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Abstract: The COVID-19 pandemic has inspired unprecedented data collection and computer vision 
modelling efforts worldwide, focused on the diagnosis of COVID-19 from medical images. However, 
these models have found limited, if any, clinical application due in part to unproven generalization to 
data sets beyond their source training corpus. This study investigates the generalizability of deep 
learning models using publicly available COVID-19 Computed Tomography data through cross 
dataset validation. The predictive ability of these models for COVID-19 severity is assessed using an 
independent dataset that is stratified for COVID-19 lung involvement. Each inter-dataset study is 
performed using histogram equalization, and contrast limited adaptive histogram equalization with and 
without a learning Gabor filter. We show that under certain conditions, deep learning models can 
generalize well to an external dataset with F1 scores up to 86%. The best performing model shows 
predictive accuracy of between 75% and 96% for lung involvement scoring against an external expertly 
stratified dataset. From these results we identify key factors promoting deep learning generalization, 
being primarily the uniform acquisition of training images, and secondly diversity in CT slice position. 
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1. Introduction 

The COVID-19 pandemic remains a serious worldwide problem with around 2.6 million deaths 
attributable to this disease as of March 11, 2021 [1]. Whilst vaccination efforts are now underway, the 
virus is still circulating, and many countries remain locked down with new variants of the disease 
recently emerging [2]. Pandemics such as COVID-19 are considered by expert panels to be a recurring 
threat with the expectation that respiratory viruses causing severe pneumonia will continue to mutate 
and emerge [3]. 

From the start of this pandemic around December 2019 the research community has worked 
tirelessly to detect, measure, and treat COVID-19 and its devastating health and economic 
consequences more effectively. Data scientists and medical AI specialists have recognized the promise 
of automated computer vision diagnosis and stratification of COVID-19 from medical images [4] 
including computed tomography (CT) [517], Chest X-ray [1830] and point of care ultrasound [31,32] 
imaging modes. These computer vision methods almost universally employ a trainable convolutional 
neural network (CNN) as an image feature extractor/classifier, in a process referred to as “deep 
learning”. The CT imaging mode has received particular focus following results of a large study early 
in the COVID-19 pandemic showing that chest CT outperformed polymerase chain reaction (PCR) 
based lab testing in the diagnosis of COVID-19 [33]. CT imaging also has the advantage of showing 
the extent of a patient’s COVID-19 pneumonia lung involvement, thereby providing information about 
infection progression and severity [34] which can be used to appropriately manage the patient and 
clinical resources for best outcomes. 

Despite this research effort, applications of computer vision assisted diagnosis and stratification 
of COVID-19 has not yet reached maturity due to concerns such as dataset bias and limited validation 
against external datasets. These concerns are justified when one considers the many possible sources 
of bias that could be introduced by systematic differences in medical image acquisition pipelines, 
apparatus and operating methods, or differences in patient morphology between sample and target 
populations [35]. Other potential sources of sample bias include differences in the down-sampling 
method employed to convert high resolution medical images in the form of multiple slices contained 
in digital imaging and communications in medicine (DICOM) files into smaller numbers (often a single 
slice) of lower resolution compressed images suitable for training deep learning models [35]. These 
concerns are compounded by disease positive and disease negative samples frequently being 
independently sourced in the publicly available COVID-19 CT image corpuses.  

A comprehensive meta-analysis of published papers and preprints from January 1, 2020 to 
October 2020 conducted by [35] found that of the 2212 papers initially identified, only 62 were of 
sufficient quality for systematic review and of these none were of possible clinical use due to serious 
problems with methods or underlying bias as assessed using the PROBAST [36] tool. Lack of external 
testing along with biases introduced by differential contribution sources for disease positive and 
disease negative image sets were highlighted as particular causes of concern.  

This study seeks to provide a clearer understanding of the factors affecting deep learning model 
generalization in relation to COVID-19 detection from CT images. Identifying and addressing these 
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factors is critical to translating the immense body of research in this field into well engineered clinical 
tooling. We present the results and interpretation of an inter-dataset study across four publicly available 
COVID-19 CT image datasets and one high-quality privately curated image dataset which is included 
as an unbiased data corpus of known provenance. The models described in the dataset source studies 
are closely replicated using a consistently trained off-the-shelf Densenet-121 convolution neural network 
(CNN). This creates a comparable base set of trained computer vision COVID-19 diagnostic models. 

Systematic differences in brightness and contrast between disease positive and disease negative 
datasets are potential confounding variables in deep learning training. For this reason, application of 
histogram equalization is a very commonly used pre-processing technique applied to computer vision 
algorithms with the objective of removing these differences and promoting generalization [38]. To 
investigate the effectiveness and limits of these techniques, each COVID-19 diagnostic model is 
assessed against each other’s test data partition with histogram equalization [39] and contrast limited 
adaptive histogram equalization (CLAHE) [40] image pre-processing techniques applied, these being 
the most employed image histogram equalization methods [41]. Each test is repeated with the addition 
of a learning Gabor filter [42] which has been shown by some studies to improve CNN accuracy in 
thoracic imaging applications by means of feature reinforcement. From these tests we gain insights 
into the ability of each model to generalize to external datasets, along with an indication of the 
usefulness of image histogram pre-processing and application of a learning Gabor filter. 

The predictive capability of each trained model is then assessed against an independent dataset 
for which COVID-19 lung disease involvement has been measured and labelled by expert radiologists [43]. 
This final step reveals which training corpus and pre-processing options result in trained deep learning 
models that are best able to predict COVID-19 lung involvement scores and therefore be considered 
successfully generalized. Finally, we combine our two best models and use a min-max algorithm to 
achieve very high predictive scores for lung involvement against the expertly labelled control data set. 
Our discussion considers factors promoting generalization which should be considered in the development 
of generalizable deep learning computer vision models for COVID-19 and other thoracic diseases. 

This study represents the first systematic investigation into factors affecting the generalization of 
models trained on COVID-19 CT datasets. Our investigation into the effect of commonly employed 
image pre-processing/filtering techniques on model generalization in the context of CT imaging and 
machine learning is also unique. The outcome of this investigation leads us to promising and, to our 
knowledge, state-of-the-art results in applying a deep learning model trained on one dataset to 
successfully inference the lung involvement strata for a completely independent dataset. Our method 
for combining models using differentiated pre-processing techniques for disease positive and disease 
negative prediction is novel and foreseeably applicable to a range of computer vision applications. 

2. Related work 

Although there are many published studies in the use of computer vision in the diagnosis and 
stratification of COVID-19 very few of these investigate the inter-dataset generalization behavior of 
the described models. In our review we came across only two studies that externally validated the 
performance of their model against an independent dataset [13,44]. In [13] a cross dataset 
generalization study into COVID-19 CT deep learning models by Silva et al. exhibited a drop in 
accuracy for the presented model from 87.68% to 56.16% concluding that the generalization power of 
the deep learning models under consideration is “far from acceptable” for a realistic scenario. In 
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contrast Guarrasi et al. [44] achieved good external generalization results for the CXR imaging mode 
using an optimized combination of deep learning classifier ensembles with fused output layers. The 
authors of this study attribute their good generalization results to increased diversity in CNN architectures 
over single network architectures, resulting in better sensitivity to disease positive image features. 

The question of deep learning generalization in the context of automated pneumonia detection 
from the chest X-ray imaging mode was comprehensively investigated by Zech et al. [45]. This study 
trained and evaluated a CNN-based deep learning model for pneumonia detection on data from three 
independent corpuses. It was found that internal model performance was superior to external model 
performance in all three single dataset comparisons. Where datasets were combined into supersets, the 
superset trained models outperformed the single dataset trained models–however that performance 
improvement did not generalize to a third dataset that was not included in the training data supersets. 
Interestingly, the discussion in this study is focused on AUC scores declining in generalization tests by 
3–10% on the single dataset tests but does not pay particular attention to the decline in specificity 
associated with these tests – being in the range of 3–34% in single dataset tests and up to 47% on the 
superset trained models against independent dataset. Sensitivity results for the experiments remained 
in the 95–98% range throughout. Since specificity is a measure of the ability of the model to distinguish 
disease negative samples from the full sample set, it follows that the poor generalization results from 
this study flow from high numbers of false positive predictions on the external test set. In other words, 
the CNN models tested were very poor at separating disease negative sample and tended to classify all 
samples as disease positive on external testing. This study notes that CNNs may learn so called 
“confounding factors” being non-pathological variables associated to image classes, for example 
sample images from portable scanners are more likely to be disease positive–since these machines are 
usually used at the bedside of more seriously ill patients [45]. This study concludes that “Estimates of 
CNN performance based on test data from hospital systems used for model training may overstate their 
likely real-world performance”. 

The effect of confounding factors is of particular concern in deep learning COVID-19 studies 
where disease positive and disease negative image samples have been separately sourced. In a 
systematic survey of COVID-19 machine learning detection algorithms Roberts et al. [35] notes that 
no studies reach the threshold of robustness and reproducibility to support clinical use, due in large to 
limitations of public datasets used such as traceability/confirmation of COVID-19 diagnosis, 
differential DICOM extraction and compression image pre-processing resulting in a lack of 
consistency and comparability. Concerningly, this review found that 16 out of 62 papers had 
obliviously used a pediatric pneumonia dataset [46] as a control group for separation from COVID-19 
image samples, with Maguolo et al. [47] demonstrating separation of the Cohen COVID-19 dataset [48] 
from this control group achieving AUC up to 0.9997 with the lung field entirely removed from images, 
thereby representing a perfectly confounded study. 

Such concerns in relation to the CXR imaging mode led DeGrave et al. [49] to hypothesize that 
COVID-19 dataset-specific confounding would lead to poor external generalization results, finding 
both pre-trained deep learning models, and simpler logistic regression based models, to be equally 
affected by confounding when using the Cohen COVID-19 dataset [48] against the NIH ChestX-
ray14 [50] dataset “No Finding” and “Pneumonia” subsets as a control. This study also found strong 
evidence of confounding even in higher quality datasets where disease positive and disease negative 
image samples were sourced from the same region [51] and even from the same clinical institution [52]. 
The confounding cause in this study was identified using saliency mapping techniques, and included 
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radiological text markup at image edges, as well as the appearance of the diaphragm and cardiac 
silhouette differing due to differences in radiographic projection. Other studies into the use of the CXR 
imaging mode for COVID-19 diagnosis, such as [53,54] have reached the same conclusion as [49] 
showing classification metrics gaps of up to 62% under external testing. 

In the early days of a novel pandemic such as COVID-19, any large corpus of medical images 
suitable for the training of deep learning systems will most likely consist of relatively low-quality 
images contributed from multiple sources and/or scraped from medical journals. Techniques such as 
lung field segmentation [54] and dataset augmentation [55] have been proposed as potential techniques 
to improve the signal to noise ratio of these images and thereby improve generalization of deep learning 
models to unseen data. Using the Cohen COVID-19 dataset, Bassi et al. [54] achieved a mean 
classification accuracy improvement in external testing of around 4.7% by removing signal outside the 
lung field. The effect of geometric image augmentation techniques frequently used to reduce 
overfitting during training by increasing dataset size and variability was tested by Elgendi et al. [55]. 
Commonly used augmentations include rotation, scaling, reflection, shear, and translation. This study 
found that augmentation methods were not effective at promoting generalization, and in fact reduced 
the external generalization capabilities for the tested models. Since CT scans tend to be more uniform 
than CXR images, the data augmentations in this study are limited to 1-degree of rotation to allow for 
minor patient position variability, and horizontal flip to augment image volume and better distribute 
COVID-19 lung involvement signal over both lungs. 

3. Materials and methods 

3.1. Dataset selection 

A comprehensive survey of COVID-19 data sources was produced by Shuja et al. [56] and 
published in September 2020. This survey was used to identify appropriate data and models for the 
study. Of these datasets the Cohen dataset [48] and Jun et al. [57] were too small for consideration for 
this study with only 80 images and 20 CT scans respectively at the time of writing (28 Feb 2021). 
Wang et al. [14] and Shan et al. [58] with 435 CT images and 549 CT scans respectively were large 
enough for this study but excluded since the datasets are not publicly available. 

The Zhao dataset [60] consisting of 812 CT images that have been scraped from the medRxiv [61] 
health sciences, and bioRxiv [62] biology preprint archives. This dataset contains a total of 812 CT 
images, of which 349 images from 216 patients are labelled COVID-19 and 463 images from only 84 
patients are labelled as Non-COVID-19. The dataset is accompanied by an associated study that 
presents a CNN based deep learning model that achieves accuracy of 89% and an F1 measure of 90%. 
The size of this dataset and an accompanying deep learning model study makes this a good candidate 
data set for our purposes and is henceforth referred to as the “COVID-CT” dataset in this paper. 

Subsequent to the review provided by Shuja et al. [56] two further COVID-19 CT studies have 
become available, both of which contain sizable datasets with an accompanying CNN based deep 
learning study focused on COVID-19 diagnosis. Firstly, Soares et al. [63] consisting of 2482 CT scans 
of which 1252 are COVID-19 positive and 1230 are COVID-19 negative from patients who had 
presented for other pulmonary diseases. Images were collected from hospitals in Sao Paulo, Brazil. 
This dataset is accompanied by a study that uses a handcrafted deep learning network achieving an 
accuracy of 97.38% and an F1 score of 97.31%. The data from this study is publicly available and ideal 
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for our experiments. This dataset is henceforth referred to as the “SARS-COV-2” dataset in this paper. 
Secondly, Gunraj et al. [7] consisting of 194,922 images from 4,501 patient cases initially derived from 
CT imaging data collected by the China National Center for Bioinformation (CNCB) [64], but 
augmented with images from other data sources. The 2A release of this dataset contains 92,268 
COVID-19 positive and 30,749 Normal images with the remainder being labelled as non-COVID-19 
pneumonia. The dataset is accompanied by a study that utilizes a handcrafted CNN based network 
utilizing skip-connections. From the published confusion matrix, we can calculate that this network 
achieved an average accuracy of 99.1% with an F1 score of 99.0% across the three classes. The paper 
notes in discussion that a generalization study would be needed for this model to be considered for 
clinical use, as well as a better understanding of how the classifier was able to distinguish between 
COVID-19 pneumonia cases and other pneumonia cases. The COVID-19 and Normal labelled images 
are useful for comparison with the other datasets described above and have been included in this study. 
This subset is henceforth referred to as the “COVIDNet-CT-2A” dataset in this paper. 

A large dataset sourced from hospitals in Moscow has recently been made available by Morozov 
et al. [43]. This dataset contains 1110 CT scans with COVID-19 positive and negative examples. The 
dataset is unique in that each patient has been assessed by expert radiologists and labelled according 
to COVID-19 lung involvement stratified at 25% intervals as CT-0 to CT-4 with CT-0 representing 0% 
lung involvement and CT-4 representing 75100% lung involvement. This dataset is used as a control 
in the second experiment of our study to determine the strength of our model’s ability to predict lung 
involvement in an independent dataset for which involvement stratification labelling is available. Our 
hypothesis is that a well generalized model should show an increase in disease positive classification 
score as the level of lung involvement increases, with average predicted scores for the stratified images 
increasing in accordance with the strata labels. This dataset is henceforth referred to as the “Moscow” 
dataset in this paper. 

Our study introduces one private dataset to provide a very controlled corpus with clear provenance 
for the purpose of assessing factors affecting generalization performance. This dataset comprises 626 
COVID-19 positive images from 626 patients, and 619 COVID-19 negative images from 619 patients. 
These images were extracted from the Mehr Hospital, Iran PACS before being deidentified, with the 
middle CT slice extracted, compressed into a 512  512 PNG image file, and zoomed in by 40% to 
remove the circular scan field mask to make the images structurally like the other datasets. Images 
were originally acquired from a GE Medical Brightspeed 16 detector multislice CT scan machine using 
a low dose spiral high-resolution CT scan. The source CT scans were independently assessed and 
matched by two trained and certified radiologists. This dataset is referred to as the “MID-CT” dataset 
in this paper. 

A summary of the qualitative attributes of these selected datasets appears in Supplementary Table A. 
An investigation was undertaken to understand the variety of sources underlying each dataset 

with the key observation being that the datasets do not always have COVID-19 disease positive and 
disease negative sample images co-sourced. As discussed in the introduction, this would be highly 
problematic if these independent source provenances were to impart systematic bias upon the dataset. 
Such a systematic difference would produce artificially high classification metrics for internal testing, 
but poor results in external testing. Attributes of the datasets that we would expect to be problematic 
in this manner include: 
1) Non-uniform image size, since resizing images to 244  244 pixels to suit classifier input 

requirements will non-uniformly distort the source images due to different source image aspect 
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ratios. This issue is notable in the COVID-CT and COVIDNetCT-2A datasets. 
2) Inconsistent image resolution–for example images that have been extracted from PDF sources tend 

to be lower resolution than CT slice extracts from DICOM source files. This issue is notable in the 
COVID-CT and COVIDNetCT-2A datasets. 

3) Inconsistent compression artefacts–where disease positive and disease negative samples come 
from different sources it is important that compression algorithms match to avoid classifiers 
learning to separate classes based on systematic differences in compression artefacts. This issue is 
particularly notable on the COVID-CT dataset. 

4) Patients’ samples with non-COVID-19 pneumonia diagnosis, since the typical radiological 
findings for COVID-19 pneumonia can be seen in some non-COVID-19 pneumonia [65]. With 
images downsized to only 244244 pixels it is questionable that these images still contain enough 
information for a classifier to separate on the subtle differences between these two types of 
pneumonia. This is a consideration only for the COVIDNet-CT-2A dataset. For the purposes of our 
investigation, we have removed the non-COVID-19 pneumonia images from this dataset to support 
binary classification allowing for comparison with other datasets and models. 

5) Inconsistent CT slicing. Some CT slices show very little lung field since due to the image being 
dominated by the heart as shown in Figure1. These images therefore contain very little, perhaps no 
COVID-19 disease related pathological information. CT scans represent a moving image locus 
down the body, and the image properties vary greatly by slice location. A fair training data set 
would select the same slice, or slices, for each patient for each class to avoid having the classifier 
learning to separate classes by anatomical features related to slice position rather than pathological 
finding. In the case of pulmonary disease, the selected slice or slices should maximize the view of 
lung field and minimize the obfuscation of the image by the diaphragm at lower CT slices, however 
images such as those shown in Figure 1 (extracted from the COVIDNet-CT-2A dataset) are very 
common in the publicly available datasets. This is a feature that is present to some extent in each 
of the datasets except but is particularly notable in the COVIDNetCT-2A dataset, which includes a 
variable number of CT slices for some patients, many including such obfuscated views. 

 

Figure 1. Sample CT images with lung field obfuscated reducing disease positive signal. 
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Table 1. Average image composites and observations for selected datasets. 

Dataset  

(chi-squared) 

COVID Negative 

Composite 

Image 

COVID Positive 

Composite Image

Dataset Summary 

COVID-CT 

 

(7.88) 
 

 

 

 

Multi-sourced from scraped PDF files. 

Clear differences in brightness and contrast between 

disease positive and disease negative classes apparent in 

average composite images. 

Histogram comparison shows different frequency 

distributions between classes with disease negative 

composite showing a much broader frequency spectrum.

COVIDNet-

CT-2A 

 

(14.946)  

 

 

 

Multi-sourced from a number of daasets. 

Some differences in brightness and contrast between 

disease positive and disease negative classes apparent in 

average composite images. 

Histogram comparison different between classes, with 

the disease negative composite showing higher 

amplitude across the frequency spectrum resulting in a 

very high chi-squared value. 

CT scan artefacts displaying as arcs in lower part of 

image not present in other datasets. 

SARS-COV-

2 

 

(7.383)  

 

 

 

Sourced from multiple Brazillian clinics but acquired 

and processed centrally. 

Brightness and contrast are a systematic match across 

classes. 

Histogram comparison relatively similar in amplitide 

between classes, with disease negative composite 

showing a slightly broader spectrum. 

MID-CT 

 

(1.490) 
 

 

 

 

Single sourced from Iranian Hospital using consistent 

CT scanning apparatus and acquisition pipeline. 

Zoomed from 512512 to 350350 and centered to 

remove circular mask from extracted middle slice. 

Brightness and contrast systematic match across classes.

Histograms almost identical between classes with low 

chi-squared value.

MOSCOW 

 

(0.139) 
 

 

 

 

Sourced from multiple Moscow based clinics but 

acquired and processed centrally. 

Directly extracted from Source DICOM image with 

Circular image frame shared only with MID-CT. 

Histogram almost identical between class with very low 

chi-squared value. 

Compression artefacts are consistent across classes, but 

reinforced by averaging and clearly visible on composite 

image.
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It should also be noted that COVIDNet-CT-2A is a superset of images that contains positive 
samples from the Moscow dataset and negative samples from the COVID-CT dataset, and is therefore 
initially polluted for the purposes of our generalization study. In assembling the COVIDNet-CT-2A 
dataset we have removed the COVID-CT and Moscow image samples to remove cross-contamination 
of the datasets to allow for an unpolluted generalization test. This has the effect that a direct comparison 
between the internally trained COVIDNet-CT-2A results and ours is invalid although our internal 
testing results remain very close those of the source study. 

Ideally, any systematic variations across datasets of the disease positive and disease negative 
images would be caused by pathology features only and thereby restricted to brightness differences in 
the lung field. To test this, we created an average composite image for each dataset and class to provide 
a visual similarity analysis across the classes. This was achieved by looping through the image files 
for each class, and recursively joining pairs of images using a weighting function to ensure that every 
image in the sequence was equally represented in the average composite image. The image frequency 
histogram for each composite image was calculated and charted in Table 1. Whilst the composite 
images/histograms for Moscow, MID-CT and SARS-COV-2 datasets are very consistent across classes, 
both COVID-CT and COVIDNet-CT-2A exhibit significant differences for the different classes. In the 
case of COVID-CT the corners of the composite image have very different pixel values, with the 
negative classes being black and the positive classes being a light grey. The image histogram for the 
COVID-CT disease negative class covers a much broader spectrum than that for the disease positive 
class. For COVIDNet-CT-2A the average image histograms for the two classes cover a similar 
frequency spectrum, but the disease positive class amplitude is much lower than that on the disease 
negative class histogram. From these systematic differences visible between classes in these datasets 
we hypothesize that deep learning models trained on COVID-CT and COVIDNet-CT-2A are most 
likely to train on non-pathological features which will limit external generalization. 

There are notable significant differences in zoom level and CT image acquisition artefacts 
between the datasets as evident in Table 1. For example, the MID-CT, COVID-CT, and SARS-COV-2 
datasets are both zoomed to maximize the lung field in the frame. The Moscow images appear within 
a circular mask and are of a different scale to the other datasets. Since the Moscow images are used as 
a control dataset for lung involvement inferencing, we did not attempt to match the zoom level of this 
dataset to our other datasets preferring to leave this control dataset completely unprocessed. The 
COVIDNet-CT-2A average composite images contain a series of horizontal arcs in the lower quadrant 
of the image that are not present in the other image sets. The extent to which these structural differences 
between the datasets may limit external generalization is considered in the results and discussion 
sections of this paper. 

3.2. Pre-processing pipelines 

The study scope covers both the generalization behavior of trained deep learning models and the 
effect that commonly used pre-processing techniques have on that generalization behavior. To meet 
this objective the models have been trained and tested not only against raw data, but also using simple 
histogram equalization using parameters matching ImageNet [66] and CLAHE as successfully 
employed in a number of studies into deep learning based lung pathology detection from medical 
images [67,68]. We were also interested in the effect of handcrafted feature extraction layers, often 
implemented as wavelet filters such as Gabor filters, which have been shown to improve the accuracy 
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of deep learning classification in thoracic disease imaging applications. 
Each combination of image histogram function was trained and tested with and without a learning 

Gabor filter replacing the first convolution layer in the Densenet-121 network. These experiments 
reveal which, if any, of these techniques have a positive effect on the generalization behavior of the 
deep learning model under investigation. 

3.3. Model development 

The torchvision [69] DenseNet121 [70] network architecture was selected for the study which is 
consistent with other studies successfully using DenseNet121 as a deep learning classifier for COVID-
19 image datasets [11], and thoracic radiology deep learning studies generally [7174]. 

The DenseNet neural network architecture consists of a sequence of dense blocks comprising 
stacked convolution layers separated by transition layers composed of a 1  1 convolution down-
sampling prior to average pooling as input to the next dense block. Each convolution layer in the dense 
blocks receives as input the feature maps output of all preceding convolution layers in the dense block. 
This feature map reuse characteristic means that lower levels in the dense block do not need to relearn 
features from higher levels in the dense block. This architecture is shown in Figure 2. 

 

Figure 2. Modified DenseNet-121 CNN used for training and inference. 

Since our experiments are all binary classifications (COVID-19 disease positive versus COVID-19 
disease negative) we replaced the 1000 neuron DenseNet output fully connected layer with 2 neurons 
as shown in Figure 2 above. Following a number of studies showing the effectiveness of pre-trained 
network models in thoracic disease classification [75], we employed transfer learning to pretrain the 
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DenseNet model in recognizing natural shapes from the ImageNet [76] training corpus. The entire 
network was then fine-tuned against the target datasets at a learning rate of 1e-5 using the Adam 
optimizer [77] with standard parameters. Augmentations of 1-degree rotation with expansion and 
horizontal flip were applied. Class imbalance between disease negative and disease positive classes 
was addressed using a balancing random sampler. For each model a single training run was executed 
with the trained model captured for the purposes of external testing and involvement scoring. 

To ensure consistent training across the datasets and models, the DenseNet network was trained 
until three consecutive epochs showed no reduction in validation loss, implementing a regularization 
technique known as early stopping [78]. At this point each model was tested against a holdout test set 
for each dataset constructed from the recommended test splits for the COVID-CT and COVIDNet-
CT-2A datasets and a random selection of 20% of images for the private MID-CT and SARS-COV-2 
datasets. This guaranteed that there was no patient overlap for the internal testing of COVID-CT, 
COVIDNet-CT-2A, and MID-CT (being composed of a single image per patient). The SARS-COV-2 
dataset did not provide a recommended test split or patient level metadata, making it impossible to 
guarantee no patient overlap between training and testing splits for this dataset. This is consistent with 
the associated study for the SARS-COV-2 dataset which does not mention use an independent cohort 
of patients for holdout testing [63]. Internal testing results for SARS-COV-2 could therefore be 
expected to be optimistic, although external testing results for this dataset would not be impacted. 
Consistently with each source study, classification tasks have been performed at the slice rather than 
the patient level, since large numbers of patient specific images and patient level metadata are not 
uniformly provided by the publicly available datasets. 

3.4. External testing 

 

Figure 3. Experimental flow for model external testing. 

All combinations of no equalization, simple histogram equalization, application of CLAHE and 
use of a learning Gabor filter replacing the first convolution layer were scripted, with training 
completed for all four datasets (reserving the Moscow dataset for the involvement scoring study) 
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resulting in 12 trained models (4 datasets3 pre-processing options) without Gabor filtering and 12 
trained modes with Gabor filtering. Ablation results are provided by the model combination without 
histogram pre-processing or Gabor filter layer. Each of these trained models was then cross validated 
against the test data sets corresponding to each other model as an external generalization study. This 
study was performed for each combination of pre-processing option and with/without Gabor filtering 
as shown in Figure 3. 

3.5. Lung involvement scoring 

Each trained model was used to score COVID-19 positive and COVID-19 negative lung 
involvement against each image in the Moscow expertly stratified dataset. For each stratification in 
the Moscow dataset an average involvement predictive score for each model was calculated. The 
correlation between the average predicted score on the y-axis and involvement strata on the x-axis was 
plotted for each model to test our hypothesis that a generalized COVID-19 diagnostic model would be 
predictive of lung involvement strata. Once again, this experiment was performed for each 
combination of pre-processing option and with/without Gabor filtering as shown in Figure 4. 

 

Figure 4. Experimental flow for lung involvement scoring. 

4. Results 

4.1. Internal testing results 

For the purposes of comparison and validation of our DenseNet-121 trained models a summary 
of results from the source dataset papers is presented in Table 2. Although sensitivity and specificity 
metrics are usually used in the medical context to assess the effectiveness of predictive models, these 
were not provided by all the source studies and our summary is thereby limited to Accuracy, Precision, 
Recall and calculated F1 score. Per class metrics were only documented for the COVID-Net-CT-2A 
study and we have averaged these metrics to make them comparable with the COVID-CT and 
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SARS-COV-2 studies. 

Table 2. Source dataset results compared. 

Study Reference Source Study Results (%)

Accuracy F1 Precision Recall

COVID-CT 89.0 90.0 N/A N/A 

COVIDNet-CT-2A 99.1 99.0 98.8 99.2 

SARS-COV-2 97.4 97.3 99.1 95.5 

Given the very large number of comparison experiment variations we present results in a tabular 
format over Tables 311 summarizing the results for each dataset and trained model. Each cell in the 
table presents three numbers, from top to bottom these are to be read in order as the results of no 
histogram pre-processing, standard histogram equalization pre-processing and CLAHE pre-processing. 
Separate tables have been created showing the results with and without a learning Gabor filter applied 
to allow for easier comparison. 

Table 3 presents internal testing results for all models without the application of a Gabor filter 
replacing the first convolution layer. The first observation is that there is no clear pattern that image 
pre-processing such as histogram equalization and CLAHE have any significant effect on internal 
classification metrics with results being very close regardless of pre-processing technique. The second 
observation is that results using an off-the-shelf classifier are comparable to those of the original 
studies, with a small improvement on the SARS-COV-2 study results from our single training run and 
slightly lower results against the COVIDNet-CT-2A dataset which may be the result of removal of 
shared Moscow and COVID-CT images from this set. Results for the COVID-CT dataset, using the 
same pipelines, classifier and hyperparameters as used for other datasets are substantially lower than 
then the original study, whose results we have been previously unable to replicate using off-the-shelf 
networks [79]. 

Table 3. Internal results without Gabor filter layer. 

Study Reference  Internal results without learning Gabor filter (%) 

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

69.0 

70.9 

64.0

69.0 

70.0 

64.0

63/83 

64/85 

60/70

89/50 

90/53 

74/54 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

98.9 

98.9 

98.8

98.5 

98.5 

98.5

97/100 

97/100 

97/100

99/99 

99/99 

99/98 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

97.5 

97.9 

98.3

97.5 

98.0 

98.0

98/97 

98/98 

98/99

97/98 

98/97 

99/97 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

80.0 

79.0 

78.0

80.0 

79.0 

78.0

83/78 

80/78 

80/76

76/84 

78/80 

74/82 



9277 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9264-9293. 

Table 4 presents internal testing results with the application of a learning Gabor filter replacing 
the first convolution layer. This resulted in improved classification metrics for the COVID-CT, 
COVIDNet-CT-2A and MID-CT datasets. For COVID-CT, the key improvement in classification 
metrics observed is improved recall for the disease negative class leading to an accuracy gain of 4% 
when using histogram equalization. This result is still not as good as the original study but matches 
our previous best result against this dataset using pre-trained networks [80]. For COVIDNet-CT-2A 
we found that using a combination of Gabor filtering and CLAHE improved our internal accuracy for 
COVID-Net-CT-2A to 99.1% which is equivalent to the original study, bearing in mind that we have 
removed the COVID-CT and Moscow data sets from our version of COVIDNet-CT-2A to avoid 
polluting our external generalization study. For MID-CT we found that the combination of Gabor 
filtering and CLAHE resulted in an internal accuracy of 86% which is our best internal score for this 
dataset by a significant margin of 6%. 

Table 4. Internal results with Gabor filter layer. 

Study Reference  Internal results with learning Gabor filter (%) 

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

63.5 

74.9 

70.0

62.5 

75.0 

70.0

59/74 

69/83 

65/78

83/46 

86/65 

83/58 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

98.6 

99.0 

99.1

98.5 

98.5 

99.0

97/100 

97/100 

97/100

99/98 

100/99 

100/99 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

97.9 

96.3 

95.8

98.0 

96.0 

96.0

97/99 

95/97 

97/95

99/97 

97/95 

95/97 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

79.0 

79.0 

86.0

79.0 

79.0 

86.0

81/77 

81/77 

89/83

76/82 

76/82 

82/90 

4.2. External testing results 

Having trained each model for each combination of pre-processing technique with and without a 
learning Gabor filter replacing the first convolution layer we proceeded to externally test each model 
against each other training corpus test data partition. 

4.2.1. External testing of COVIDNet-CT-2A models 

Tables 5 and 6 show the results of external testing of the COVIDNet-CT-2A trained models. 
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Table 5. COVIDNet-CT-2A external results without Gabor filter layer. 

Model Dataset: 

COVIDNet-CT-2A 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

38.7 

40.0 

62.3

37.0 

38.5 

61.0

33/67 

33/69 

45/79

83/17 

83/19 

67/60 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

62.8 

34.7 

43.1

63.0 

22.5 

40.0

47/91 

33/92 

36/95

90/49 

99/3 

98/16 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

75.7 

60.9 

63.0

75.5 

60.5 

61.0

58/96 

46/98 

47/98

94/67 

98/43 

98/46 

Table 6. COVIDNet-CT-2A external results with Gabor filter layer. 

Model Dataset: 

COVIDNet-CT-2A 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

60.2 

54.2 

44.7

60.0 

54.0 

44.5

44/82 

39/77 

34/71

77/52 

73/45 

74/30 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.2 

60.9 

69.6

50.0 

61.0 

69.5

39/82 

46/95 

52/94

86/33 

95/44 

92/59 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

77.9 

84.4 

77.9

70.0 

83.0 

73.0

84/77 

73/91 

73/79

41/96 

83/85 

53/90 

The COVIDNet-CT-2A trained models did not generalize well to either the COVID-CT or MID-
CT datasets regardless of pre-processing histogram function or presence of a learning Gabor filter. 
These datasets are significantly different from COVIDNet-CT-2A in terms of imaged quality (COVID-
CT is scraped from PDF) and diversity, with MID-CT only containing a single CT slice location and 
COVIDNet-CT-2A having a variety of CT slice locations.  

External testing against the SARS-COV-2 dataset was successful using a combination of learning 
Gabor filter with histogram equalization resulting in accuracy of 84.4% with reasonably well balanced 
precision and recall metrics. SARS-COV-2 and COVIDNet-CT-2A have similar image quality and CT 
slice diversity. Histogram equalization and Gabor filter have improved results due to COVIDNet-CT-
2A having been assembled from a wide variety of sources – with these techniques bringing uniformity 
to the training corpus and promoting generalization when equivalent pre-processing was applied to the 
SARS-COV-2 test data. 

4.2.2 External testing of COVID-CT models 

Tables 7 and 8 show the results of external testing of the COVID-CT trained models. The 
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challenging nature of this dataset has been previously described and our expectation that these models 
would not generalize is supported by the external testing results with classification metrics that show 
no significant class separation regardless or pre-processing option or presence of a learning Gabor 
filter. Results are provided as evidence that the quality of the training image corpus is critical to model 
generalization capability. In this case the COVID-CT images have been scraped from pdf sources with 
variable resolution, image size and quality. Other image sets are composed of high-quality conversions 
from DICOM source. This experiment provides evidence that models must be trained on high-quality 
source images to promote generalization. 

Table 7. COVID-CT external results without Gabor filter layer. 

Model Dataset: 

COVID-CT 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

51.2 

55.7 

53.2

40.5

49.5

45.0

50/75 

52/78 

51/75

97/9 

94/20 

95/14 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.2 

47.8 

48.3

41.5

34.0

32.5

49/60 

48/40 

48/0

92/11 

97/2 

100/0 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

52.7 

43.3 

47.8

52.5

41.0

47.5

51/55 

44/41 

47/49

56/50 

66/22 

58/38 

Table 8. COVID-CT external results with Gabor filter layer. 

Model Dataset: 

COVID-CT 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

51.2 

51.2 

51.7

43.5

42.5

48.5

50/62 

50/67 

50/58

91/14 

94/11 

81/25 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

53.7 

52.7 

47.8

43.5

42.0

32.5

51/100 

51/91 

48/0

100/10 

99/10 

99/0 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

48.3 

45.8 

49.8

47.5

45.0

49.5

46/50 

46/46 

48/52

37/59 

62/30 

54/46 

4.2.3 External testing of MID-CT models 

Tables 9 and 10 show the results of external testing of the privately acquired MID-CT trained 
models. Despite the uniformity and high-quality of this dataset, the models based on this dataset have 
failed to generalize to any other dataset with classification results close to chance. The unique property 
of the MID-CT dataset is that it is composed of CT slices exclusively from the midpoint of the CT 
scan. Other datasets have CT slices taken from diverse CT scan positions. Therefore, the MID-CT dataset 
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does not present an anatomical match for the other datasets leading to extremely poor generalization. 

Table 9. MID-CT external results without Gabor filter layer. 

Model Dataset: 

MID-CT 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.0 

50.0 

50.0

33.5

33.5

33.5

0/50 

0/50 

0/50

0/100 

0/100 

0/100 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

50.0 

53.0 

59.0

35.0

42.5

57.0

50/50 

52/71 

56/67

98/2 

96/10 

82/36 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

53.0 

50.0 

53.0

45.5

33.5

51.0

52/62 

50/0 

55/52

90/16 

100/0 

32/74 

Table 10. MID-CT external results with Gabor filter layer. 

Model Dataset: 

MID-CT 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.0 

50.0 

50.0

33.5

33.5

33.5

0/50 

0/50 

0/50

0/100 

0/100 

0/100 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

51.0 

50.0 

50.0

35.5

33.5

38.0

51/100 

50/0 

50/50

100/2 

100/0 

94/6 

SARS-COV-2 No Preprocess 

Histogram Eq 

CLAHE 

50.0 

68.0 

67.0

33.5

66.5

63.5

0/50 

82/62 

95/60

0/100 

46/90 

36/98 

4.2.4 External testing of SARS-COV-2 models 

Tables 11 and 12 show the results of external testing of the SARS-COV-2 trained models. 
Although performance of these models against the COVID-CT and MID-CT datasets was poor for 
reasons already discussed, generalization of these models against the COVIDNet-CT-2A was very 
good with best performance from the histogram equalized model achieving an F1 score of 86% along 
with 85% and 86.7% from sensitivity and specificity respectively. The improves upon the good 
performance of the COVIDNet-CT-2A model against the SARS-COV-2 data previously described, and 
in contrast to those results a Gabor filter was not needed due to the high consistency of the SARS-
COV-2 dataset. We interpret these findings as evidence that a smaller (SARS-COV-2 n = 812), high-
quality dataset has produced a more generalizable model than a larger diversified dataset (COVIDNet-
CT-2A n = 163,630 images) that has been built from diverse sources. 
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Table 11. SARS-COV-2 external results without Gabor filter layer. 

Model Dataset: 

SARS-COV-2 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.0 

51.3 

50.4

34.5

37.5

37.0

50/50 

51/71 

50/56

98/2 

98/4 

97/4 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

82.9 

85.8 

83.8

83.0

86.0

84.0

83/83 

86/85 

80/88

83/82 

85/87 

89/78 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

61.3 

48.8 

51.7

60.5

38.5

39.0

59/66 

49/43 

51/70

76/47 

90/7 

97/6 

Table 12. SARS-COV-2 external results with Gabor filter layer. 

Model Dataset: 

SARS-COV-2 

Internal results without learning Gabor filter (%)

Variation Accuracy F1 Precision 

(COVID/Normal) 

Recall 

(COVID/Normal)

T
est D

ataset 

COVID-CT No Preprocess 

Histogram Eq 

CLAHE 

50.4 

51.3 

50.0

35.0

37.5

36.0

50/67 

51/71 

50/44

99/2 

98/4 

96/2 

COVIDNet-CT-2A No Preprocess 

Histogram Eq 

CLAHE 

81.3 

85.0 

84.6

81.0

85.0

84.5

81/82 

86/84 

82/87

82/81 

83/87 

88/81 

MID-CT No Preprocess 

Histogram Eq 

CLAHE 

64.2 

50.0 

50.8

63.5

41.0

37.0

61/68 

50/50 

50/62

76/53 

89/11 

97/4 

4.3 Lung involvement scoring results 

Having shown some success in external generalization testing we proceeded to test each trained 
model as an inferencing classifier against the Moscow data set which had been held out as a control. 
The Moscow dataset is unique in the publicly available COVID-19 CT datasets in that it is a high-
quality dataset that has been labelled by expert radiologists with a lung involvement score from 0 to 
100% as defined in Table 13. 

Table 13. Lung involvement strata definitions. 

Stratification Lung involvement (%)

CT-0 0 

CT-1 0–25 

CT-2 2 –50 

CT-3 50–75 

CT-4 75–100 
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Since COVID-19 pneumonia is indicated on CT imagery as lung involvement [80] it follows that 
generalization of the trained models against the Moscow data set would be evidenced by an increasing 
inference COVID-19 disease positive inference probability corresponding to an increasing lung 
involvement stratum. To test this hypothesis, we used each trained model, with each pre-processing 
option and with/without learning Gabor filters, to score each of the Moscow dataset images for 
COVID-19 probability. Average predicted score for each stratification was plotted on the y-axis against 
ground truth lung involvement stratifications on the x-axis. 

The results of these experiments are presented in Figures 5–10. We expect a line representing 
COVID-19 disease positive inference probability to have a positive gradient as involvement score 
increases from CT-0 to CT-4, and conversely the line representing COVID-19 disease negative 
inference probability should have a negative gradient. These gradients should be more pronounced the 
better a model has performed against the Moscow data set. 

Figures 5(a),(b) represent results from trained models without histogram equalization or CLAHE 
pre-processing, with Figure 5(b) showing results of adding a learning Gabor filter in place of the first 
convolution layer of the network. The expected pattern for lung involvement prediction is evident for 
both the SARS-COV-2 and MID-CT models, although the performance of the MID-CT based model 
is considered better as it is more effective than the SARS-COV-2 based model in predicting the normal 
condition represented by data points at CT-0. Figure 5(b) shows that addition of a Gabor filter had the 
effect of reducing the performance of both MID-CT and SARS-COV-2 models. 

  

(a) (b) 

Figure 5. Lung involvement scoring with no histogram pre-processing: (a) Without a 
learning Gabor filter layer; (b) with a learning Gabor filter layer.  

Figures 6(a),(b) represent results from trained models with standard histogram equalization. 
Figure 6(b) shows the effect of a learning Gabor filter in the position of the first convolution layer of 
the network. Histogram equalization has eroded the good generalization performance of MID-CT and 
SARS-COV-2 based models without histogram equalization shown at Figure 5(a). Application of a 
Gabor filter to the models further eroded these results as shown in Figure 6(b). From this, one could 
conclude that standard histogram equalization alone, and the combination of standard histogram 
equalization and learning Gabor filter is not an effective combination of techniques to promote 
generalization. 
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(a) (b) 

Figure 6. Lung involvement scoring with histogram pre-processing: (a) Without a learning 
Gabor filter layer; (b) with a learning Gabor filter layer.  

  

a) (b) 

Figure 7. Lung involvement scoring with CLAHE pre-processing: (a) Without a learning 
Gabor filter layer; (b) with a learning Gabor filter layer. 

Figures 7(a),(b) represent results from trained models with CLAHE image processing. Figure 7(b) 
shows the effect of CLAHE image processing with a learning Gabor filter in the position of the first 
convolution layer of the network. CLAHE has enhanced the good generalization performance of 
SARS-COV-2 based model over no pre-processing, and allowed the COVIDNet-CT-2A to show 
minimal generalization where none was previously evident in Figure 6(a), but eroded the 
generalization performance of MID-CT. The SARS-COV-2 based model is now able to correctly 
predict a low probability for disease positive at CT-0 and a high probability for disease positive at CT-
4 with a linear gradient. With the Gabor filter included the models, we achieved better results only for 
SARS-COV-2 based model at the lower stratifications of lung involvement (CT-0 and CT-1) as shown 
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by Figure 7(b). 
Confirming the results of the first experiment, models based on SARS-COV-2 exhibited superior 

generalization performance despite this being a much smaller dataset than COVIDNet-CT-2A. The 
high-quality, image consistency and slice location diversity present in SARS-COV-2 have promoted 
good generalization properties in the model trained on this dataset.  

 

Figure 8. Lung involvement scoring with CLAHE and Min-Max Gabor ensemble. 

Table 14. SARS-COV-2 CLAHE model with Min-Max Gabor ensemble average prediction per strata. 

Involvement Strata Ground Truth 

Involvement 

% 

Average Prediction SARS-C0V-2 

(COVID) 

% 

Average Prediction SARS-COV-2 

(NORMAL) 

%

CT-0 0 25.184 74.816

CT-1 0–25 32.240 67.760

CT-2 25–50 51.353 48.647

CT-3 50–75 65.917 34.083

CT-4 75–100 96.380 3.620

This promising result led us to focus on which combination of techniques would maximize the 
predictive value of these models against the Moscow dataset. Inspection of the results graphs for the 
SARS-COV-2 models showed that application of CLAHE provided the best results, with a Gabor filter 
providing highest accuracy at CT-0 (minimum lung involvement) representing an improvement in 
sensitivity and absence of the Gabor filter providing highest accuracy at CT-4 (maximum lung 
involvement) representing an improvement in specificity. We combined these SARS-COV-2 based 
models to use CLAHE as a pre-process and the minimum predicted probability from the Gabor/non-
Gabor models as the COVID-19 disease negative score and the maximum probability from the 
Gabor/non-Gabor models as the COVID-19 disease positive inference probability. Figure 8 shows the 
results of this min-max Gabor ensemble. The ensemble results from this model are excellent, achieving 
an average score of 75% for the Moscow images without lung involvement and an average score of 
96% for the Moscow images with 75–100% lung involvement, with an approximately continuous 
gradient for the stratifications between these extremes. The SARS-COV-2 based models have 
generalized well to the Moscow dataset when using this ensembling technique providing very accurate 
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predictive scoring of lung involvement. Table 14 provides the average predictions by involvement 
stratification for this ensemble model. 

5 Discussion 

5.1 Effect of differential image class provenance and patient image diversity  

The experiments showed that attributes of the training datasets had a significant impact on the 
predictive capability of generated models against external datasets. Our poorest performing models 
were models based on the COVID-CT dataset. These models did not generalize in either external 
testing or involvement scoring. Internal testing showed that both histogram equalization and Gabor 
filter had a positive effect on metrics for this dataset, with these techniques combined achieving a best 
F1 score of 75%. We interpret the positive effect of histogram equalization on these results to a 
reduction in the variability of brightness and contrast amongst source images that was very evident in 
this dataset. Applying a Gabor filter would have the effect of reducing dimensionality manifesting in 
these experiments as an improvement in specificity since the Gabor filter reinforces pneumonia related 
features that would be absent from disease negative images. It was previously noted that this dataset 
has different sources for disease positive and disease negative images, and we interpret the observed 
poor external generalization of models trained on COVID-CT to the classifier learning confounding 
differences between these classes instead of pathological features. Additionally, we noted previously 
that the disease positive images for this dataset are sourced from 216 patients, whilst the disease 
negative images are sourced from only 84 patients. This very low number of disease negative patients 
would be insufficient for a machine learning classifier to learn generalized disease features. Given 
these considerations it is unsurprising that models based on this dataset were not predictive of lung 
involvement against the Moscow stratified dataset. 

5.2 Anatomical matching and effect of single vs multiple CT slice locations 

The performance of the MID-CT dataset-based models in external testing was very poor, with the 
only tests improving upon blind chance doing so at the expense of sensitivity or specificity, i.e., a 
tendency to classify the majority of samples as either disease positive or disease negative regardless 
of ground truth. The MID-CT dataset did have disease positive and disease negative classes co-sourced 
and subjected to a consistent acquisition pipeline, and the number of patients in disease positive and 
disease negative classes was relatively balanced. However, the MID-CT dataset only has a single CT 
image slice per patient taken from the median index. This is different to the other datasets used in 
external testing which all have image slices taken from multiple CT scan locations. We attribute the 
poor generalization performance of MID-CT based models to this anatomical mismatch and lack of 
CT scan location diversity. 

5.3 Large diverse multi-sourced image corpus vs smaller uniformly acquired image corpus 

The COVIDNet-CT-2A based models showed good generalization in external testing against the 
SARS-COV-2 dataset. In contrast, under involvement testing against the Moscow dataset, the 
COVIDNet-CT-2A trained models had little to no predictive value. This contrasts with the SARS-
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COV-2 dataset-based models which all showed good generalization against the Moscow dataset, with 
particularly good results when CLAHE pre-processing was used. These results establish that a smaller, 
higher quality dataset with disease positive and negative samples co-sourced and consistently acquired 
(SARS-COV-2) is more effective in generalization to external datasets than a very large, more diverse, 
dataset assembled from multiple sources with a variety of acquisition pipelines (COVIDNet-CT-2A). 

5.4 Effect of image pre-processing and learning Gabor filter 

The study found that image histogram equalization and CLAHE and Gabor filtering had a 
negative effect on MID-CT based model external classification results despite the combination of 
CLAHE and Gabor filtering providing significantly better results in internal testing for models based 
on this dataset. We suspect that image pre-processing and Gabor filtering have most likely reinforced 
signal noise in the manner noted by [81], rather than reinforcing pathological signal only. The MID-
CT dataset was single sourced from with fixed CT apparatus operating parameters and therefore very 
consistent in terms of brightness and contrast. In our study, image histogram pre-processing and 
wavelet filtering techniques such as Gabor filtering improved classification metrics only where 
differences in image brightness and contrast have been imparted on the data corpus by different CT 
apparatus and operational parameters. This is the case with the SARS-COV-2 dataset which has been 
sourced from multiple Brazil located clinics and shows moderate variability in terms of image size, 
brightness, and contrast. 

Finally, we noted that the use of a Gabor filter following CLAHE pre-processing improved the 
specificity of the SARS-COV-2 based models, whilst the model with CLAHE but without the Gabor 
filter showed superior sensitivity. By combining these models with a Min-Max algorithm we produced 
an ensemble model that accurately predicted lung involvement ground truth against the Moscow 
dataset being a completely independent dataset. The accuracy of this combined model is remarkable 
when one considers that the SARS-COV-2 and Moscow datasets have been sourced from the different 
geographical regions, and that these datasets show significant structural differences on their average 
image composite. 

5.5 Key factors promoting model generalization 

These experiments have identified two key factors promoting CT image based deep learning 
model generalization: 
1) Uniform image sample acquisition. Disease positive and disease negative classes should be 

consistently (though not necessarily identically) sourced and subjected to consistent image 
acquisition/compression pipelines. This will minimize systematic structural differences between 
the classes and eliminate bias resulting in model training on non-pathological “confounding 
factors”. Our SARS-COV-2 and MID-CT models met these criteria and generalized to the Moscow 
corpus even though these datasets and the Moscow images were structurally quite different, 
suggesting that consistency in the model training data is more important that structural consistency 
across training and external inferencing datasets. The use of histogram equalization techniques was 
shown to improve generalization results where there is moderate variability in image corpus 
brightness and contrast (SARS-COV-2). However, these techniques proved ineffective where the 
image set is already very consistent (MID-CT) or where there is major variation in image attributes 
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across the datasets (COVID-CT and COVIDNet-CT-2A). 
2) Diversity in CT slice position. The model trained on SARS-COV-2 displayed superior model 

generalization against the Moscow dataset in comparison the MID-CT trained model. The key 
difference between these datasets is that SARS-COV-2 has been assembled from a variety of CT 
slice positions whereas the MID-CT dataset uses only the middle CT slice. From this we can 
conclude that if image samples are uniformly acquired for each class then diversity of CT slice 
position in the dataset improves model generalization. 

6 Conclusions 

Computer vision based medical diagnostic systems cannot be considered clinically mature until 
they are also shown to be generalizable across populations. However, most of the research to date has 
focused on achieving higher accuracy internal classification within datasets rather than considering 
how these models might generalize to external datasets, and thereby to real-world situations. 

In these experiments, only models trained on the SARS-COV-2 dataset exhibited successful 
generalization for both external testing and lung involvement scoring. External testing against the 
COVIDNet-CT-2A dataset yielded highest accuracy of 85.8% and 85.0% for tests using histogram 
equalization with/without employment of a learning Gabor filter, respectively. The SARS-COV-2 
based models also generalized well to the Moscow dataset, particularly when CLAHE processing was 
used. An ensemble of SARS-COV-2 models using the Gabor filter only for low lung involvement 
scores achieved a predictive accuracy of 75% for zero lung involvement and 96% for 75100% lung 
involvement with an almost linear relationship between these stratifications. 

The SARS-COV-2 image corpus has been consistently sourced with disease positive and negative 
samples co-sourced and qualitatively very similar in appearance. This is in contrast to the COVID-CT 
and COVIDNet-CT-2A datasets, which both contain image samples from a wide range of sources. This 
result may be interpreted as greater dataset consistency having minimized confounding bias, thereby 
promoting generalization of models trained on SARS-COV-2. Further, the key difference between the 
successfully generalized SARS-COV-2 models, and the poorly generalized MID-CT based models is 
that images comprising SARS-COV-2 have been selected from a variety of slice positions whereas 
MID-CT has images only from the middle CT slice. From this we conclude that CT slice diversity in 
the training corpus also promotes model generalization.  

This study has some limitations. It would be preferable to have segmented the lung field from the 
CT image to improve the signal-to-noise-ratio. However, initial experiments showed segmentation 
results using a U-Net [82] to be highly sensitive to the quality of the source images. We were conscious 
that systematically different segmentation artefacts for different image corpuses would impose bias the 
datasets and therefore chose not to segment. In the future, additional slices for the MID-CT dataset 
will be procured to try to improve the generalization results for this dataset. 
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Appendix 

Table A. Dataset quantitative properties. 

Dataset Image 

Total 

COVID 

Negative 

 

Image 

Total 

COVID 

Positive 

Patient 

Total 

COVID 

Negative 

Patient 

Total 

COVID 

Positive 

Image 

Format/Extraction 

Dimensions 

(pixels) 

COVID-CT 463 349 55 216 Compressed (PNG) Variable 

COVIDNet-

CT-2A* 

60083 94548 573 3055 Compressed (PNG) Variable 

SARS-COV-

2 

1230 1252 60 60 Compressed (PNG) Variable 

MID-CT 619 626 619 626 DICOM extracted 

middle slice to 

compressed (PNG) 

512512 (uniform) 

MOSCOW 254 856 254 856 NifTI extracted slice 

20 to 

Compressed (JPG)

512512 (uniform) 

* Pneumonia images excluded from analysis. MOSCOW and COVID-CT images removed from analysis to avoid inter-

dataset pollution. 
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