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Abstract: This paper proposes a probabilistic graphical model that integrates interpretive 
structural modeling (ISM) and Bayesian belief network (BBN) approaches to predict cone 
penetration test (CPT)-based soil liquefaction potential. In this study, an ISM approach was 
employed to identify relationships between influence factors, whereas BBN approach was used to 
describe the quantitative strength of their relationships using conditional and marginal 
probabilities. The proposed model combines major causes, such as soil, seismic and site conditions, 
of seismic soil liquefaction at once. To demonstrate the application of the propose framework, the 
paper elaborates on each phase of the BBN framework, which is then validated with historical 
empirical data. In context of the rate of successful prediction of liquefaction and non-liquefaction 
events, the proposed probabilistic graphical model is proven to be more effective, compared to 
logistic regression, support vector machine, random forest and naive Bayes methods. This research 
also interprets sensitivity analysis and the most probable explanation of seismic soil liquefaction 
appertaining to engineering perspective. 
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1. Introduction  

Determination of soil liquefaction potential is a fundamental step for seismic-induced hazard 
mitigation. In the last few decades, numerous researchers have attempted to present different methods that 
are based on in situ tests to predict the soil liquefaction potential, e.g., Seed and Idriss [1,2]; Robertson and 
Wride [3]; Youd and Idriss [4]; Juang et al. [5]; Moss et al. [6]; Idriss and Boulanger [7]; such as standard 
penetration test (SPT), cone penetration test (CPT), and techniques for shear wave velocity (Vs). The 
findings of the cone penetration test (CPT) have been adapted by many researchers from in situ tests 
as the basis for evaluating the liquefaction potential of the test method (e.g., Youd and Idriss [4]; Juang 
et al. [5]). The CPT is being used increasingly in geotechnical investigations owing to its simplicity, 
accuracy, continuous soil profile and repeatability than other types of in-situ test methods. 

Artificial intelligence (AI) techniques as for example random forest [8], adaptive neuro-fuzzy 
inference system (ANFIS) [9], relevance vector machine (RVM) [10], artificial neural network 
(ANN) [5,11,12], genetic programming (GP) [13–16] and support vector machine (SVM) [12,17–19] 
models were developed to predict liquefaction potential based on in situ test database. Over 
conventional modeling techniques, the primary strength of AI techniques is their process of capturing 
nonlinear and complex correlation between system variables without having to presume the 
correlations between different variables of input and output. In the scope of assessing the occurrence 
of liquefaction, these techniques may be trained to learn the relationship between soil, site, and 
earthquake characteristics with the potential for liquefaction, needing no prior knowledge of the form 
of the relation. Mostly models are black box owing to the fact that the relationship between the system’s 
inputs and output parameters is represented in terms of a weight matrix and biases that are not visible 
to the user. 

The Bayesian Belief Network (BBN) is a graphical model that enables a set of variables to be 
probabilistically connected [20]. To address cause-effect relationships and complexities, BBN may 
provide an effective structure. BBN not only provides sequential inference (from causes to results) but 
also reverse inference (from results to causes). The benefits of BBNs include the following compared 
to other methods: 1) BBN achieves a combination of qualitative and quantitative analysis; 2) BBN 
allows reversal inference (from results to causes) and it is simple to obtain the ranking of factors 
affecting the casualties; 3) BBN has a good learning ability; 4) allows data to be combined with domain 
knowledge; and 5) Even with very limited sample sizes, BBN can demonstrate good prediction 
accuracy. Furthermore, its application in seismic liquefaction potential on CPT-based in-situ tests data 
is found comparatively less e.g., Ahmad et al. [21–23]. 

The contributions of this paper are fourfold:  
a) This study integrates ISM and BBN to assess CPT-based seismic soil liquefaction potential 

that uses conditional and marginal probabilities to describe the quantitative strength of their 
relationships;  

b) The performance of the proposed model is comparatively assessed with four traditional seismic 
soil liquefaction modeling algorithms (Logistic regression, SVM, RF, and Naive Bayes);  

c) The sensitivity analysis of predictor variables is presented owing to know the effect of input 
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factors on the liquefaction potential; and  
d) The most probable explanation (MPE) of seismic soil liquefaction with reference to 

engineering perspective is presented. 
This article consists of six major sections. Next section presents research methodology, Section 3 is 

devoted to the probabilistic graphical model development. Section 4 presents comparison and evaluation 
measures with the widely used prediction methods. Results and discussion are presented in Section 5. 
Finally, in the last part, conclusions and future work are set out. 

2. Research methodology 

This study’s working approach was divided into two parts (Figure 1): interpretive structural modelling 
and Bayesian belief networks. 

2.1. Interpretive structural modeling 

Interpretive structural modeling (ISM) is a well-established technique that describes a situation 
or a problem to classify the relationships between particular issues. A collection of different elements 
that are directly and indirectly connected are organized into a structured comprehensive model in this 
approach [24,25]. The model thus created depicts the structure of a complex problem or issue in a 
carefully constructed pattern that implies graphics and words [26–28]. Different researchers have 
increasingly used this technique to depict the interrelationships between various elements relevant to 
the issues. The ISM approach includes the identification of variables that are important to the issue or 
problem. Then a contextually relevant subordinate relationship is identified. On the basis of a pair wise 
comparison of variables, after the contextual relationship has been determined, a structural self-
interaction matrix (SSIM) is defined. After this, SSIM is converted into a reachability matrix (RM) and 
its transitivity is examined. A matrix model is obtained after transitivity embedding is complete. Then, 
the element partitioning and a structural model extraction called ISM are derived. The development of 
the ISM model is explained in further depth by Ahmad et al. [29,30]. 

2.2. Bayesian belief network 

Bayesian Belief Networks (BBN) is a graphical network of causal connections between different 
nodes. In BBN models, the network structure is a directed acyclic graph (DAG) that graphically 
represents the logical relationship between nodes, and the conditional probability of quantifying the 
strength of this relationship is the network parameter [31–33]. The network structure and network 
parameter can be obtained via expert knowledge [34,35] or training from data [36].  

The primary idea of a BBN is based on Bayes’ theorem, which states that the relationship between 
two nodes, hypothesis H (parent) and evidence E (child), is represented as: 

     
 

P E H P H
P H E

P E


  (1)

where P(H|E) is one’s belief in hypothesis H after observing evidence E, P(E|H) is the chance that E 
will be observed if H is true, P(H) is the probability that the hypothesis will hold true, and P(E) is the 
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probability that the evidence will occur. The posterior probability is P(H|E), and the prior probability 
is P(H). In a BBN analysis, the updated probability is derived by expanding the P(E) in Eq (1) for n 
number of mutually exclusive hypotheses Hi (i=1,..., n) and a given evidence E [37] as: 

     
   

1

jj

j n

iii

P E H P H
P H E

P E H P H






 (2)

A BBN is used to update probability as new information becomes available. The network 
allows researchers to compute the probabilities of any subset of variables given evidence about 
another subset. 

 

Figure 1. The process outline of the methodology of research used in the present study. 
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3. Development of probabilistic graphical model 

3.1. Data set and predictor variables 

The data set used in this analysis was on the basis of the revised version of the CPT case history 
records collected by Boulanger and Idriss [38]. The entire data set consists of 253 cases with a soil 
behaviour type index, Ic < 2.6, of which 180 are liquefied cases, another 71 are non-liquefied cases 
and the remaining 2 are doubtful cases (marginal between liquefied and non-liquefied) in this research 
work. These case histories are derived from CPT measurements of 17 sites and field performance 
reports of major earthquakes (the complete database is available in Table S1). Liquefaction is caused 
by seismic parameters, site conditions, and soil properties that include a varied range of factors. So 
nine critical factors or variables used for the possible evaluation of liquefaction are chosen, namely 
earthquake magnitude (M) V1, peak ground acceleration (amax, g) V2, fines content (FC, %) V3, 
equivalent clean sand penetration resistance (qc1Ncs) V4, soil behaviour type index (Ic) V5, vertical 
effective stress 'v, kPa) V6, groundwater table depth (Dw, m) V7, depth of soil deposit (Ds, m) V8, 
thickness of soil layer (Ts, m) V9, and output is liquefaction potential, V10 in this paper according to 
Okoli and Schabram [39] and Tranfield et al. [40]. For more details of CPT case histories, viewers 
may refer to the Boulanger and Idriss reference [38]. The statistical characteristics of the data set used 
in this study, such as minimum (Min.), maximum (Max.), mean, standard deviation (SD) and 
coefficient of variation (COV), are shown in Table 1.   

Table 1. Statistical aspects of the dataset. 

Statistical 
parameters 

M amax 
(g) 

FC 
(%) 

qc1Ncs Ic 'v 
(kPa) 

Dw (m) Ds (m) Ts (m)

Min. 5.9 0.09 0 16.1 1.16 19 0.2 1.4 0.3 

Max. 9 0.84 85 311.9 2.59 147 7.2 11.8 6.5 

Mean 6.98 0.32 17.71 93.89 1.96 57.62 2.04 4.44 1.83 

SD 0.55 0.15 19.27 38.06 0.29 24.55 1.21 1.96 1.22 

COV 0.08 0.46 1.09 0.41 0.15 0.43 0.59 0.44 0.67 

Previous studies [23,41–43] showed detail understanding about the variables’ selection and 
discretization. BBN has a good capability to deal with discrete variables, but is weak in continuous 
variables processing, so the nine significant factors and output (liquefaction potential, V10) require to 
be transformed into discrete values before the propose model is constructed accordance to the possible 
factor range and expert knowledge, as shown in Table 2.  

3.2. Probabilistic graphical model for CPT-based seismic soil liquefaction potential 

The data set has been divided into training and testing datasets according to statistical aspects for 
example mean, maximum, minimum, etc. to build the models: 
 A training data set is required to build the models. The authors used 201 (80%) CPT case history 

data for the training set in this study. 
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 A testing data set is required to predict the performance of the established models. The 
remaining 50 (20%) CPT case history data is used as a testing data set in this study. 

ISM technique suggests the use of domain or expert knowledge in the creation of the contextual 
relationships between the nine significant variables and contextual relationships are ultimately 
analyzed by field experts who have approved and represented by SSIM (see Table 3). 

Table 2. Grading specifications for seismic soil liquefaction variables. 

Category Variable  Number 
of grade

Explanation Range 

Seismic 
parameter 

Earthquake 
magnitude, M  

4 Super 
Big 
Strong 
Medium 

8 ≤ M 
7 ≤ M < 8 
6 ≤ M < 7 
4.5 ≤ M < 6 

Peak ground 
acceleration, amax 
(g) 

4 Super 
High 
Medium 
Low 

0.40 ≤ amax 
0.30 ≤ amax < 0.40 
0.15 ≤ amax < 0.30 
0 ≤ amax < 0.15 

Soil 
parameter 

Fines content, FC 
(%) 

3 Many 
Medium 
Less 

50 < FC 
30 < FC ≤ 50 
0 ≤ FC ≤ 30 

Equivalent clean 
sand penetration 
resistance, qc1Ncs 

4 Super 
Big 
Medium 
Small 

135 ≤ qc1Ncs 

90 ≤ qc1Ncs < 135 
45 ≤ qc1Ncs < 90 
0 ≤ qc1Ncs < 45 

Soil behaviour 
type index, Ic 

4 Gravelly sand to dense 
sand 
Clean sand 
Silty sand or Sand with silt
Sandy silt 

Ic < 1.31 
1.31 ≤ Ic < 1.61 
1.61 ≤ Ic < 2.40 
2.40 ≤ Ic < 2.60 

Site 
condition 

Vertical effective 
stress, 'v (kPa) 

4 Super 
Big 
Medium 
Small 

≤'v 
≤'v 
≤'v 
≤'v 

Groundwater 
table depth, Dw 
(m) 

3 Deep 
Medium 
Shallow 

4 ≤ Dw 
2 < Dw < 4 
Dw ≤ 2 

Depth of soil 
deposit, Ds (m) 

3 Deep 
Medium 
Shallow 

10 ≤ Ds < 20 
5 ≤ Ds <10 
0 ≤ Ds <5 

Thickness of soil 
layer, Ts (m) 

3 Thick 
Medium 
Thin 

10 ≤ Ts 
5 ≤ Ts < 10 
0 < Ts < 5 
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Table 3. SSIM for seismic soil liquefaction variables. 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Vi  
  V O O O O O O O V V1 
    O O A O O O O V V2 
      V V O O O O V V3 
        A A A A O V V4 
          A O O O V V5 
            A A O V V6 
              O O V V7 
                O V V8 
                  V V9 
                    V10 

In the next phase, the SSIM is changed to a binary matrix for seismic soil liquefaction factors, 
called the initial reachability matrix (IRM), by exchanging the original symbols with 1 or 0, as shown 
in Table A1 in Appendix A. When the IRM is obtained, the transitivity property is verified to get the 
final matrix of reachability (FRM). The transitivity check is the basic principle of the ISM 
methodology that if the ‘a’ variable is related to the ‘b’ variable and the ‘b’ variable is related to the ‘c’ 
variable, the ‘a’ variable is ultimately correlated with the ‘c’ variable. The new entries that are labeled 
as ‘1*’ are implied after transitivity checking. The FRM with rank, driving and dependence powers is 
shown in Appendix A of Table A2. The variables used to derive multilevel hierarchy structure levels, 
along with their reachability set (Sr), antecedent set (Sa), and intersection set (Si), are shown in Table 
A3–A7 in Appendix A. The findings showed that there are five partition levels which are as follows: 

L1 = {V10}; L2 = {V2, V4, V9}; L3 = {V1, V5}; L4 = {V3, V6}; L5 = {V7, V8}. 

The liquefaction potential multilevel hierarchy structure is formed from the FRM. The transitivity 
relations between two variables, such as the direct links between the Ds and the Dw with liquefaction 
potential, are eliminated because the Ds and the Dw will influence the liquefaction potential through 
vertical effective stress. In the next phase, there is no conceptual inconsistency in the structural model 
so the ISM is developed for the soil liquefaction potential (see Figure 2). There is a restriction of no 
links between skipping-level nodes in the ISM model (for example, FC and liquefaction potential). 
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Figure 2. Interpretive structural modeling of liquefaction potential. 

It can be seen that peak ground acceleration (PGA), qc1Ncs and soil layer thickness (Ts) in the 
second level are directly influencing factors of liquefaction potential, while Ds and the Dw in the last 
level are the most vibrant factors that form the basis of the ISM hierarchy. In other levels, fines content, 
vertical effective stress, soil behaviour type index and earthquake magnitude are the indirect factors 
influencing the liquefaction potential. 

A network model with an unknown structure or insufficient knowledge can be hard to create 
directly. To fix this issue, Liao et al. [37] used ISM to develop a network diagram, which they 
specifically used as a BBN for evaluating outsourcing risk. This approach effectively processes the 
relationships between variables by splitting the problem into different levels, making the overall 
structure clear and easy to understand and ensuring a deeper understanding of the problem. In order to 
facilitate constructing a BBN diagram, the final network diagram obtained from ISM defines the 
interdependent relationships between factors at the same level or between two levels. The model 
system is built directly into Netica software distributed by Norsys Software Corp to define the 
quantitative intensity of their relationships. The graphical presentation is shown in Figure 3. 



9241 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9233–9252. 

 

Figure 3. Soil liquefaction potential graphical model. 

4. Evaluation and prediction 

To assess the proposed model, it was compared to various other well-known methods using scalar 
performance measurements. 

4.1. Compared methods 

The proposed model was compared with other widely used prediction methods such as logistic 
regression, support vector machine, random forest, and naive Bayes. Table 4 provides a brief overview 
of these methods along with tuning parameters. For more information, readers can consult the 
corresponding reference materials. 
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Super

Big

Medium

Small

3.43
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Big

Strong

Medium
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1.95

Soil liquefaction

No

Yes

31.8

68.2

Thickness of soil layer

Thick

Medium

Thin

0.49

2.45

97.1
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26.2

14.2

52.2
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Super

Big
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13.2
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11.1
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10.3
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80.9
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Medium

Shallow

1.96

31.4
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Table 4. Prediction methods compared. 

Method Description Tuning 
parameters 

Logistic 
Regression (LR) 

LR is a probability evaluation process focused on the 
calculation of maximum probability [44].

{C1, L} 

Support Vector 
Machine (SVM) 

SVM, based on mathematical learning models is one of the 
most robust prediction methods [45]. SVM training method 
computes a model that assigns new examples to one category 
or the other, making it a non-probabilistic binary linear 
classifier, given a set of training examples, each marked as 
belonging to one of two categories.

{C2, ε} 

Random Forest 
(RF) 

RF [46] is a meta-learning scheme that integrates many 
independently developed base classifiers and participates in 
a voting process to obtain a prediction for the final class. 

{ntree, ns} 

Naive Bayes 
(NB) 

NB [47] assumes that the predictive variables, provided the 
target/dependent variable, are conditionally independent. 

None 

Note: C1 = cost strength; L = regularization type (either L1 or L2); ntree = number of trees; ns = split subsets; C2 = 
Cost; ε = regression loss epsilon 

4.2. Evaluation measures 

Several measure indexes are used in order to comprehensively evaluate the performances of the 
developed models for seismic liquefaction. There are four possible outcomes for a single prediction in 
the binary class scenario, i.e., liquefaction and non-liquefaction. The correct classification is true 
negative (TN) and true positive (TP). If the output is incorrectly predicted as negative, a false positive 
(FP) occurs, If the result is wrongly labelled as negative, a false negative (FN) occurs. The confusion 
matrix (see Figure 4) can be used to evaluate these as: 

Accuracy
TP TN

TP FN FP TN




  
 (3)

Precision
TP

TP FP
 


 (4)

Precision
TN

FN TN
 


 (5)

Sensitivity
TP

TP FN



 (6)

Specificity
TN

FP TN



 (7)

2 Precision Sensitivity
F‐score

Precision +Sensitivity






 
  (8)
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2  Precision Specificity

F‐score
Precision +Specificity

 (9)

The total number of correct predictions is calculated as accuracy (Acc). Precision evaluates the 
accuracy of a single class’s predictions, whereas sensitivity is concerned with true positives and false 
negatives, and specificity deals with false positives and true negatives. F-measure combines precision 
and sensitivity or specificity values to achieve a harmonic mean. The best F-score is 1, while the worst 
F-score is 0. A good classifier model has close sensitivity and specificity values, which can be 
challenging to achieve with AI algorithms [48]. Additionally, another performance metric that is 
computationally efficient can be used, namely Gmean [49]. Gmean is the geometric mean of each class 
instance's individual accuracies, and it's typically employed when each class’s performance is 
significant and expected to be high at the same time [50,51]. In case of seismic soil liquefaction, 
liquefaction cases are often more than non-liquefaction instances as a result, when a data set contains 
a class imbalance, the Acc alone can be misleading. Therefore, in addition to F-score, Gmean in terms 
of error rate has been utilised in various studies to assess the performance of the classifier model [48], 
and is defined as: 

  1 meanmean errorG G   (10)

A single performance metric Gmean can be defined as:

meanG  Sensitivity Specificty
 

(11)

The performance metric Gmean(error) used for binary classification on liquefaction susceptibility of 
soil ranges from 0 to 1, 0 indicating a completely correct classifier model and 1 suggesting a classifier 
model with no predictive power. 

Actual 
Predicted 

Liquefied (+)  Non‐liquefied (‐) 

Liquefied (+)  TP  FN 

Non‐liquefied (‐)  FP  TN 
 

Figure 4. Typical confusion matrix for 2 × 2 classification problem. 

5. Evaluation and prediction 

5.1. Comparative performance of multiple learners based on test dataset 

The prediction results of the proposed models, i.e., BBN-ISM, LR, SVM, RF and NB were 
obtained on the test set. Subsequently, as shown in Table 5, each model’s confusion matrix was 
calculated. The values on the main diagonal indicated the correctly predicted number of samples. The 
performance metrics were determined on the basis of Eqs (3)–(10) mentioned in Table 6, based on 
Figure 4. The results in Table 6 show that the developed model gave the best predictive performance, 
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with much higher Acc than other models (from 4 to 16 % improvement over other models). The 
performance of the RF and LR models is at par and just found secondary to the proposed model.  In 
addition, the accuracy degrees of BBN-ISM were found highest and up to 78%, followed by 74% 
accuracy of the RF and LR models. As indicated in Table 6, the values of Gmean(error) of all the models 
(RF and L = 36.7%; SVM = 37.8%; and NB = 46.6%) are less than the BBN-ISM (26.8%). The 
obtained results for the specificity of the proposed BBN-ISM model (0.643) are better than the RF, 
LR, SVM, and NB models. Similarly, F-score for liquefied cases and non-liquefied cases for the 
BBN-ISM model is better than the rest of models. Comparing their values of performance 
measures, BBN-ISM model performed better than RF, LR, SVM, and NB models. From these 
comparisons, we can state that although the ML models have good accuracy prediction for soil 
liquefaction potential, however, their predictive capability is different from case to case, which 
depends on the data used for each model. In addition, the performance of ML models is determined 
by the tuning parameters used to train them. In this work, the tuning parameters of the applied 
models are selected by the trial-error process as presented in Table 7.  

Table 5. Confusion matrices results based on test data of seismic soil liquefaction. 

Model 

 BBN-ISM RF LR SVM NB 

Actual 
Predicted 

No Yes No Yes No Yes No Yes No Yes
No 9 5 7 8 7 8 7 8 6 9 

Yes 6 30 5 30 5 30 6 29 10 25 

Note: The diagonal elements (correct decisions) are marked in bold. 

Table 6. Performance evaluation of testing dataset. 

Model Acc (%) 
Gmean(error) 

(%) 
Specificity Precision+ F-Score+ Sensitivity Precision- F-score-

BBN-ISM 78 26.8 0.643 0.857 0.845 0.833 0.600 0.621 

RF 74 36.7 0.467 0.789 0.822 0.857 0.583 0.519 

LR 74 36.7 0.467 0.789 0.822 0.857 0.583 0.519 

SVM 72 37.8 0.467 0.784 0.806 0.829 0.538 0.500 

NB 62 46.6 0.400 0.735 0.725 0.714 0.375 0.387 

Table 7. Tuning parameters of each model for optimal values. 

Model Hyperparameters Optimal values 
RF {ntree, ns} {5,5} 

LR {C1, L} {1, L2} 

SVM {C2, ε} {1.00, 0.10} 

NB None None 
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5.2. Most probable explanation 

The most probable explanation (MPE) is drawn from the established model to decide which 
situation is most probable to cause soil liquefaction potential. For instance, if the soil liquefaction 
is “yes” as shown in Figure 5, the set that is most probable to cause “soil liquefaction” which is 
[peak ground acceleration = medium, equivalent clean sand penetration resistance = medium, 
thickness of soil layer = thin, earthquake magnitude = strong, soil behaviour type index = silty 
sand or sand with silt, fines content = less, vertical effective stress = small, groundwater table = 
shallow, and depth of soil deposit = shallow]. This shows explicitly that the set is indeed well 
associated with the judgment of engineering. 

 

Figure 5. Most probable explanation of seismic soil liquefaction potential when the 
evidence state is “Yes”. 
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5.3. Sensitivity analysis 

In this study, to determine the impact of each factor on the liquefaction potential, a sensitivity 
analysis was performed on nine input factors with variance of beliefs. Based on the sensitivity analysis, 
a basic event that has a relatively large contribution to the probability of a resulting event makes it 
easier to reduce the probability of these basic events by considering effective measurements, thereby 
reducing the probability of a resulting event. The target node “soil liquefaction” is selected for 
sensitivity analysis, and the results are shown in Table 8. Table 8 presents that the mutual info of the 
“equivalent clean sand penetration resistance” node is the greatest, i.e., 0.13920, which indicates that 
it has the strongest influence on “soil liquefaction,” potential followed by “peak ground acceleration,” 
“soil behaviour type index,” and so on which have mutual info equal to 0.04439 and 0.03655 
respectively, whereas the “depth of soil deposit” is bared minimum sensitive factor with a mutual info 
equal to 0.00004; those findings are strongly consistent with the literature. 

Table 8. Sensitivity analysis of “soil liquefaction” node. 

Node qc1Ncs  amax (g) Ic  Ts (m)  σ'v (kPa) FC (%) M  Dw (m) Ds (m) 

Mutual 

info 

0.13920 0.04439 0.03655 0.00334 0.00135 0.00021 0.00019 0.00009 0.00004 

Percent 15.4000 4.9200 4.0500 0.3700 0.1490 0.0234 0.0212 0.0101 0.0047 

Variance 

of 

beliefs 

0.0423618 0.0133434 0.0117117 0.0010781 0.0004219 0.0000640 0.0000581 0.0000275 0.0000128

6. Conclusions and future prospect 

In this paper, probabilistic evaluation of CPT-based seismic soil liquefaction was carried by 
systematically integrating ISM and the BBN. The models were trained and tested based on Boulanger 
and Idriss database compiles from various soil liquefaction in different countries. The proposed model 
predicts the seismic soil liquefaction using major contributing factors on soil liquefaction. The most 
important conclusions of the present research work are as follows: 

1) The accuracy of the proposed model on testing dataset is 78% and the F-score is 0.845 for 
liquefaction data and 0.621 for non-liquefaction data. The proposed model has better prediction ability than 
the RF, LR, SVM, and NB models, and its implementation is simpler due to a simple graphical result. 

2) The MPE of seismic soil liquefaction is that the peak ground acceleration = medium, equivalent 
clean sand penetration resistance = medium, thickness of soil layer = thin, earthquake magnitude = 
strong, soil behaviour type index = silty sand or sand with silt, fines content = less, vertical effective 
stress = small, groundwater table = shallow, and depth of soil deposit = shallow, which suits well in 
accordance with engineering practice. 

3) Sensitivity analysis results revealed that qc1Ncs and PGA are the strongest influencing 
parameters, followed by Ic, Ts, σ′v, FC, M, Dw, and Ds that affecting soil liquefaction. 

Since the CPT case histories database have class imbalanced and the sampling biased in training 
and testing data set may lead anecdotal results to some degree. Nevertheless, these anecdotal findings 
regarding seismic soil liquefaction potential evaluation are greatly insightful from a preliminary 
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viewpoint. In addition, owing to the ISM shortcomings, such as ignoring relationships between the 
nodes of the skipping-level, there is no feedback circuit between any two levels, and additionally some 
significant node relationships are ignored. Therefore, in the future, the causal mapping approach 
should be employed to change the structure and to refine the prediction performance results, taking 
into account the ISM shortcomings. 
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Appendix A 

Table A1. Initial reachability matrix. 

Vi V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

V1 1 1 0 0 0 0 0 0 0 1 

V2 0 1 0 0 0 0 0 0 0 1 

V3 0 0 1 1 1 0 0 0 0 1 

V4 0 0 0 1 0 0 0 0 0 1 

V5 0 1 0 1 1 0 0 0 0 1 

V6 0 0 0 1 1 1 0 0 0 1 

V7 0 0 0 1 0 1 1 0 0 1 

V8 0 0 0 1 0 1 0 1 0 1 

V9 0 0 0 0 0 0 0 0 1 1 

V10 0 0 0 0 0 0 0 0 0 1 

Table A2. Final reachability matrix. 

Vi V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dri. Rank 

V1 1 1 0 0 0 0 0 0 0 1 3 III 

V2 0 1 0 0 0 0 0 0 0 1 2 IV 

V3 0 1* 1 1 1 0 0 0 0 1 5 I 

V4 0 0 0 1 0 0 0 0 0 1 2 IV 

V5 0 1 0 1 1 0 0 0 0 1 4 II 

V6 0 1* 0 1 1 1 0 0 0 1 5 I 

V7 0 0 0 1 1* 1 1 0 0 1 5 I 

V8 0 0 0 1 1* 1 0 1 0 1 5 I 

V9 0 0 0 0 0 0 0 0 1 1 2 IV 

V10 0 0 0 0 0 0 0 0 0 1 1 V 
Dep. 1 5 1 6 5 3 1 1 1 10 34/34   

Rank  V III V II III IV V V V I   V/V 

Note: Dri.: driving power; Dep.: dependence power 
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Table A3. Level partition–Iteration 1. 

Vi  Sr Sa Si Li

V1 V1, V2, V10 V1 V1 
V2 V2, V10 V1, V2, V3, V5, V6 V2 
V3 V2, V3, V4, V5, V10 V3 V3 
V4 V4, V10 V3, V4, V5, V6, V7, V8 V4 
V5 V2, V4, V5, V10 V3, V5, V6, V7, V8 V5 
V6 V2, V4, V5, V6, V10 V6, V7, V8 V6 
V7 V4, V5, V6, V7, V10 V7 V7 
V8 V4, V5, V6, V8, V10 V8 V8 
V9 V9, V10 V9 V9 
V10 V10 V1, V2, V3, V4, V5, V6, V7, V8, V9, V10 V10 L1

Table A4. Level partition–Iteration 2. 

Vi  Sr Sa Si Li 

V1 V1, V2 V1 V1 
V2 V2 V1, V2, V3, V5, V6 V2 L2 
V3 V2, V3, V4, V5 V3 V3 
V4 V4 V3, V4, V5, V6, V7, V8 V4 L2 
V5 V2, V4, V5 V3, V5, V6, V7, V8 V5 
V6 V2, V4, V5, V6 V6, V7, V8 V6 
V7 V4, V5, V6, V7 V7 V7 
V8 V4, V5, V6, V8 V8 V8 
V9 V9 V9 V9 L2 

Table A5. Level partition–Iteration 3. 

Vi  Sr Sa Si Li 

V1 V1 V1 V1 L3 
V3 V3, V5 V3 V3 
V5 V5 V3, V5, V6, V7, V8 V5 L3 
V6 V5, V6 V6, V7, V8 V6 
V7 V5, V6, V7 V7 V7 
V8 V5, V6, V8 V8 V8 

Table A6. Level partition–Iteration 4. 

Vi  Sr Sa Si Li 

V3 V3 V3 V3 L4 
V6 V6 V6, V7, V8 V6 L4 
V7 V6, V7 V7 V7 
V8 V6, V8 V8 V8 
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Table A7. Level partition–Iteration 5. 

Vi  Sr Sa Si Li 

V7 V7 V7 V7 L5 
V8 V8 V8 V8 L5 
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