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Abstract: This article proposes a locomotion controller inspired by black Knifefish for undulating 

elongated fin robot. The proposed controller is built by a modified CPG network using sixteen coupled 

Hopf oscillators with the feedback of the angle of each fin-ray. The convergence rate of the modified 

CPG network is optimized by a reinforcement learning algorithm. By employing the proposed 

controller, the undulating elongated fin robot can realize swimming pattern transformations naturally. 

Additionally, the proposed controller enables the configuration of the swimming pattern parameters 

known as the amplitude envelope, the oscillatory frequency to perform various swimming patterns. 

The implementation processing of the reinforcement learning-based optimization is discussed. The 

simulation and experimental results show the capability and effectiveness of the proposed controller 

through the performance of several swimming patterns in the varying oscillatory frequency and the 

amplitude envelope of each fin-ray. 
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1. Introduction  

The oceans account for more than three-quarters of the earth, and the ocean seafloor has the 

considerable potential to recover the great benefit that may benefit humanity. Therefore, ocean 

exploration is recognized as an essential field in ocean science [1]. Ocean exploration identifies two 

primary devices called remotely operated underwater vehicles (ROV), an autonomous underwater 

vehicle (AUV). Almost all conventional AUVs adopt water pumps, air-jet engines, or single propellers 

as the propulsion system [2] that cause a loud noise affecting the organism’s life on the seabed. In 

addition, the topological structure of conventional AUVs has been recognized that are not able to 

perform maneuverability and stability [3]. The propeller can also be stuck by sediment and seaweed 

in the operation of AUVs on the seafloor [4–6]. A bionic underwater robot equipped with a biomimetic 

fin mechanism is well-suited for ocean exploration [7] to overcome the drawbacks mentioned above. 

Many approaches studied about bio-fish robots concerned the diversity of fish species [6–30]. These 

studies pointed out that many significant factors affect the hydrodynamic of bio-fish robots. One such 

factor is the swimming pattern that enables the bio-fish robots to perform complex operations such as 

turning, swaying, twisting, and curving. Several studies utilized a sinusoidal-based kinematic equation 

to generate the undulating oscillatory motion for the bio-fish robots [31–36] to address this research 

field. This locomotion control strategy can provide various swimming patterns by predefining the 

amplitude envelope, oscillatory frequency, and phase lag regarded as the kinematic parameters of the 

sinusoidal generator.  However, this does not feature a flexible transition swimming pattern, as well as 

it does not enable tuning online kinematic parameters to adapt to the environmental changes [8,31]. 

To achieve efficient locomotion, earlier studies have been proposed a central pattern generator 

(CPG) based locomotion controllers for widely application fields [11,27,39–45]. In terms of governing 

the locomotion of bio-fish robots, the authors early synthesized a locomotion controller using a 

Proportional-Integral-Derivative (PID) controller integrated with CPG for a prototype of the fish robot 

in 3D [24]. In 2008, Wang et al. [19] employed a modified Matsuoka oscillator to build a CPG-based 

locomotion controller for a prototype of an undulating fins propulsion system with ten fin-rays. 

Simulation and experimental results showed that the variable model of the weight matrix is consistent 

with the thrust propulsion generated by the prototype of the propulsion system. In 2011, a CPG-based 

controller of the proposed propulsion system was integrated with the rotary position sensors to improve 

the locomotion of undulating fin more flexibly [28]. In addition, this study also introduced two control 

levels with a high-level controller for commanding operation and a low-level controller for driving 

actuators. In 2012, Zhou et al. [39] developed a manta ray robot with two wide flexible pectoral fins. 

This robot used a CPG model to achieve rhythmic biomimetic movement. Simulation and experimental 

results showed that the yaw angle is stabilized, but the response time is slow. In 2014, Chunlin Zhou 

et al. [29] adopted a genetic algorithm to achieve a better conversion efficiency to optimize the CPG-

based controller for the fish robot according to the thrust generation. To validate the CPG-based control 

approach for undulating fins propulsion, in 2015, Michael Sfakiotakis et al. [32] performed the CPG 

denominations using the conversion of single amplitude parameters and simultaneous transformation. 

The authors adopted a CPG model to achieve the undulating motion pattern for finding the critical 

factor which affects the propulsion. A fish robot prototype using the CPG model for swimming motion 

was inspired by cuttlefish [22]. This study presented the effect of the various kinematic parameters of 

the undulating fin and the validity of a fluid drag model used to estimate the generated thrust. Another 

study [8] dealt with the utilization of CPG for undulating biological fins with six degrees of freedom 
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to perform the replicated fish-like swimming robot by changing the parameters of the CPG model. 

Various parameters of the CPG model can be adjustable to generate undulating motion to produce the 

propulsion force, such as amplitude envelope, oscillatory frequency, and swimming patterns. Thus, 

Yong Cao et al. [46] predefined the undulation frequency and the undulation amplitude as constant 

parameters while governing CPG neuron output’s phase angle to achieve various swimming patterns. 

It can be concluded that these earlier studies related to CPG have been successfully applied for 

locomotion control of biomimetic robots. However, most of these researches rely on trial-and-error 

data fitting to adjust a control parameter of the CPG model called convergence rate. Increasing the 

convergence rate can reduce the processing time for achieving the limit cycle; however, this can raise 

an oscillatory error defined as the difference between the intrinsic amplitude of CPG and the maximum 

amplitude envelope of the CPG’s output. This issue is still a challenge for researchers with the lack of 

optimization for the convergence rate of CPG. 

In terms of parameter optimization, several studies used particle swarm optimization (PSO) 

algorithm to seek the CPG parameters in order to minimize the difference between the desired 

oscillatory waveform and the generated output of the CPG [47], to reduce the control parameters [48] 

and to refine the feature parameters of the CPG [49]. In comparison to a genetic algorithm (GA), PSO 

is similar to GA as so to search for optimal solutions through iterations of a population, but PSO proved 

to be faster computed and easier implemented than GA [50]. However, PSO exhibits that it is 

susceptible to trap in local minima [51]. Reinforcement learning (RL) is known as an alternative 

strategy for optimization that has been applied recently in various applications such as robotic control, 

transportation, and energy supervision [52–58]. RL generates a series of sequence actions to obtain the 

maximum numerical rewards in the interaction with environments. RL can be categorized as model-

based RL method, which attempts to model the environment known as Markov Decision Process 

(MDP) [59], and model-free RL method, which does not require the explicit of the environment. One 

such model-free RL method is Q-Learning which is recognized as a well-suited method for 

optimization to trade-off the performance time and the effectiveness [55,60–62]. According to these 

above studies, Q-learning can be feasible to implement in real-time on programmable devices. For the 

application of biomimetic robots, Y. Nakamura et al. [63,64] utilized a reinforcement learning model 

for the CPG-based motion controller, namely CPG-actor-critic, to learn the selection of motion patterns 

for biped robots. An actor observes the state of the biped robot and outputs a parameter of the motion 

controller. Then the motion controller with the selected parameter produces the control signal. 

The above-aforementioned studies regarding CPG-based bio-fish robots have not conducted 

optimization for the convergence rate. Inspired from the studies concerned with applying RL for CPG, 

this paper proposes a reinforcement learning-based optimization of locomotion controller using CPG 

network for an elongated undulating fin. The elongated undulating fin comprises sixteen oblique fin-

rays interconnected with a membrane known as a flexible surface that is controlled by the proposed 

CPG-based locomotion controller coupled with sixteen neural oscillators to generate the locomotor 

corresponding to sixteen fin-rays of the elongated undulating fin. The advantages of this control 

method in comparison to the sinusoidal kinematic equation are discussed. This paper, differentiating 

from the previous studies, utilizes a Q-learning with discrete state/action to optimize the convergence 

rate of the CPG controller. The actor observes the undulating signal of the CPG-based locomotion 

controller and outputs a value of the convergence rate. The locomotion controller with the chosen 

convergence rate produces the control signal. The proposed controller is promised that it can be 

implemented on a microcontroller due to its simplicity. The simulation and experimental results are 
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carried out to evaluate the performance and effectiveness of the proposed control method. 

2. Elongated undulating fin 

The elongated undulating fin comprises sixteen oblique adjacent fin-rays interconnected with a 

flexible membrane. Each fin-ray is driven by an RC servo motor that enables the fin-ray to sway around 

a rotary joint fixed to a supporting frame illustrated in Figure 1. The elongated undulating fin is built 

with a length of 775 mm, a width of 90 mm, and a height of 290 mm.  

 

Figure 1. Overview of elongated undulating fin. 

Accordingly, each fin-ray reacts as a shaker bar with a limited angle, and the phase difference 

between two adjacent fin-rays is regarded as a phase lag angle. By changing one of the kinematic 

parameters such as amplitude envelope, oscillatory frequency, and swimming pattern, the magnitude 

of the propulsive force can be adjustable. To perform forwarding/reversing motion, the elongated 

undulating fin might change the sign of the phase lag angle. Additionally, to avoid the counter-torque 

of the elongated undulating fin, the number of oscillation wavelengths should be an even number. 

Traditionally, the sinusoidal oscillatory equation employed for generating the undulating motion of 

bio-fish robots is given by [23]: 

𝜃𝑖(𝑡) = 𝜃𝑚𝑎𝑥
𝑖 sin(2𝜋𝑓𝑡 + 𝜙𝑖) (1) 

where 𝜃𝑖 is the sway angle for 𝑖𝑡ℎ fin-ray; 𝜃𝑚𝑎𝑥
𝑖  is the maximum sway angle for each fin-ray; 𝑓 is the 

oscillatory frequency; 𝜙𝑖 is the phase lag angle of each fin-ray. 

The utilization of the sinusoidal oscillatory equation-based gait control can successfully generate 

the bio-fish robots’ locomotion motion. However, high-performance aquatic locomotion requires 

swimming adaptability to environments of the bio-fish robots. The sinusoidal oscillatory equation 

might hardly achieve this feature because the abruptly changing of amplitude envelope, oscillatory 

frequency, or swimming pattern might cause the discontinuity and instability of the undulating motion. 

We simulated the sinusoidal swimming locomotion to illustrate this situation in Figure 2.  

We make an abrupt change in the amplitude envelope referring to Figure 2a and the oscillatory 

frequency referring to Figure 2b at an arbitrary time 𝑡∗. It can be easy to observe that the output of the 

sinusoidal generator is discontinued at the arbitrary time 𝑡∗. 
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Figure 2. Output of sinusoidal equation in abrupt change of amplitude and frequency. 

3. Reinforcement learning-based optimization for CPG locomotion controller 

3.1. Hopf oscillator 

The CPG is a circuit network of oscillators that can produce rhythmic patterns for biomimetic 

robots. Several kinds of oscillators such as Van der Pol, Wilson-Cowan, Kuramoto, Matsuoka, 

Amplitude-Controlled Phase, Rowat-Selverston, and Hopf have been applied successfully to generate 

the walking/swimming/flapping gaits of biomimetic robots. However, it seems that the Van der Pol 

oscillator is better for producing an electrocardiogram signal; most of the above oscillators are well-

suited for generating the rhythmic movement of arm/legged robots with two moving phases. Therefore, 

this research employs a Hopf oscillator, which can realize a nonharmonic sine waveform, to construct 

a modified CPG for generating the rhythm locomotion of the elongated undulating fin. A typical 

structure of the Hopf oscillator is shown in Figure 3. 

 

Figure 3. Typical structure of Hopf oscillator. 

The dynamic of the Hopf oscillator is expressed by the following differential equation: 

�̇�(𝑡) = 𝑘(𝐴2 − 𝑢2(𝑡) − 𝑣2(𝑡))𝑢(𝑡) − 2𝜋𝑓𝑣(𝑡) 

�̇�(𝑡) = 𝑘(𝐴2 − 𝑢2(𝑡) − 𝑣2(𝑡))𝑣(𝑡) + 2𝜋𝑓𝑢(𝑡) 
(2) 

where 𝑢, 𝑣  are time-variant state variables of the oscillator; 𝐴 is the intrinsic amplitude; 𝑓 is the 

intrinsic frequency; 𝑘is the convergence rate to the limit cycle (𝑘 > 0).  

 

a) b) 



743 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 738-758. 

For comparison to the traditionally sinusoidal generator, a simulation of a single Hopf oscillator 

is conducted in the same manner illustrated in Figure 4. 

 

Figure 4. Output of Hopf oscillator in abrupt change of intrinsic amplitude and frequency. 

It can be observed from Figure 4 that the oscillatory output generated by the Hopf oscillator can 

introduce the smooth transition when the abrupt changes of both intrinsic amplitude and oscillatory 

frequency are conducted at the arbitrary time 𝑡∗. In addition, the Hopf oscillator of Eq 2 also features 

the quick convergence to the limit cycle. Even though starting from different arbitrary initial points, 

the output of the Hopf oscillator converges to a stable limit cycle with the intrinsic amplitude 𝐴. The 

convergence rate can be tuned by adjusting k of the Eq 2. The Hopf oscillator output converges to the 

limit cycle more rapidly with an increasing 𝑘, regardless of the abrupt changes of intrinsic amplitude 

and intrinsic frequency. A simulation result of the Hopf oscillator with eight different initial points for 

each scenario is illustrated in Figure 5a). It can also be seen from Figure 5b) that the output of the Hopf 

oscillator can converge to the limit cycle rapidly, approximately 2 seconds. 

 

Figure 5. Convergence to limit cycle of Hopf oscillator. 

3.2. Modified CPG with multi coupled Hopf oscillators 

 

In both invertebrate and vertebrate organisms, there are several topological couplings between 

the joints to allow the muscle to work perfectly, which represent the role of stimulus and inhibition. 

The actual CPGs of animal brains are complicated networks that have abundant neurons. In order to 



744 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 738-758. 

replicate the CPG for controlling biomimetic robots, it is necessary to simplify the coupling 

connections and categorize them into four main topological structures: chain coupling, radial coupling, 

ring coupling, and fully connected coupling [31]. Each topological structure of the coupling connection 

has appropriate property corresponding to the biological characteristic of each species. For instance, 

the chain coupling is mainly applied to stimulate the locomotion of swimmers, whereas the fully 

connected coupling is usually applied for rhythm generation of legged robots because all legs must be 

coupled to perform smooth motion against the environmental change.  

The biological structure of the elongated undulating fin features a series of fin-rays. The abnormal 

movement of each arbitrary fin-ray due to environmental influences affects only its adjacent fin-ray. 

To generate the undulate motion for the elongated undulating fin, this research constructs the chain 

coupling of sixteen oscillators with bi-directional perturbation depicted in Figure 6. Each oscillator is 

employed to stimulate each fin-ray. The reflection of each fin-ray to its adjacent fin-ray is performed 

through the bi-directional perturbation. The pair of intrinsic amplitude and intrinsic frequency is an 

independent entity for each oscillator of the modified CPG network. 

 

Figure 6. Structure of modified CPG network with chain coupling of sixteen oscillators in 

bi-directional perturbation. 

In the modified CPG network, there are two terminal oscillators that are not affected by the 

adjacent oscillators. However, without loss of generality, the nonlinear function illustrating the 

modified CPG network shown in Figure 6 is given as follow: 

Ẋ𝑖 = 𝐹(𝑋𝑖) + 𝑃𝑖 = [
𝑘(𝐴𝑖

2 − 𝑢𝑖
2 − 𝑣𝑖

2)𝑢𝑖 − 2𝜋𝑓𝑣𝑖
𝑘(𝐴𝑖

2 − 𝑢𝑖
2 − 𝑣𝑖

2)𝑣𝑖 + 2𝜋𝑓𝑢𝑖
] + [

𝑝𝑢,𝑖
𝑝𝑣,𝑖

] (3) 

where 𝑋𝑖 ≜ [𝑢𝑖𝑣𝑖]
𝑇  is the state vector of the 𝑖 -th oscillator; 𝐹(𝑋𝑖) represents a nonlinear function; 

𝑃𝑖 ≜ [𝑝𝑢,𝑖𝑝𝑣,𝑖]
𝑇is a perturbation vector. 

To clarify Eq 3 for the terminal oscillators, it is necessary to consider the coupling connection of 

three adjacent oscillators as shown in Figure 7: 
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Figure 7. Coupling connection of three adjacent oscillator. 

For the first oscillator (𝑖 = 1), there is only perturbation from the second oscillator (𝑖 + 1); thus, the 

perturbation of the first oscillator is given by: 

𝑃1 = [
0

𝛽(𝑣2𝑐𝑜𝑠𝜑𝑑 − 𝑢2𝑠𝑖𝑛𝜑𝑑)
] (4) 

where 𝛽 is the coupling strength; 𝜑𝑑 is the phase lag angle of two adjacent oscillators. 

In the same manner, the sixteenth oscillator is only affected by the perturbation from the fifteenth 

oscillators: 

𝑃16 = [
0

𝛽(𝑢15𝑠𝑖𝑛𝜑𝑑 + 𝑣15𝑐𝑜𝑠𝜑𝑑)
] (5) 

For 𝑖-th oscillators, the perturbation vector is given by the following: 

𝑃𝑖 = [
0

𝛽(𝑢𝑖−1𝑠𝑖𝑛𝜑𝑑 + 𝑣𝑖−1𝑐𝑜𝑠𝜑𝑑 − 𝑢𝑖+1𝑠𝑖𝑛𝜑𝑑 + 𝑣𝑖+1𝑐𝑜𝑠𝜑𝑑)
] (6) 

Corresponding to various intrinsic amplitudes 𝐴𝑖, the modified CPG network can provide different 

swimming patterns for the elongated undulating fin, it thus can produce different propulsive forces.  

3.3. Reinforcement learning-based optimization 

It should be noted from Eq 3 that the convergence rate 𝑘 is chosen by a trial-and-error method to 

obtain the limit cycle as quickly as possible. A large value of 𝑘 can reduce the transient-state time, 

which is defined as a period from the beginning to the moment that the output of 16th CPG starts the 

first cycle; meanwhile, it might cause the oscillatory error of the modified CPG network output. Thus, 

it is necessary to optimal this significant parameter. On the other hand, Q-learning is a part of 

reinforcement learning that is the value-based learning algorithm to obtain a higher reward for each 

episode. This paper employs a Q-learning with discrete action because it costs a duration for the CPG 

to generate the oscillatory output corresponding to each chosen action before taking the following step. 

Furthermore, this algorithm does not require high computational time, enabling the onboard 

implementation. Accordingly, the state variables 𝑠𝑡 ∈ 𝑆 (with 𝑆 is the state variable compact set) are 

the oscillatory error 𝑠𝑡
1 and the transient-state time 𝑠𝑡

2with𝑠𝑡
1 ∈ 𝑆1, 𝑠𝑡

2 ∈ 𝑆2, and𝑆1, 𝑆2 ⊂ 𝑆 . The 

shifting of the convergence rate is chosen as the action variable 𝑎𝑡 ∈ 𝐴. The interaction of the agent 

and the environment of RL is shown in Figure 8.  
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Figure 8. Interaction of agent and environment. 

The reward function is proposed to trade-off between the transient-state time and the oscillatory 

error that the mathematical proposed reward function is given the following: 

𝑟
𝑠𝑡→𝑠𝑡

′
𝑎𝑡 = 𝐿𝑢𝑟1(𝑠𝑡

1) + 𝐿𝑙𝑟2(𝑠𝑡
2) (7) 

In Eq 7, 𝑠𝑡
′  is the next state variable, and 𝐿𝑢, 𝐿𝑙  are reward constants set arbitrarily such that the 

condition holds 𝐿𝑢 ≫ 𝐿𝑙 to emphasis that the minimization of the oscillatory error is more significant 

than that of the transient-state time. Thus, 𝐿𝑢, 𝐿𝑙 are respectively set to 100 and 10 in this case. The 

reward subfunctions 𝑟𝑖(𝑠𝑡
𝑖) with 𝑖 = 1, 2 are given by the following: 

𝑟𝑖(𝑠𝑡
𝑖) = {

𝑅𝑚𝑎𝑥 |𝑠𝑡
𝑖| < min(𝑆𝑖)

𝑅𝑚𝑖𝑛 |𝑠𝑡
𝑖| = min(𝑆𝑖)

0 |𝑠𝑡
𝑖| > min(𝑆𝑖)

 (8) 

where 𝑅𝑚𝑎𝑥, 𝑅𝑚𝑖𝑛 are the maximum reward and the minimum reward set to 1 and 0.1, respectively. 

As well, the terminal state 𝑠𝑇known as the condition for complete an episode holds the constraint 

𝑠𝑇 ≔ {𝑠𝑡 ∈ 𝑆|𝛿 ≜ (𝐿𝑢|𝑠𝑡
1| + 𝐿𝑙𝑠𝑡

2) ≤ min
𝛿
(Δ𝑒)} with Δ𝑒 is the compact set of 𝛿 of each episode. 

The Q-value (action-value) function is updated by the simple Temporal Difference (TD) method: 

𝑄𝑡(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟
𝑠𝑡→𝑠𝑡

′
𝑎𝑡 + 𝛾max

𝑎𝑡
′
𝑄𝑡−1(𝑠𝑡

′, 𝑎𝑡
′) − 𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡)) (9) 

where 𝛼 is the learning rate (0 ≤ 𝛼 < 1); 𝛾 is the discount factor (0 ≤ 𝛾 < 1); 𝑎𝑡
′  is the next action 

variable; 𝑄𝑡−1(∎) denotes the current Q-value; 𝑄𝑡(∎) denotes the new Q-value; 

The next policy 𝜋′(𝑎𝑡 , 𝑠𝑡)is implemented by 휀-Greedy strategy which is given by: 

𝜋′(𝑠𝑡 , 𝑎𝑡) = {
argmax

𝑎𝑡

𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡) 𝑞 < 1 − 휀

rand(𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡)) otherwise
 (10) 

where 𝑞 is the uniform random number.  

The optimal convergence rate can be determined by the optimal action-value: 

𝑎𝑡
∗ = argmax

𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) (11) 

The pseudo-code of the Q-learning optimization for the convergence rate is illustrated in Table 1. 

The impact of the transient-state time and the oscillatory error on the convergence rate is depicted in 

Figure 9a. As well, the distribution of the Q-value on the state variable and the action variable is 

illustrated in Figure 9b).  
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Figure 9. a) Impact of transient-state time and oscillatory error on the convergence rate. b) 

Distribution of Q-value on state variable and action variable. 

 

Table 1. Pseudo-code of the Q-learning optimization 

Algorithm: Q-learning based optimization of the convergence rate 

1. Initialize 𝛼, 𝛾, 휀 

2. Initialize 𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡) = [0], 𝑠𝑡 = 𝑟𝑎𝑛𝑑(𝑆), and episode 𝑛 

3. Repeat for each step of the episode: 

4. Choose 𝑎𝑡 = argmax
𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) if uniform random number < 1 − 휀 

5. Choose 𝑎𝑡 = rand(𝑄(𝑠𝑡 , 𝑎𝑡) if otherwise 

6. Take the action 𝑎𝑡(traveling the convergence rate 𝑘 to the modified CPG network)  

7. Observe 𝑠𝑡
′, 𝑟

𝑠𝑡→𝑠𝑡
′

𝑎𝑡 (perceiving the oscillatory error and the transient-state time, calculating 

the reward value by Eqs 7,8. 

8. Update Q-value by Eq 9. 

9. The next state is assigned as the next state (𝑠𝑡 ← 𝑠𝑡
′) 

10. Until the current state is the terminal state (𝑠𝑡 ≡ 𝑠𝑇) 
11. Take the optimal action 𝑎𝑡

∗ = argmax
𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) 



748 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 738-758. 

According to the implementation of the Q-learning based optimization for the convergence rate 

with the discount factor 𝛾 = 0.75, the learning rate 𝛼 =0.95, the 휀 – greedy of 0.7, and the episode 

number 𝑛 = 2000, the optimal Q-value achieved the approximate value 𝑄∗(𝑠𝑡 , 𝑎𝑡) =  658279 with 

respect to the optimal action of 𝑎𝑡
∗ =96, which is used for simulation/experimental studies in the next 

section. 

4. Results and discussion 

In this research, the simulation study of the modified CPG network is conducted through 

MATLAB with the aim that is to evaluate the flexible transition gait of the elongated undulating fin 

relevant to the swimming pattern, intrinsic amplitude, oscillatory frequency, and the number of 

waveforms. The swimming patterns utilized in this research are illustrated in Figure 10. The simulation 

results also demonstrate the affection of the convergence rate on the transient-state time and the 

oscillator error of the modified CPG network. 

 

Figure 10. Swimming patterns of elongated undulating fin propulsion. 

4.1. Characteristic of convergence rate  

The modified CPG parameters are given for this study as 𝐴𝑖 = 1(with𝑖 = 1 ÷ 16), 𝑓 =

1, 𝜑𝑑 = −𝜋 3⁄ , 𝛽 = 0.8  to allow the fin-rays to perform the cuttlefish-like swimming pattern. Figure 

12 depicts the output of a single oscillator with 𝑘 chosen arbitrarily around the optimal value of 96 for 

comparison. As can be seen, with 𝑘 = 86, the transient-state time is nearly obtained as 1.45 seconds, 

whereas that of the case 𝑘 = 96 is approximately value of 1.41 seconds compared to the case of 𝑘 =

106 as 1.36 seconds. It is easy to note that the larger amount of 𝑘 will result in the reducing of the 

transient-state time due to the modified CPG output converged to the limit cycle. Nevertheless, 

increasing the convergence rate 𝑘 will cause the larger oscillatory error of the modified CPG output 

illustrated in Figure 11, which might affect the performance of the actuators powered for fin-rays. 

Therefore, the oscillator error is recognized as the more significant factor than the transient-state time. 
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Figure 11. The relative convergence rate concerning transient-state time and oscillatory error. 

 

Figure 12. The output of a single oscillator with 𝑘 = 86, 𝑘 = 96, 𝑘 = 106. 
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4.2. Transition gait 

This simulation study aims to clarify several aspects as smooth accelerating/decelerating with no 

jerk by changing the oscillatory frequency 𝑓, flexible transition swimming pattern by changing the 

intrinsic amplitude 𝐴𝑖, the transition between forwarding and backward swimming by changing the 

phase lag angle 𝜑𝑑, and transition of waveform number. It can be seen from Figure 13a, the modified 

CPG network initially generates a nonharmonic swimming pattern with the linear waveform to mimic 

the cuttlefish-like gait for 2.5 seconds. Afterward, the oscillatory frequency gradually increased from 

1 Hz to 2 Hz, and the oscillatory output became faster to enable the elongated undulating fin to 

accelerate. During the time 5–7.5 seconds, the elongated undulating fin performs the quadratic 

swimming pattern. After 7.5 seconds, the swimming pattern is forced to change into the ecliptic 

waveform. In Figure 13b, the elongated undulating fin performs the waveform with the elliptical 

waveform to mimic the stingray-like swimming pattern for the first 5 seconds with the phase lag angle 

of 𝜑𝑑 = −𝜋 3⁄ for each fin-ray. At the time of 5 seconds, the swimming pattern abruptly change the 

phase lag angle into 𝜑𝑑 = 𝜋 3⁄  to enable the elongated undulating fin to perform backward swimming. 

It can be seen that the modified CPG network can perform better smooth transition gait than the 

kinematic sinusoidal generator. During the time 5–20 seconds, the elongated undulating fin performs 

the backward swimming. Afterward, the phase lag angle is again changed into 𝜑𝑑 = −𝜋 3⁄  to force 

the elongated undulating fin to perform the forward swimming. This study scenario also reveals that a 

lower convergence rate endows the shorter transient-state time when the phase lag angle is changed to 

switch the swimming direction (see Figure 14). 

 

 

Figure 13. (a) Output of sixteen oscillators with changes of swimming pattern, oscillatory 

frequency, and waveform number – (b) Output of sixteen oscillators with changes of phase 

lag angle enabling for reverse swimming direction. 
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Figure 14. Relation of transient-state time with respect to convergence rate. 

Figure 14 shows the CPG’s outputs in the cases with the convergence rate of 𝑘 = 96 and 𝑘 = 10. 

For the sake of distinguishing, we take the undulating signals of the first and third CPGs. During the 

time 0–5 seconds, the CPGs perform the undulating waveform with the phase lag angle of 𝜑𝑑 = −𝜋/3. 

It can be recognized by the fact that the output phase of 1st CPG leads that of 3rd CPG. At the time of 

5 seconds, the CPGs are commanded to change into the phase lag angle of 𝜑𝑑 = 𝜋/3. It can be seen 

from the lower side of Figure 14 that the CPG’s outputs take 4 seconds to change the swimming 

direction in the case with the convergence rate of 10. The reverse swimming direction can be 

recognized by the fact that the output phase of 1st CPG lags that of 3rd CPG. However, the CPG’s 

outputs take 8 seconds to change the swimming direction in the case with the convergence rate of 96, 

as shown in the upper side of Figure 14. This implies that the convergence rate should be switched into 

a smaller sufficient value before the CPGs are commanded to the swimming direction. 

4.3. Experimental study 

 

Figure 15. Experimental configuration. 

A configuration of the experimental setup depicted in Figure 15 is employed to validate the 

applicability of the modified CPG network. A customized STM32F103RET6 microcontroller-based 

board is utilized to implement the modified CPG network to drive sixteen fin-rays through the 50Hz 

PWM signals. In order to perceive the fin-rays angle, all RC servos are modified to sense their rotary 

angle for the perturbation of the modified CPG network. A computer is utilized to operate the 

swimming parameter as well as to compute the Q-learning algorithm. The elongated undulating fin is 
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validated in a pre-test stage without water immersion. The kinematic parameters of the modified CPG 

network are given as 𝑓 = 1 Hz, 𝑘 = 10, 𝜑𝑑 = −𝜋 3⁄ , 𝛽 = 0.8, and the sampling time of 0.01 seconds. 

To match the required amplitude envelope, the output of oscillators is calculated by the following: 

𝜃𝑖 = 𝐺𝑖𝑢𝑖 (12) 

where 𝑢𝑖 is the output of each oscillator neural; 𝐺𝑖 is the maximum sway angle of each fin-ray which 

is determined by 𝐺𝑖 = arcsin(𝑌𝑖) /𝐿 with 𝑌𝑖 defined as the amplitude envelope of each fin-ray along 

to laterally, and 𝐿 is the length of fin-ray, for this case𝐿 = 150 mm.  

 

 

 

Figure 16. Experimental results of various swimming patterns. 

The elongated undulating fin performs the elliptic waveform depicted in Figure 16a with the 

amplitude envelope 𝑌𝑖for each fin-ray as {0, 5.7, 11.43, 17.14, 22.85, 28.57, 34.28, 40, 40, 34.28, 
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28.57, 22.85,17.14, 11.43, 5.7, 0} mm. Figure 16b shows the quadratic waveform of the elongated 

undulating fin with the amplitude envelope 𝑌𝑖chosen as {0, 2.57, 5.33, 8, 10.67, 13.33, 16, 18.67, 

21.33, 24, 26.67, 29.33, 32, 34.57, 37.33, 40} mm. The linear waveform with the constant amplitude 

envelope of 40 mm is illustrated in Figure 16c. The experimental data is denoted in a dashed-dot line, 

whereas the simulation result is denoted in a solid-dot line. As can be seen from Figure 16, the sway 

angles of sixteen fin-rays are gradually formed during the period 0.5–3 seconds. Throughout the 

formation stages of all fin-rays’ oscillation, the amplitude envelope of the elongated undulating fin in 

the case of the experiment is smaller than that of the case of the simulation. This might be because of 

the limitation of the actuators’ response. 

5. Conclusions 

This paper has presented the modified CPG network for generating the rhythm for the elongated 

undulating fin with sixteen fin-rays to mimic the fish’s swimming patterns. Accordingly, the modified 

CPG network is composed by chain coupling sixteen oscillators with bidirectional perturbation 

because each fin-ray is only affected by its two adjacent oscillators. Both simulation and experimental 

results show that the modified CPG network seems to be very promising to perform the rhythm for a 

fish robot. It allows changing the kinematic parameters abruptly with no jerk of oscillation. 

Additionally, this paper has also investigated the intrinsic parameter of the CPG known as the 

convergence rate, which has not been considered before, usually using the trial-and-error method for 

this issue. The simulation results have revealed that the large convergence rate can reduce the transient-

state time; however, it might cause the oscillator error worse. Therefore, the tunning of the convergence 

rate is to trade-off between the transient-state time and the oscillatory error. To deal with this issue, the 

Q-learning algorithm is appropriate to find the optimal convergence rate. To obtain smooth oscillation 

avoiding damage to the RC servo motor, the reward function of the Q-learning is defined with more 

significant oscillatory error than the transient-state time. The optimal convergence rate found by the 

Q-learning can provide the short transient-state time and the appropriate oscillatory error in the 

simulation/experimental results with the abrupt change of kinematic parameters such as amplitude 

envelope, oscillatory frequency, and waveform number. Especially, we have found that the transient-state 

time is longer in the case of using the large convergence rate when the phase lag angle is changed into the 

opposite value for reverse swimming. However, a change of the convergence rate while the limit cycle of 

the CPG is obtained does not affect the CPG output. Thus, this might raise a piece-wise switching function 

to change the convergence rate according to the swimming operation. Consequently, the convergence rate 

should be changed from the optimal value into a smaller appropriate value before the phase lag angle is 

changed to switch forward swimming into backward swimming and vice versa. Afterward, the 

convergence rate is again changed into the optimal value to obtain the short transient-state time.  

From the perspective of science, this paper has only provided the experimental results in the pre-

test stage with no water immersion. This is due to the impact of the COVID-19 epidemic, which 

terminated all of our laboratory activities at the research facility. The widespread impact and severity 

of the pandemic show no sign of ending. Therefore, this paper has admitted to lack series of 

experimental results with the elongated undulating fin submerged into a water tank. For further 

potential research direction, the kinematic parameters are required to trade-off for optimization of the 

energy consumption and the generated thrust force. A model-based reinforcement learning which tries 

to model the operation environment of the fish robot, is also interest to conduct in the future.  
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