (and thus start decreasing the infected states) until a certain threshold of infected
cases is reached, above which the number of infected cases could be considered as stabilizable
around a low value. This control sequence can be managed by a simple L-linear or Q-quadratic
slope, such as

(slope) u(t) = u0 + L · t (quadratic) u(t) = u0 + Q · t2 (2.3)

driven in open-loop, i.e., independently from any feedback of the infected state, that increases
gradually the medication while satisfying the constraint on S u ≤ η due to the remaining high
level of the susceptible cases. It appears crucial to accelerate the medication at the beginning, in
order to reach rapidly γmax and allow a strong decreasing of the infected cases. This point will be
discussed later in Section 3.

• Denote umax = max u(t), the maximum value of u. The second sequence is associated to the
decrease of the medication until the infected state is stabilized around a low value. This sequence
is managed by our proposed model-free based control that interacts, in real-time, with the number
of infected cases and, consequently, calculates the “optimal” medication u in order to decrease
and stabilize the infected state. According to Eq (2.2), the control reads:

uk = Ψk ·

∫ t

0
Ki(I∗k − Ik−1) d τ with Ψk = Ψk−1 + Kp(kαe−kβk − Ik−1),

where I∗ denotes the infected cases reference that practically can be chosen as I∗ = min I(t), where the
minimum value of I can be reached online, updating the tracking reference and, therefore, ensuring
that the control law is “synchronized” on the lowest value that can be reachable. It is worth to note
that, depending on the behavior of the closed-loop, a saturation is added to bound the controlled u:
0 ≤ u ≤ umax ≤ 1.

The implementation of the control scheme is depicted in Figure 1, where the control sequence
starts from the transient slope or the quadratic function and then, once umax is reached, switches to
the proposed model-free based controller. The parameters of the control sequence to be adjusted,
comprise the Cπ-parameters set of the model-free control algorithm and the (u0, L,Q) parameters of
the first sequence, depending if a linear or a quadratic slope is involved.

Additional constraints. The slope can be adjusted according to a state-control constraint that deter-
mines the maximum number of susceptible individuals that take PrEP medication, at each instant of
time. This constraint reads as S (t) · u(t) < γmax, for all t, where γmax is the corresponding upper bound.

To properly tune each sequence, in order to satisfy both the state-control constraint as well as to
minimize the cost criteria, a derivative-free based optimization procedure can be applied [26].
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Figure 1. Proposed scheme to control a nonlinear system.
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(b) Evolution of the controlled medication u versus time (in years).

Figure 2. Evaluation of the unconstrained model-free based control with slope as first se-
quence.
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2.3. Classical optimal control problem applied to the HIV/AIDS SICAE model with a mixed
state-control constraint

Consider the mathematical model for HIV/AIDS transmission in a homogeneously mixing popula-
tion proposed in [8] and based in [1, 7].

The model subdivides human population into five mutually-exclusive compartments: susceptible
individuals (S ); HIV-infected individuals with no clinical symptoms of AIDS (the virus is living or
developing in the individuals but without producing symptoms or only mild ones) but able to transmit
HIV to other individuals (I); HIV-infected individuals under ART treatment (the so called chronic
stage) with a viral load remaining low (C); HIV-infected individuals with AIDS clinical symptoms
(A); individuals that are under PrEP medication (E). The total population at time t, denoted by N(t),
is given by N(t) = S (t) + I(t) + C(t) + A(t) + E(t). The model assumptions are the following [1, 8].
Effective contact with people infected with HIV is at a rate λ, given by

λ =
β

N
(I + ηC C + ηAA) ,

where β is the effective contact rate for HIV transmission. The modification parameter ηA ≥ 1 accounts
for the relative infectiousness of individuals with AIDS symptoms, in comparison to those infected with
HIV with no AIDS symptoms. Individuals with AIDS symptoms are more infectious than HIV-infected
individuals (pre-AIDS) because they have a higher viral load and there is a positive correlation between
viral load and infectiousness [27]. On the other hand, ηC ≤ 1 translates the partial restoration of
immune function of individuals with HIV infection that use ART correctly [28]. All individuals suffer
from natural death, at a constant rate µ. HIV-infected individuals, with and without AIDS symptoms,
have access to ART treatment. HIV-infected individuals with no AIDS symptoms I progress to the class
of individuals with HIV infection under ART treatment C at a rate φ, and HIV-infected individuals with
AIDS symptoms are treated for HIV, at rate α. HIV-infected individuals with AIDS symptoms A, that
start treatment, move to the class of HIV-infected individuals I, moving to the chronic class C only if
the treatment is maintained. HIV-infected individuals with no AIDS symptoms I that do not take ART
treatment progress to the AIDS class A, at rate ρ. Individuals in the class C that stop ART medication
are transferred to the class I, at a rate ω. Only HIV-infected individuals with AIDS symptoms A suffer
from an AIDS induced death, at a rate d. The proportion of susceptible individuals that takes PrEP
is denoted by ψ. It is assume that PrEP is effective, so that all susceptible individuals under PrEP
treatment are transferred to class E. The individuals that stop PrEP become susceptible individuals
again, at a rate θ. Susceptible individuals are increased by the recruitment rate Λ.

Such model is given by the following system of ordinary differential equations:

Ṡ (t) = Λ −
β(I(t)+ηC C(t)+ηAA(t))

N(t) S (t) − µS (t) − ψS (t) + θE(t),

İ(t) =
β(I(t)+ηC C(t)+ηAA(t))

N(t) S (t) − (ρ + φ + µ)I(t) + αA(t) + ωC(t),

Ċ(t) = φI(t) − (ω + µ)C(t),

Ȧ(t) = ρ I(t) − (α + µ + d)A(t),

Ė(t) = ψS (t) − (µ + θ)E(t).

(2.4)
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Recall that PrEP medication should only be administrated to people who are HIV-negative and at
very high risk for HIV infection. Moreover, PrEP is highly expensive and it is still not approved in
many countries. Therefore, the number of individuals that should take PrEP should be limited at each
instant of time for a fixed interval of time [0, t f ] [8]. The optimal control problem proposed in [8], and
considered in this paper for comparison of results, takes into account this health public problem.

The main goal of the optimal control problem is to determine the PrEP strategy ψ that minimizes
the number of individuals with pre-AIDS HIV-infection I as well as the costs associated with PrEP.
Let the fraction of individuals that takes PrEP, at each instant of time, be a control function, that is,
ψ ≡ u(t) with t ∈ [0, t f ], and assume that the total population N is constant: the recruitment rate is
proportional to the natural death rate, Λ = µN, and there are no AIDS-induced deaths (d = 0). The
controlled model is given by

Ṡ (t) = µN − β

N (I(t) + ηC C(t) + ηAA(t)) S (t) − µS (t) − S (t)u(t) + θE(t),

İ(t) =
β

N (I(t) + ηC C(t) + ηAA(t)) S (t) − (ρ + φ + µ)I(t) + αA(t) + ωC(t),

Ċ(t) = φI(t) − (ω + µ)C(t),

Ȧ(t) = ρ I(t) − (α + µ)A(t),

Ė(t) = S (t)u(t) − (µ + θ)E(t) .

(2.5)

Remark 1. All the parameters of the SICAE model (2.5) are fixed with the exception of the control
function u(t). This system is deterministic and there is no uncertainty. However, the model-free based
control proposed in this paper does not use these equations. They are only needed in the classical
optimal control approach that is used here for comparison. The sensitivity analysis of the parameters
of the SICA model, which is in the basis of the SICAE model (2.4), was studied before in [7].

The classical optimal control problem proposed in [8], and that is considered here in comparison
with the model-free control method, considers the cost functional

J(u) =

∫ t f

0

[
w1I(t) + w2u2(t)

]
dt, (2.6)

where the constants w1 and w2 represent the weights associated with the number of HIV infected
individuals I and on the cost associated with the PrEP prevention treatment, respectively. It is assumed
that the control function u takes values between 0 and 1. When u(t) = 0, no susceptible individual takes
PrEP at time t; if u(t) = 1, then all susceptible individuals are taking PrEP at time t. Let γmax denote
the total number of susceptible individuals under PrEP for a fixed time interval [0, t f ]. This constraint
is represented by

S (t)u(t) ≤ γmax , γmax ≥ 0 , for almost all t ∈ [0, t f ] , (2.7)

which should be satisfied at almost every instant of time during the whole PrEP program.
Let

x(t) = (x1(t), . . . , x5(t)) = (S (t), I(t),C(t), A(t), E(t)) ∈ R5.

The classical optimal control problem proposed in [8] consists to find the optimal trajectory x̃, associ-
ated with the control ũ, satisfying the control system (2.5), the initial conditions

x(0) = (x10, x20, x30, x40, x50), with x10 ≥ 0, x20 ≥ 0, x30 ≥ 0, x40 ≥ 0, x50 ≥ 0,
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the constraint inequality (Eq 2.7), and where the control ũ ∈ Ω,

Ω =

{
u(·) ∈ L∞(0, t f ) | 0 ≤ u(t) ≤ 1

}
, (2.8)

minimizes the objective functional Eq (2.6).

2.4. Comparative study and cost criteria definitions

We evaluate the accuracy of our model-free proposed approach compared to the classical optimal
control one when applied to the SICAE model described in Section 2.3.

Let Te denote the final time of the u treatment such as u(t ≥ Te) = 0 and I(Te) denotes the final
value of the state “Infected” at the time Te. Regarding the “energy” of the control input u with respect
to the behavior of the infected cases and the period of time Te for which the medication u is in effect,
i.e., u(t ≥ Te) = 0, let us consider the following cost criteria:

• Cost criterion for performances over the final time Te:

Ju+I =

∫ Te

0
u2 + I2 dτ, (2.9)

JI =

∫ Te

0
I2 dτ. (2.10)

• Time-pondered cost criterion:

JTe
u+I =

∫ Te

0
τ (u2 + I2) dτ, (2.11)

which takes into account the effective period needed to stabilize the infected case, i.e., the period for
which u > 0.

3. Numerical simulations and results

To perform the numerical simulations, we consider the following parameter values, borrowed from
[8]: N = 10200, µ = 1/69.54, β = 0.582, ηC = 0.04, ηA = 1.35, θ = 0.001, ω = 0.09, ρ = 0.1, φ = 1
and α = 0.33. The weight constants take the values w1 = w2 = 1.

The initial conditions are given by

S (0) = 10000, I(0) = 200, C(0) = 0, A(0) = 0 and E(0) = 0,

and the mixed state-control constraint is

S (t) u(t) ≤ 2000 , for almost all t ∈ [0, t f ]. (3.1)

In Table 1, we evaluate several cases with the cost criteria Ju+I , JI and JTe
u+I , according to the final

time of medication Te. We compare the constrained and unconstrained classical optimal control prob-
lems and the unconstrained and constrained model-free problems with two types of configurations:
slope and quadratic initial transient. The classical optimal control problem corresponds to the one
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performed in [8]. Figures 2–6 illustrate several scenarios: the constrained case is not satisfied under
slope, see Figure 2; the constraint inequality (Eq 3.1) is satisfied under slope, see Figures 3 and 4; the
constrained cases are satisfied under quadratic function, see Figures 5 and 6.

From Figure 2(a), we see that, although the model-free based control and the classical optimal con-
trol approaches propose completely different control functions, the associated number of HIV infected
individuals I(t), t ∈ [0, 25], are very similar. Interestingly, the control solution of the model-free based
control is active in a much smaller interval of time that the one obtained with the classical optimal
control approach: Te = 11.3 versus Te = 25 (see first line of Table 1). Analogous conclusions are taken
from Figures 3(a)–6(a).

It should be noted, however, that in Figure 2(b), the control obtained from the model-free based
approach does not satisfy the mixed state-control constraint S (t)u(t) ≤ 2000 for all t. In order to
satisfy this constraint, one must increase the time interval where the model-free control is active, see
Figures 3(b)–6(b). This depends on the configuration of the initial transient of the control (slope or
quadratic), see Figures 3(a)–6(a) and Table 1.
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(a) Evolution of the infected state I versus time (in years).

0 5 10 15 20 25

0

500

1000

1500

2000

2500

(b) Evolution of the controlled medication u versus time (in years).

Figure 3. Evaluation of the constrained model-free based control: slope as first sequence
including the constraint inequality (Eq 3.1)–case I.
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Table 1. Evaluation of the cost criteria.

Case Te Ju+I JI JTe
u+I I(Te) max

[0,t f inal]
S u umax

Unconstrained model-free 11.3 5.40104 5.40104 1.15105 31.12 3129 0.70
Constrained model-free – slope (I) 19.0 6.45104 6.45104 2.39105 29.80 1990 0.80
Constrained model-free – slope (II) 22.9 6.45104 6.45104 2.86105 28.25 2000 0.62
Constrained model-free – quad. (I) 16.9 5.83104 5.83104 1.83105 29.12 1989 0.70
Constrained model-free – quad. (II) 17.2 6.66104 6.66104 2.39105 32.29 1604 0.62
Unconstrained classical OC 25.0 4.17104 4.17 104 1.69105 21.95 9750 1
Constrained classical OC 25.0 6.14104 6.14 104 2.72105 24.23 1989 1
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(a) Evolution of the infected state I versus time (in years).
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(b) Evolution of the controlled medication u versus time (in years).

Figure 4. Evaluation of the constrained model-free based control: slope as first sequence
including the constraint inequality (Eq 3.1)–case II.
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(a) Evolution of the infected state I versus time (in years).
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(b) Evolution of the controlled medication u versus time (in years).

Figure 5. Evaluation of the constrained model-free based control: quadratic as first sequence
including the constraint inequality (Eq 3.1)–case I.

4. Discussion

The proposed control sequence can be considered as “quasi-optimal” in the sense that it does not
obey to the Pontryagin maximum principle, so it is not an optimal control by definition, but it offers
similar properties in terms of cost criteria minimization and reduction of the duration of treatment that
is assured by our procedure.

The sequence is fully parametrized thanks to the initial transient coefficients (L or Q) associated
to umax, including the Cπ-parameters for the decreasing transient, that must be adjusted according to
the evolution of the infected state. In particular, the maximum value on the product S u depends on
the “speed” of the increasing transient as well as the final value I(Te), which depends on the “speed”
of the increasing transient, the initial value u0, and the feedback control that stabilizes I through the
decreasing transient. The transient slope plays a key role in the “accuracy” of the initial decrease
of the infected state since a sufficient dose of the medication u must be injected to the population in
order to maintain the infected state to a lower level. Therefore, the maximum value of u is a trade-off
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between the constraint S u ≤ γmax to be satisfied and the duration of the treatment. Figure 2 illustrates
a rather quick treatment, involving thus a fast initial transient but the constraint S u ≤ 2000 is not
satisfied; slower medical treatment for which the injection of the medication u takes more time due
to the constraint S u ≤ 2000, can reduce the final asymptotic value I(Te) despite not necessarily fully
reducing the cost criteria. The model-free based control aims to relax the treatment until u = 0 is
reached. A first tuning has been made according to the gained experience and a more precise tuning
can be performed using [26]. The numerical evaluation of the cost criteria shows that our approach
is globally better in terms of energy minimization. Moreover, the time-pondered criteria shows that
the proposed control procedure is favorable to our approach taking into account the reduction of the
duration of the treatment. These results illustrate afterwards that tuning the parameters of the proposed
control sequence is a trade-off between considering minimizing the cost criteria, or minimizing the
final value I(Te), depending of additional constraints.
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(a) Evolution of the infected state I versus time (in years).
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(b) Evolution of the controlled medication u versus time (in years).

Figure 6. Evaluation of the constrained model-free based control: quadratic as first sequence
including the constraint inequality (Eq 3.1)–case II.

We remark that the model-free based control could have been also used to drive the initial transient
instead of the slope or the quadratic function, but the current algorithm offers slower performances at
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the very beginning to initiate the increase of the medication that prevents it to deal with, for example,
the constraint S u ≤ 2000.

5. Conclusion and future work

We have considered a SICAE epidemiological model for HIV/AIDS transmission, proposing, for
the first time in the literature, a model-free based approach to minimize the number of infected individ-
uals. This approach consists in initializing PrEP medication, using a basic linear or quadratic function,
and, after that, creating a direct feedback to control the decrease of infected individuals with respect
to the considered measure of infected cases. Globally, the advantages of the proposed approach, when
compared with the classical optimal control based on the Pontryagin Maximum Principle, is that it
does not need any a priori knowledge of the model and a simple tuning of the proposed control se-
quence values allows good performances in terms of “energy” minimization as well as minimization
of the medical treatment duration. We concluded that our control strategy highlights interesting per-
formances compared with the classical optimal control approach used in [8].

From a biological point of view, our application of the model-free based control approach allows
to propose new solutions for the implementation of PrEP in the prevention of HIV transmission, con-
sidering the constraints associated to the limitations on the availability of medicines for HIV and on
number of individuals that the health systems have capacity to follow up during their treatment. To the
best of our knowledge, we were the first to apply the model-free based control approach in the context
of epidemiology.

Future work may include replacing the slope or the quadratic initial transient by an optimal con-
trol; improvement of the proposed model-free based control; implementation and comparison with
the original Fliess-Join version of the model-free control, as it has been done, for example, for the
glycemia control [14]. Stability issues regarding the closed loop are very important and a promising
LMI framework dedicated to study the stability of optimization algorithms is also of interest [29, 30].
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