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Abstract: The present work is to solve the nonlinear singular models using the framework of the 
stochastic computing approaches. The purpose of these investigations is not only focused to solve the 
singular models, but the solution of these models will be presented to the extended form of the delayed, 
prediction and pantograph differential models. The Gudermannian function is designed using the 
neural networks optimized through the global scheme “genetic algorithms (GA)”, local method 
“sequential quadratic programming (SQP)” and the hybridization of GA-SQP. The comparison of the 
singular equations will be presented with the exact solutions along with the extended form of delayed, 
prediction and pantograph based on these singular models. Moreover, the neuron analysis will be 
provided to authenticate the efficiency and complexity of the designed approach. For the correctness 
and effectiveness of the proposed approach, the plots of absolute error will be drawn for the singular 
delayed, prediction and pantograph differential models. For the reliability and stability of the proposed 
method, the statistical performances “Theil inequality coefficient”, “variance account for” and “mean 
absolute deviation’’ are observed for multiple executions to solve singular delayed, prediction and 
pantograph differential models. 
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analysis; complexity analysis; statistical performances 

 

1. Introduction 

The models based on Lane-Emden (LE) have a variety of valuable applications in physiological, 
physical models, mathematics science and engineering studies. The celebrated form of the LE has a 
great significance due to the singular point and this model is explored by famous scientists Lane and 
Emden [1,2] working on the thermal gas performance and the thermodynamics state [3]. The 
literature/generic form of the LE model is given as [4–7]: 
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where   is the shape factor, ( , )g    is the continuous real valued based function, 1u  and 2u  are the 

initial conditions (ICs). 
The LE based singular nonlinear systems define an area of physical sciences [8], gaseous density 

stars [9], stellar models [10], morphogenesis [11], oscillating fields [12], mathematical systems [13], 
dusty fluidics [14] and an isotropic source [15]. To present the solutions of the singular systems is not 
easy and considered tough due to the involvement of singularity at the origin. Only a few schemes in 
literature are available to solve the singular based LE types of models [16,17]. 

A variety of physical phenomena are investigated using the sense of differential systems, among 
them the delay differential (DD) form is the most prominent due to the vast applications in technology 
as well as engineering. The DD systems were introduced few centuries ago and has number of 
applications in the variety of scientific areas including a communication system, engineering models, 
population dynamics, transport systems and economic circumstances [18–21]. Few associated 
investigations of DD systems are the geometric functions reliability through DD systems to exploit the 
factors of delay-dependent studied by Beretta et al. [22]. The biological based mathematical systems 
based on the DD models were studied by the Forde [23]. The implementations based on the Galerkin 
wavelet scheme together with the Taylor series investigations to obtain the numerical outcomes of the 
DD system defined by the Frazier [24]. The coupled variation iteration approach to calculate the 
analytical outcomes of the DD system introduced by Rangkuti et al. [25]. The Runge-Kutta approach 
to calculate the numerical procedures of the DD systems is implemented by the Chapra [26]. Few more 
schemes have been implemented to solve the DD models are reported in the literature [27–29]. The 
PD system is considered using the ideas of the DD system. The prediction differential system is applied 
in weather forecasting, transport, stock markets, technology, engineering, astrophysics and biological 
networks [30]. The literature form of the DD and PD systems are provided in Eqs (2) and (3) as [31]: 
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where ( )   shows the ICs and 1( )r   represents the delayed form, while 1r  is delayed term, l 

and m are constants. The term w is the value derivative of   at l and   represents a small positive 
constant. As l   , then the necessary condition for the delay term bound should be 0 ≤ r1 ≤ | l − 
ε | such that system in Eq (2), remained DD equation. 

When any of the value is added in  , it becomes prediction, i.e., 1( )r  , where r  is used as 

a prediction term and PD system is given as: 
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The pantograph differential systems (PDSs) have a variety of submission due to its enormous 
significance in the engineering fields, biological models and science areas. Some well-known 
applications are light absorption in the solid, dynamical population networks, communication networks, 
control systems, infectious viruses, propagation systems, electronic frameworks, transports and 
quantum mechanism [32–36]. There are various techniques that have been implemented to treat the 
PDSs, e.g., one-dimensional transformation approach, Taylor polynomial method and Direchlet series 
scheme [37–41]. The generic form of the PDSs is given as: 
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For solving the LE based singular systems, every technique has specific sensitivity, correctness, 
potential and efficiency, over and above, flaws, demerits and weaknesses. The wide-ranging computing 
potential schemes are used for the singular LE systems, DD models, PD systems and PDSs. To solve 
these singular systems, Gudermannian function is designed as a neural network optimized with the 
global scheme “genetic algorithms (GA)”, local method “sequential quadratic programming (SQP)” 
and the hybridization of GA-SQP. The stochastic numerical schemes have been explored to solve 
various applications like HIV infection nonlinear system based infected latently cells [42–45], higher 
order singular nonlinear systems [46–48], mosquito dispersal nonlinear system [49], heat conduction 
system based human head [50], doubly singular systems [51,52] and SIR nonlinear dengue fever 
system [53].These well-known submissions authenticated the implication of the stochastic computing 
solvers in terms of stability, exactitude and convergence. Hence, the design of Gudermannian function 
that work as a neural network is never been applied to solve the LE systems, DD models, PD systems 
and PDSs by using the optimization through the GA-SQP procedures. Some novel topographies of the 
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proposed Gudermannian neural network along with GA-SQP are summarized as: 
 A novel Gudermannian function is designed as a neural network is presented for solving the 

singular LE systems, DD models, PD systems and PDSs by using the optimization through the 
GA-SQP procedures. 

 The numerical solutions of the stochastic procedures for solving four different examples of the 
singular systems are found precise and accurate. 

 The analysis based on small and large neurons are effectively provided to authenticate the 
efficiency and complexity of the designed approach. 

 The matching of the best and mean outcomes obtained by the stochastic procedures authenticate 
the consistency, accuracy and perfection of the singular LE systems, DD models, PD systems 
and PDSs. 

 The reliability of the outcomes obtained by the proposed stochastic procedures through 
single/multiple executions via performance operators based on mean, Theil inequality 
coefficient (TIC), median (Med), variance account for (VAF), semi-interquartile range (SIR), 
maximum (Max) and mean absolute deviation (MAD) improve the capability of the scheme. 

The remaining parts of the paper are given as: Section 2 labels the designed structure along with 
the statistical performance, Section 3 indicates the details of numerical results together with 
clarifications of the results. The neuron analysis will be presented in Section 4. The concluding remarks 
are provided in the last Section. 

2. Methodology 

In this section, the Gudermannian function is presented as a neural network for the singular LE 
systems, DD models, PD systems and PDSs by using the optimization through the GA-SQP procedures. 
The differential operators, objective function and optimization-based procedures using the proposed 
scheme are also presented. 

2.1. Designed procedures through Gudermannian function as a neural network 

The artificial neural networks are considered important to form the consistent and steadfast 

solutions for frequent submission arising in the various fields. In this modelling, ˆ ( )  indicates the 

obtained performances via the Gudermannian function as a neural network and its derivatives are 
described as: 
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where, k shows the neurons and n represents the derivative. The objective function is y, whereas, s, w ,
z   are the unidentified weights that are [ ]W s,w,z  , for 1 2 3[ , , ,..., ]ks s s ss , 1 2 3[ , , ,..., ]kw w w ww  

and 1 2 3[ , , ,..., ]kz z z zz . The mathematical form of the Gudermannian function is given as: 
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1( ) 2 tan 0.5y e                                  (6) 

The approximate form of the continuous mapping based differential operations is shown as: 
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To solve the singular LE systems, DD models, PD systems and PDSs, the objective function is 
formulated in terms of mean squared error, which is written as: 

1 2 ,Fit Fit FitE E E                                  (8) 

where FitE  is an unsupervised learning-based error function related to the LE systems, DD models, 

PD systems and PDSs. 
1FitE    and 2FitE    are the error based objective functions based on the 

differential model and ICs of the system (1)–(4). The fitness function 1FitE   is constructed using the 

system (1), while for the system (2)–(4) can also be constructed. 
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where 1, ( , ) ( , ( ))i iNh g g       and i ih  . 

2.2. Network optimization GA-SQP 

In this section, the Gudermannian function as a neural network is designed and numerical 
solutions for solving the singular LE systems, DD models, PD systems and PDSs through the 
optimization of GA-SQP are presented.  

The evolutionary intelligent computing approach “GA” is designed on the basis of natural growth. 
GA is introduced by Holland in the previous century and then it is used as a leading factor in 
optimization using the constrained/unconstrained systems [54]. GA shows the optimal performances 
of mutation, crossover, heuristic and selection and broadly implemented in various fields of robotics, 
Bioinformatics, optics, astrophysics, digital communication, financial based mathematics, signal 
processing, nuclear based power systems, chemical industry and economics. Recently, it is 
implemented in the optimization of wind power systems [55], pipe networks [56], intrusion detection 
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system [57], energy management models [58], circularity error unified evaluation [59], heterogeneous 
celebration [60], drying process of carrot [61], 2D industrial packing problems [62] and aquatic weed 
systems [63]. These reputed submissions inspired the authors to optimize through GA the singular LE 
systems, DD models, PD systems and PDSs for finding the best proposed outputs. 

Table 1: Optimization procedures of the designed scheme for the nonlinear singular LE 
systems, DD models, PD systems and PDSs. 

[GA procedures] 
 Inputs: The chromosomes are defined with equal network entries as: [ ]W s,w,z  

 Population: The chromosomes vectors are indicated as:  

 1 2 3[ , , ,..., ]ks s s ss , 1 2 3[ , , ,..., ]kw w w ww  and 1 2 3[ , , ,..., ]kz z z zz . 

 Output: The global best weight vectors are WGA-Best 

 Initialization: Form a W, which is a weight vector having real elements to choose a chromosome. For the initial 

population, the design of ‘W’ is presented. To regulate the generations and assertions for the  gaoptimset. 

 Fitness assessment: Proficient the fitness (EFit) in population for W using Eqs (8)–(10). 

 Stopping standards: Terminate if any forms is obtained 

 [EFit = 10–20], [StallLimit = 150], [TolFun = TolCon = 10–18], [PopulationSize = 285], 

[Generations = 90]. 

 Other values: default 

 Go to [storage], if stopping criteria meets 

 Ranking: Rank the W to achieve EFit 

 Reproduction: 

 [Selection~@uniform], [Mutations~adaptfeasible] & [Crossover~heuristic]. 

 Store: Save WGA-Best, EFit, Generations, time and function counts. 

End of [GA] process 

 

Process of SQP 

 Inputs: Input: WGA-Best 

 Output: Best GA-SQP are indicated as WGA-SQP. 

 Initialize: Use WGA-Best, Bounded constraints, assignments, generations  and other decelerations. 

 Terminate: The procedure stops, if any on the below procedure obtains 

 [EFit = 10–17], [Iterations = 650], [TolCon = TolX = TolFun = 10–22], [MaxEvalsFun = 286000], While [Stop] 

 Fitness assessment: Evaluate the EFit, W, using Eqs (8)–(10). Modifications: Using the SQP, Invoke [fmincon] 

 Accumulate 

 Adjust count of function, WGA-Best, time, iterations and EFit for the  present values of SQP. 

End of SQP 

Data Generations 

 The process of GASQP is replicate 50 times for a larger dataset for the  singular LE systems, DD models, PD 

systems and PDSs using the optimization-based GA-SQP through the statistical clarifications. 

The hybridization of global search with any local search method performs the rapid convergence 
using the hybridize with the local search scheme. The best GA values are assigned as an initial input. 
The local search SQP is applied to normalize the parameters. SQP has been applied in various 
directions, e.g., bilinear model predictive control of a HVAC system [64], optimization of the 
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engineering models [65], optimal control of building HVAC&R systems [66], ESP-implemented wells 
[67], optimal coordination of automated vehicles at intersections [68], dynamic combined economic 
emission dispatch models [69], cost minimization of a hybrid photovoltaic, diesel generator, and 
battery energy storage system [70]. 

Figure 1 indicates the graphical illustrations based Gudermannian function as a neural network 
and optimization procedures of GA-SQP, while the details of the optimization steps based on GA-SQP 
are given in Table 1 for singular LE systems, DD models, PD systems and PDSs. The settings of the 
parameter are adopted based on the experiments, experience, performance advantages and knowledge 
using different applications in the current work. 

(Selection); (Reproduction); (Crossover); 
(Mutation operatives)

Set	(SQP)
Best individual; Optimset; Bounds; Start point

The Problem

Fitness	Valuation

Stopping Standards 
Obtained.

Best weight 
Vectors of GA

Fitness	Valuation
Stopping Standards 

attained.

Inputs	GA
Bounds; Optimset; Population & Random Tasks 

Updated	Generations

Best GA-SQP

No

Yes

Graphical	notations	of		GA‐SQP

Yes

No

 Model

Optimization

Gudermannian neural network Nonlinear singular LE systems, DD 
models, PD systems and PDSs.

Global search approach: GA
Local search approach: SQP

Combination Process: GA-SQP

    

 

Figure 1. Graphical illustrations of the Gudermannian function as a neural network for the 
singular LE systems, DD models, PD systems and PDSs using the optimization-based GA-
SQP. 

2.3. Performance procedures 
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In this section, the performances through different statistical gages T.I.C, VAF, S.I.R and MAD is 
provided to validate the constancy and reliability of the proposed Gudermannian function as a neural 
network using the optimizations of GA-SQP for solving the nonlinear singular LE systems, DD models, 
PD systems and PDSs. The mathematical formulations of these measures are provided as: 
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3. Simulations of the results and discussions 

In this section, the simulation of the results and comprehensive discussions is performed to solve 
the singular LE systems, DD models, PD systems and PDSs by exploiting the Gudermannian function 
as a neural network along with the optimal performances of GA-SQP. One example of each nonlinear 
singular model based on the singular LE systems, DD models, PD systems and PDSs along with the 
statistical procedures is numerically discussed through the designed scheme. 

Problem I: Consider a nonlinear singular differential model having an exponential function 

2
2 ( ) ( )

2

0.5
( 0.5 ) 0,

(0) log(2), (1) 0.

d d
e e

d d
 

  
   

   

   

                     (15) 

The fitness function of the above function is given as: 

    
2

2 2 2ˆ ˆ2 ( ) ( )
02

1

ˆ ˆ( ) ( )1 1 ˆ ˆ0.5 ( 0.5 ) log(2) .
2

i i

N
i i

Fit i i N
i

d d
E e e

N d d
   

 
 



  
         

 
    (16) 

The exact form of the solution is 2log2 log( 1)  . 

Problem 2: Consider a nonlinear singular DD form of the equations with multiple-trigonometric 
functions (MTFs) in its forcing function 
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The fitness function of the above function is given as: 
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The exact form of the solution is cos . 
Problem 3: Consider a nonlinear singular PD form of the equations with MTFs in its forcing 
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The fitness function of the above function is given as: 
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The exact form of the solution is sin . 
Problem 4: Consider a nonlinear singular PDS having MTFs in its forcing function 
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The fitness function of the above function is given as: 
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The exact form of the solution is cos . 
To solve the nonlinear singular LE systems, DD models, PD systems and PDSs, the optimization 

procedures through GA-SQP based on the Gudermannian function as a neural network for hundred 
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independent trials are applied. The mathematical for of the best weight sets that authenticate the 
estimated outcomes for 30 variables. The convergence/learning curves along with the updated 
iterations through the merit functions, are drawn in Figures 2–5 for problems 1–4, respectively. It can 
be found that the performance of GA initially performed fast using the optimization procedures, but 
after a few generations the convergence ability decreased, enhanced further with the SQP hybridization 
process. Hence, the GA-SQP scheme provided reliable convergent results for all four problems. In 
addition, it can be authenticated that the stochastic scheme is reliable for solving the singular LE 
systems, DD models, PD systems and PDSs. 

(a) (b) 

Figure 2. Convergence performances through the optimization procedures for Problem 1. 
(a) Convergence performances of GA. (b) Convergence performances of GA-SQP. 

(a) (b) 

Figure 3. Convergence performances through the optimization procedures for Problem 2. 
(a) Convergence performances of GA. (b) Convergence performances of GA-SQP. 



673 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 663–687. 

(a) (b) 

Figure 4. Convergence performances through the optimization procedures for Problem 3. 
(a) Convergence performances of GA. (b) Convergence performances of GA-SQP. 

(a) (b) 

Figure 5. Convergence performances through the optimization procedures for Problem 4. 
(a) Convergence performances of GA. (b) Convergence performances of GA-SQP. 
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The plots of the best results obtained through the best weight vectors, absolute error (AE), results 
comparison, performance indices based different operators and convergence measures are provided in 
the Figures 6–9. The best weights and comparison outcomes for 30 variables is drawn in Figure 3. The 
best weights show the best trials, which are drawn in Figure 6(a)–(d) and comparison of the best, exact 
and mean results is performed in Figure 6(e)–(h). It is observed that the best, exact and mean results 
for each singular system are overlapped. One can prove the witness of the proposed schemes through 
the demonstration of these results. The performances of the operators FitE , EVAF, TIC and MAD are 

plotted in Figure 7(a), while the graphs of AE are drawn in Figure 7(b). It is seen that the best AE 
values lie around 10–5–10–6 for nonlinear singular problem (1), 10–5–10–7 for nonlinear singular DD 
problem (2), 10–3–10–5 for nonlinear singular PD problem (3) and 10–4–10–6 for nonlinear singular 
PDSs (4), respectively. These AE values indicate the correctness of the designed Gudermannian 
function as a neural network using the optimization procedures of the GA-SQP for solving the singular 
system. The FitE  performances are calculated around 10–9–10–10 for nonlinear singular problem (1), 

10–8–10–9 for nonlinear singular DD problem (2), 10–11–10–12 for nonlinear singular PD problem (3) 
and 10–8–10–10 for nonlinear singular PDSs (4), respectively. The EVAF performances are found 
around 10–11–10–12 for nonlinear singular problem (1), 10–9–10–10 for nonlinear singular DD problem 
(2), 10–7–10–8 for nonlinear singular PD problem (3) and 10–8–10–9 for nonlinear singular PDSs (4), 
respectively. The TIC performances are calculated around 10–9–10–10 for nonlinear singular problem 
(1), 10–8–10–10 for nonlinear singular DD problem (2), 10–7–10–8 for nonlinear singular PD problem (3) 
and 10–8–10–9 for nonlinear singular PDSs (4), respectively. The MAD performances lie around 10–5–
10–6 for nonlinear singular problem (1) and DD problem (2), 10–3–10–4 for nonlinear singular PD 
problem (3) and 10–5–10–6 for nonlinear singular PDSs (4), respectively. 
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Figure 6. Best set of weight vectors for 30 variables along with the mean, best and exact 
solutions for the singular models. 
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(a) 

 
(b) 

Figure 7. AE and performances based different operators for the singular systems 1–4. (a) 
AE performance for the singular systems 1–4. (b) Performance Measures for the singular 
systems 1–4. 

The convergence performance based on FitE , EVAF, TIC and MAD is provided in Figures 8 

and 9. It is observed that most of the trials achieved high level of fitness. One can conclude that an 

accurate, specific and precise FitE , EVAF, TIC and MAD values have been achieved for the nonlinear 
singular LE systems, DD models, PD systems and PDSs. 

The statistical performances have been presented using the Gudermannian function as a neural 
network using the optimization procedures of GA-SQP for solving the nonlinear singular LE systems, 
DD models, PD systems and PDSs. The statistical gages based on the Minimum (Min), Mean, Median 
(Med), standard deviation (STD) and semi–interquartile ranges (SIR) for 50 trials are provided in 
Table 2. The Min values indicate the best trials, while the formulation of the SIR is provided in 
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system (13). It is observed that the Min, Mean, Med, STD and SIR values are found in good ranges 
and approve the accuracy/precision of the designed scheme. The global measures for the nonlinear 
singular LE systems, DD models, PD systems and PDSs using the proposed approach are provided in 
Table 3. The Min values using the [G. FIT], [G. TIC] and [G. EVAF] operators found around 10−9–
10−12, 10−8–10−10 and 10−7–10−11 for the nonlinear singular LE system (1), DD models (2), PD system 
(3) and PDSs (4), respectively. The Med values using the [G. FIT], [G. TIC] and [G. EVAF] operators 
found around 10−5–10−9, 10−6–10−8 and 10−5–10−9 for the nonlinear singular LE system (1), DD 
models (2), PD system (3) and PDSs (4), respectively. These optimum performances through the 
global operators approve the accurateness of the designed scheme. The complexity studies for the 
nonlinear singular LE systems, DD models, PD systems and PDSs using the function calculations, 
implemented time and generations are provided in Table 4. One can conclude that the average function 
calculations, implemented time and generations are calculated around 30.53279, 448.52 and 
29761.935, respectively, for the nonlinear singular LE systems, DD models, PD systems and PDSs. 

Table 2: Statistical performances for the nonlinear singular LE systems, DD models, PD 
systems and PDSs. 

Problem Gages Statistical interpretations of the singular systems 

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 

1 Min 4×10–7 2×10–6 4×10–6 3×10–6 4×10–6 4×10–6 4×10–6 3×10–6 3×10–6 3×10–6 2×10–6

Mean 5×10–5 1×10–4 3×10–4 4×10–4 4×10–4 3×10–4 3×10–4 3×10–4 2×10–4 2×10–4 1×10–4

Med 7×10–6 3×10–5 5×10–5 6×10–5 6×10–5 6×10–5 6×10–5 6×10–5 5×10–5 4×10–5 3×10–5

STD 2×10–4 2×10–4 9×10–4 9×10–4 9×10–4 8×10–4 7×10–4 5×10–4 4×10–4 3×10–4 3×10–4

SIR 2×10–5 9×10–5 2×10–4 2×10–4 2×10–4 2×10–4 2×10–4 2×10–4 1×10–4 1×10–4 8×10–5

2 Min 1×10–7 1×10–6 6×10–8 4×10–6 1×10–6 9×10–6 8×10–6 3×10–6 4×10–7 2×10–6 8×10–7

Mean 3×10–2 4×10–2 3×10–3 6×10–3 6×10–3 6×10–3 6×10–3 6×10–3 5×10–3 5×10–3 6×10–3

Med 7×10–5 6×10–3 2×10–2 2×10–2 2×10–2 2×10–2 2×10–2 2×10–2 1×10–2 4×10–3 1×10–2

STD 2×10–1 1×10–3 8×10–3 1×10–2 1×10–2 1×10–2 1×10–2 1×10–2 1×10–2 1×10–2 1×10–2

SIR 1×10–3 1×10–1 7×10–1 1×10–3 3×10–3 1×10–3 2×10–3 2×10–3 3×10–3 3×10–3 4×10–3

3 Min 3×10–9 1×10–5 5×10–5 1×10–4 2×10–4 2×10–4 6×10–5 7×10–5 2×10–4 3×10–4 3×10–4

Mean 4×10–5 2×10–2 5×10–2 6×10–2 8×10–2 9×10–2 1×10–1 1×10–1 1×10–1 1×10–1 1×10–1

Med 5×10–8 5×10–4 1×10–3 2×10–3 3×10–3 3×10–3 4×10–3 4×10–3 4×10–3 4×10–3 4×10–3

STD 2×10–4 7×10–2 1×10–1 2×10–1 2×10–1 3×10–1 3×10–1 3×10–1 3×10–1 3×10–1 3×10–1

SIR 8×10–8 4×10–3 1×10–2 2×10–2 2×10–2 3×10–2 3×10–2 3×10–2 3×10–2 3×10–2 3×10–2

4 Min 4×10–7 2×10–6 4×10–6 3×10–6 4×10–6 4×10–6 4×10–6 3×10–6 3×10–6 3×10–6 2×10–6

Mean 5×10–5 1×10–4 3×10–4 4×10–4 4×10–4 3×10–4 3×10–4 3×10–4 2×10–4 2×10–4 1×10–4

Med 7×10–6 3×10–5 5×10–5 6×10–5 6×10–5 6×10–5 6×10–5 6×10–5 5×10–5 4×10–5 3×10–5

STD 2×10–4 2×10–4 9×10–4 9×10–4 9×10–4 8×10–4 7×10–4 5×10–4 4×10–4 3×10–4 3×10–4

SIR 2×10–5 9×10–5 2×10–4 2×10–4 2×10–4 2×10–4 2×10–4 2×10–4 1×10–4 1×10–4 8×10–5
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(a) 

 

(b) 

Figure 8. Convergence performances-based Fitness and EVAF for the singular systems 
1–4. Convergence through Fitness for the singular systems 1–4. Convergence through 
EVAF for the singular systems 1–4. 

Table 3. Global measures for the nonlinear singular LE systems, DD models, PD systems and PDSs. 

Problem [G. FIT] [G. TIC] [G. EVAF] 

Min Med Min Med Min Med 

1 4.2066E–10 1.2466E–08 7.5497E–10 1.4839E–08 2.0401E–11 5.3046E–09 

2 2.0990E–09 2.5323E–05 2.9352E–09 5.0278E–06 2.7706E–10 2.0433E–06 

3 6.8622E–12 3.9934E–09 2.2284E–08 1.2320E–06 2.0761E–07 3.6934E–05 

4 5.3601E–10 4.7692E–08 3.8819E–09 3.5679–06 7.1462E–10 5.6785E–06 
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(a) 

 
(b) 

Figure 9. Convergence performances-based TIC and MAD for the singular systems 1–4. 
(a) Convergence through TIC for the singular systems 1–4. (b) Convergence through MAD 
for the singular systems 1–4. 

Table 4. Complexity studies for the nonlinear singular LE systems, DD models, PD 
systems and PDSs. 

Problem Function Calculations Executed Time Generations 

[Mean] [STD] [Mean] [STD] [Mean] [STD] 

1 29284.44000 12995.57912 447.58000 209.32819 35.53745 18.20444 

2 35162.58000 12725.02770 542.18000 203.48592 34.83724 12.63487 

3 27556.22000 13006.06683 410.02000 183.59933 26.14958 12.53492 

4 27044.50000 18216.81644 394.30000 270.97987 25.60687 17.78549 
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4. Neuron analysis 

 
(a) 

 
(b) 

Figure 10. Performances of the AE based on the nonlinear singular LE systems, DD 
models, PD systems and PDSs using 2 and 20 number of neurons. (a) AE for each problem 
of the singular system using 3 number of neurons. (b) AE for each problem of the singular 
system using 15 number of neurons. 

In this section, the detailed neuron analysis will be investigated for taking small and large neurons 
for solving the nonlinear singular LE systems, DD models, PD systems and PDSs through the 
optimization procedures of the GA–SQP. Two small and large values of the neurons are taken as 3 
and 15, which are demonstrated in Figure 10(a),(b). The comparative investigations through the 
proposed and exact solutions are provided in Figure 10. It is observed in Figure 10(a) that the values 
of the AE for 3 neurons lie around 10–1 to 10–2 for problem 1, 10–2 to 10–4 for problems 2 and 3, while 
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for the last problem, the AE found around 10–3 to 10–4. Figure 10(b) indicates that the values of the AE 
for 15 neurons lie around 10–6 to 10–8 for problem 1, 10–4 to 10–6 for problem 2, 10–2 to 10–10 for 
problem 3, while for the last problem, the AE found around 10–2 to 10–6. Based on these AE 
performances, one can accomplish that the large number of neurons perform better as small neurons, 
but the computational cost can be higher in case of large neurons. 

5. Conclusions 

In this study, the design of the Gudermannian neural network is presented along with the 
optimization procedures of global and local search schemes. The nonlinear models based on the 
singular delay, prediction and the pantograph forms have been numerically investigated using the 
proposed solver. These kinds of nonlinear models are considered tough to solve due to the singularity 
at the origin, so it becomes more complicated when the delayed, prediction and pantograph terms are 
involved in the singular equations. Therefore, the designed scheme is considered as an impressive 
solver for these different types of the singular systems. The overlapping of mean and best solutions 
with the exact results indicates the correctness of the proposed scheme. The plots of AE are found in 
good measures, which are calculated around 10–5 to 10–7 in the singular delay, prediction and the 
pantograph forms using 10 numbers of neurons. The best calculated statistical performances based on 
EVAF, TIC and MAD shows the reliability of the proposed stochastic numerical scheme. The statistical 
explanations using 50 trials are also provided for the nonlinear singular LE systems, DD models, PD 
systems and PDSs using the Min, SIR and Med operators, which validates the exactness, robustness 
and perfection of the scheme. Moreover, neuron analysis by taking small and large neurons is 
provided to solve these nonlinear singular systems using the optimization procedures-based GA-SQP. 

In future, the proposed scheme can be implemented to solve the nonlinear systems, fractional 
models and fluid mechanics models [71–82]. Moreover, time-varying delays and impulsive effects can 
be studied in future [83–85]. 
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