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Abstract: The current computation offloading algorithm for the mobile cloud ignores the selection 
of offloading opportunities and does not consider the uninstall frequency, resource waste, and energy 
efficiency reduction of the user’s offloading success probability. Therefore, in this study, a dynamic 
computation offloading algorithm based on particle swarm optimization with a mutation operator in a 
multi-access edge computing environment is proposed (DCO-PSOMO). According to the CPU 
utilization and the memory utilization rate of the mobile terminal, this method can dynamically 
obtain the overload time by using a strong, locally weighted regression method. After detecting the 
overload time, the probability of successful downloading is predicted by the mobile user’s dwell time 
and edge computing communication range, and the offloading is either conducted immediately or 
delayed. A computation offloading model was established via the use of the response time and energy 
consumption of the mobile terminal. Additionally, the optimal computing offloading algorithm was 
designed via the use of a particle swarm with a mutation operator. Finally, the DCO-PSOMO 
algorithm was compared with the JOCAP, ECOMC and ESRLR algorithms, and the experimental 
results demonstrated that the DCO-PSOMO offloading method can effectively reduce the offloading 
cost and terminal energy consumption, and improves the success probability of offloading and the 
user’s QoS. 
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1. Introduction 

According to the latest global data report of Hootsuite [1], there are currently 5.11 billion 
independent mobile users in the world. In 2019, the number of global Internet users increased by 9% 
as compared to 2018, and by 2023, the number of devices connected to IP networks will be more 
than three times that of the global population, and the global Wi-Fi hotspots will reach 628 million, 
an increase of four times over 2018. Additionally, with the development of technology, the number of 
mobile devices accessing the cloud environment is increasing; this leads to the increase of the 
network load in the traditional mobile cloud computing environment, and the phenomena of network 
congestion and response timeout occur from time to time. Therefore, in 2014, the European 
Telecommunications Standards Association took the lead in proposing a new technology called 
mobile edge computing, also known as multi-access edge computing [2], and its application scenario 
is shown in Figure 1. 
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Figure1. Application scenarios of multi-access edge computing. 

Compared with traditional mobile cloud computing, multi-access edge computing is 
characterized by distribution, real-time, and mobility [3]. Mobile cloud computing provides 
centralized server computing capability, while multi-access edge computing provides distributed 
computing capability. In multi-access edge computing, task processing and applications are 
concentrated in edge devices; mobile users do not need to connect to the data center to access 
services like mobile cloud computing, and its task processing is more dependent on the edge server 
and has better real-time performance. By combining its service environment and cloud computing 
technology on the network edge, multi-access edge computing can not only provide centralized and 
large amounts of storage and computing resources in the similar mobile cloud computing 
environment, but can also reduce the network load resulting from the large mobile terminal 
equipment, reduce the network delay, and ensure the real-time demand of business applications [4]. 

Although the computing task of multi-access edge computing is focused on the edge devices for 
processing, it can ensure a real-time advantage; however, because of its portability, the battery 
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capacity and computing capacity of edge devices are low. If all tasks are placed in edge devices for 
processing, the energy consumption problem of mobile terminals will occur [5]. Therefore, some 
computing tasks need to be offloaded from the edge devices to the edge servers via a computation 
offloading algorithm to ensure that the energy consumption of the mobile devices can be optimized 
to satisfy the user response time constraints. However, some problems of multi-access edge 
computing remain to be solved, including determining how to select appropriate edge computing 
resources for computing tasks based on the information of mobile devices, task characteristics, and 
network conditions collected by the surrounding edge servers for network connection and computing 
offloading, and when and which computing tasks can be offloaded to extend the endurance time of 
mobile devices and improve the performance of applications. 

To solve this problem, many researchers have carried out work from different perspectives. The 
author's team also proposed the computing offloading and resource optimization of adaptive data 
block size in edge environments in the early stage. The goal of the algorithm proposed in the early 
stage is different from that of this algorithm. The algorithm proposed in the early stage focuses on the 
adaptive data block size. However, most of the existing computation offloading algorithms ignore the 
selection of offloading opportunities in a mobile cloud environment, and fewer consider the 
probability that the user’s offload success rate leads to offloading too frequently, which causes 
problems including resource waste and energy efficiency reduction. Also, the computation offloading 
strategy in the mobile cloud environment cannot be directly applied to a multi-access edge 
computing environment. Therefore, this paper considers a mobile application as the task model of the 
linear topology and makes full use of the edge computing and computing resources of the mobile 
terminal in a dynamically changing wireless environment. Additionally, a dynamic computation 
offloading algorithm based on particle swarm optimization with a mutation operator in the 
multi-access edge computing environment is proposed. The main contributions and innovations of 
this paper are as follows: 

1) The overload timing is dynamically obtained by a strong, locally weighted regression method 
based on the CPU utilization of the mobile terminal and the memory utilization rate; 

2) The probability of successful offloading is predicted by the mobile user’s residence time in 
the multi-access edge computing communication range and determines whether to immediately 
offload or delay offloading. The computation offloading model is established via the use of the 
response time and energy consumption of mobile terminals, and the dynamic computing offloading 
algorithm based on particle swarm optimization with a mutation operator is proposed in a 
multi-access edge computing environment; 

3) After establishing an experimental edge computing environment and comparing the new 
approach to similar algorithms, the proposed DCO-PSOMO algorithm is found to reduce the cost of 
offloading and the terminal energy consumption, and improves the success probability of offloading 
and the user’s QoS. 

The remainder of this paper is organized as follows. Section 2 reviews some related work. 
Section 3 describes the dynamic computing offloading algorithm model based on particle swarm 
optimization with a mutation operator in an edge computing environment. Section 4 describes the 
implementation process of the proposed algorithm. Section 5 analyzes the performance of the 
proposed algorithm via the construction of an experimental environment with mobile edge 
computational properties. Section 6 presents the conclusions of this study. 
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2. Related work 

Computation offloading strategies in mobile cloud computing have become a popular research 
topic in recent years [6–8]. This section introduces the development status of these strategies both 
domestically and abroad, and points out the problems in the existing studies. 

2.1. Offloading decision for reducing delay 

If a task is executed locally, the time consumed is the time required to execute the task. If the 
task is offloaded to the edge device, the time consumed will involve three components: the time to 
transmit the data to be offloaded to the edge device, the time to process the task on the edge device, 
and the time to receive the data returned from the edge device. In the work by Li et al. [9], the 
communication time of task transfer was reduced by using computational replication, which allows 
terminal devices to offload computing tasks to multiple edge computing nodes to repeatedly perform 
offloading tasks so that multiple edge computing nodes can return the collaborative computing 
results to terminal devices in the downlink. The proposed transmission cooperation mode can 
eliminate the channel interference among multiple users and significantly reduce the communication 
delay of multiple users and servers. Yi et al. [10] proposed a new MOTM mechanism by considering 
the trade-off between local computing and edge computing, wireless characteristics, and the 
non-cooperative game behavior of mobile users, and jointly determined the computation offloading 
scheme, transmission scheduling rules, and pricing rules. Khoda et al. [11] utilized the idea of load 
balancing between mobile devices and servers, and designed a heuristic task partition algorithm to 
minimize the completion time of the task. Deng et al. [12] proposed a computation offloading 
method for the robust design of mobile service offloading decisions that considers the dependency 
between component services, introduces the mobile mode and fault tolerance mechanism, and 
designs an offloading method based on a genetic algorithm. Mao et al. [13] proposed dynamic 
voltage frequency regulation and power control to optimize the calculation process and data 
transmission of computation offloading. Based on this model, a new algorithm of low-complexity 
Lyapunov optimization-based dynamic computation offloading was proposed. 

2.2. Offloading decision for reducing energy consumption 

The energy consumption of offloading tasks to the edge server mainly consists of two parts, 
namely the energy consumed by transmitting the offloading data to the edge server, and the energy 
consumed by receiving the data returned by the edge server. Liu et al. [14] proposed a fast heuristic 
algorithm that finds the solution that meets the constraint conditions, decomposes the overall 
reliability and delay constraints into multiple constraints of each subtask, and then finds the 
minimum solution in the offloading decision of each subtask to minimize the energy consumption of 
user equipment under the reliability and delay constraints. Li et al. [15] proposed an online batch 
scheduling heuristic algorithm for the dynamic offloading of independent tasks on a mobile node. 
The heuristic algorithm centers on the user and the system to optimize the performance of task 
offloading. Deng et al. [16] modeled mobile applications, such as DAG, with multiple subtasks, and 
aimed to minimize the terminal energy consumption under the constraint of the completion time of 
tasks. Their approach transforms the task offloading problem into a nonlinear 0–1 programming 
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problem. Chen et al. [17] studied the RCS (remote cloud service) and CCS (connected ad-hoc 
cloudlet service) used in ad-hoc, small-cloud computing offloading and presented a new model for 
computation offloading. The main advantage of this model is that it does not restrict the movement 
of users; it also uses opportunity connections to realize the interaction between the computing nodes 
and multiple service nodes, and achieves energy-saving via efficient computation offloading. Kchaou 
et al. [18] analyzed the relationship between mobile cloud computing and big data, and proposed a 
mobile cloud computing offload framework for big data. 

2.3. Decision of offloading considering energy consumption and time delay 

Energy consumption and time delay are important factors to consider when performing the 
offloading task. Chen et al. [19] put forward an effective heuristic algorithm and random mapping 
method that can effectively reduce the total cost of users in both delay and energy consumption. 
Munoz et al. [20] proposed a trade-off analysis between the energy consumption and execution delay 
of a partial offloading decision. Several parameters, including the total amount of data to be 
processed, the computing power of the mobile terminal and edge device, the channel state between 
the mobile terminal and base station, and the energy consumption of the mobile terminal, are 
considered in the process of offloading. On this basis, a dynamic scheduling mechanism that allows 
users to make offloading decisions according to the computing queue and wireless channel status of 
tasks was proposed. Pandey et al. [21] proposed a time- and energy-aware mobile application 
offloading algorithm based on the depth-first search that can dynamically analyze the network 
bandwidth and energy consumption, thereby effectively reducing the energy consumption and 
running time. Li et al. [22] investigated the problem of the computation offloading of mobile 
blockchain applications, and proposed an algorithm based on the depth-first search that can 
dynamically analyze the network bandwidth and energy consumption, thereby effectively reducing 
the energy consumption and running time. You et al. [23] reused edge cloud computing server 
resources through a time-division mode; a jointly optimized computing and offloading model was 
built according to the user’s offloaded data size and transmission time, and is solved through convex 
optimization. Khalili et al. [24] introduced physical layer parameters into the program partitioning 
mechanism and proposed a joint optimization algorithm for computation offloading.  Mitsis [25] 
proposed a resource-based pricing and user risk-aware data offloading framework for UAV-assisted 
multi-access edge computing systems.  Apostolopoulos [26] proposed a device-centric risk-based 
distributed approach to determine the users’ IoT devices’ computation offloading volume in a 
wireless MEC environment. 

The aforementioned optimization strategies for computation offloading have been widely used; 
however, most of the algorithms in the mobile cloud environment ignore the selection of the 
offloading time, and seldom consider the problem that the probability of a user’s successful 
offloading leads to over-frequent offloading, ultimately resulting in resource waste and energy 
efficiency reduction. Therefore, this paper proposes a dynamic computation offloading algorithm 
based on particle swarm optimization with a mutation operator in a multi-access edge computing 
environment. The algorithm not only considers the offloading time, but also decides whether to 
offload immediately or delay according to the probability of the successful offload of mobile users, 
thereby reducing the cost and energy consumption of offloading and ensuring the probability of 
successful offloading and the QoS of mobile users. 
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3. Dynamic computation offloading algorithm based on particle swarm optimization with a 
mutation operator in multi-access edge computing 

There are two decisions to be made in the dynamic algorithm based on particle swarm 
optimization with a mutation operator, namely the choice of offloading time and the offloading 
optimization strategy. According to the CPU utilization and memory utilization of the mobile 
terminal, the dynamic adaptive hotspot detection mechanism (the dynamic detection mechanism of 
CPU and memory utilization) based on strong local reinforcement regression is adopted to determine 
the overload opportunity. After the overload opportunity is detected, the probability of successful 
offloading is predicted by retention time of mobile users in the range of edge computing 
communication. The offloading model is then established by using the response time and mobile 
terminal energy consumption, and the optimal offloading algorithm is finally designed by using 
particle swarm optimization with a mutation operator. The dynamic computation offloading 
algorithm based on particle swarm optimization with a mutation operator is shown in Figure 2. 

…
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Figure 2. Dynamic computation offloading algorithm based on particle swarm 
optimization with a mutation operator in a multi-access edge computing environment. 

3.1. Selection of overload timing based on strong local reinforcement regression 

To achieve better overload timing, a dynamic adaptive hotspot detection strategy based on 
strong, locally weighted regression is designed, and the utilization rate of CPU resources is taken as 
an example to determine the overload timing.  

First, the CPU utilization of mobile terminals is monitored periodically, and the time series 
( , )i ix y  of CPU utilization can be obtained, where ix  represents the time point for CPU utilization 
monitoring and iy  represents the CPU utilization of mobile terminals at the point ix . The 
polynomial fitting of iy  is then carried out to obtain the smooth point ˆ( , )i ix y  of the CPU 

utilization rate of the mobile terminal. The weighted least-squares method is used to estimate the 
value of fitting points, and the smooth regression curve ˆi i iy y    of the CPU utilization rate of the 

mobile terminal is obtained, where i  is a random variable with a zero mean and fixed variance. 
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Finally, the time of CPU utilization overload can be obtained. 
A set data ( , )i ix y  of the CPU utilization of the mobile terminal. For each ix , try to select the 

window width as the centers. For each i , ih  is the distance of the thr  nearest-neighbor point from  

to , i.e., for j = 1, 2,..., n,  is the  minimum value in . For , its weight is [27]. 
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                                  (1) 

Using a least-squares method for each ( , )i ix y  with a weight , the estimated value of the 
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where 0,1 ,l d  . Next, d-order polynomial fitting is performed to obtain the locally weighted 
regression smooth point , and the fitting value of  at the  point can be expressed as: 
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All the observed values are fitted, and the smooth regression curve  is finally 

obtained. In the same manner, a smooth regression curve of the memory utilization rate of the mobile 
terminal is obtained, and the optimal offloading timing is dynamically obtained based on these two 
parameters. 

3.2. Predicting the probability of offloading success based on dwell time 

Because the mobile terminal has the potential to be moved at any time, the connection between 
the terminal and the edge server is interrupted, which may cause the failure of offloading when the 
mobile terminal moves out of the transmission range of the edge server. Therefore, the probability 

i  that the computing task will be offloaded to the edge server i and successfully receive the 

calculation result is called the mobile user offloading success probability. 
represents the maximum transmission range of the edge server, and  denotes the distance 

between the mobile user and the edge server i, where the probability density function of  is 

. It is assumed that the user moves out of the edge computing communication range in the 

fastest manner, and  expresses the user’s moving speed. The time that the mobile terminal stays 

within the communication range of the edge server i is then calculated as follows: 

2 2

2 20

( )

3

R
i i i i

i i
i i

r dr r R r R
T dr

R R v v

 
 

  
   

 
                      (4) 

Because the edge server can reject user service requests with certain constraints, the requested 
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constraint is represented by . Therefore, the probability of success of a mobile user’s job 

offloading to the edge server i can be expressed as: 

3
= = (1 )i i

i
i

T v

T R

 
  


  

                            
(5) 

where  represents the sum of the processing time of the task at the edge server i and the 
round-trip transmission time (RTT). 

3.3. Offloading model based on time and energy consumption 

Ⅰ) Communication model 
For a terminal  in the set,  represents the decision to offload it. All terminal decision 

states in the set are represented by vectors . In the t phase, the upload data rate for the 

terminal u can be expressed as: 

,
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where C denotes the channel bandwidth,  denotes the transmit power allocated by the wireless 
access point to the user u, and  is the channel gain between the terminal u and the base station. 

 denotes the background interference power, where  is the noise power (invalid 

power) and  is the interference power of other mobile terminals for wireless transmission. It can 

be seen from the communication model that if too many mobile terminal users choose to offload the 
computing through wireless access at the same time, it may cause serious interference, resulting in 
very low data transmission rate, which will have a negative impact on the performance of mobile 
cloud computing. 

Ⅱ) Response time model 
For a given offload strategy , , where  indicates that component 

i is executing at the edge server and  indicates that component i is executing on the mobile 

terminal. For a component i,  denotes its computational task, where  represents 

the size (such as code size, parameters, etc.) of the data that component j needs to input to the 
component i when executing component i, and  denotes the amount of calculation required to 

complete this calculation (millions of instructions, CPU cycles). If both components i and j are 
executed locally or at the edge server, then components i and j have no data exchange, i.e., , 

and the transfer time between them is negligible. The time at which component j transmits data to 
component i can be expressed as follows: 
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(1) Transmission energy model 
, , and  represent the power (unit: watts) of the mobile terminal in the transmit mode, 

receive mode, and idle mode, respectively. In a single data execution process, the time the mobile 
terminal spends in these three modes is respectively divided into , , and , and the 

transmission energy consumption during the execution of the data unit is: 

t ta t ra r i iE P t P t P t                                  (8) 
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where  represents the size of the data input by component j to component i when component i is 

executed,  indicates the size of the network bandwidth between the mobile terminal and the edge 
server, and doneT  represents the execution time of a data unit. 

(2) Computational energy consumption model 
Mobile terminals usually use microprocessors made of CMOS integrated circuits and CMOS 

processes. The terminals’ energy consumption includes the static energy consumption and dynamic 
energy consumption, and the static energy consumption is almost zero and can be ignored. Therefore, 
only the dynamic energy consumption of the mobile terminal processor is considered in this paper, 
and can be expressed as: 

2
CP f C V                                 (10) 

where  is the clock frequency,   is the capacitor, and   is the voltage. The power of the mobile 

terminal CPU in a running state can be calculated by Eq (10). It is assumed that, in the application 
program of the mobile terminal, the time for a data unit to execute an application component is , 

for which the execution time is , the idle time is , the calculation power of the CPU is , the 

idle power of the CPU is , and the energy consumption generated by the CPU switching of the 

mobile terminal is ignored throughout the process. Therefore, a single data unit performs edge 
computing applications, and the calculated energy consumption of the mobile terminal  can be 

expressed as: 
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Therefore, during computation offloading in an edge computing environment, the total energy 
consumption required to offload a data unit to a mobile terminal can be expressed as: 

c tE E E                                 (13) 

(3) Computation offload model based on time and energy consumption 
The objective function of computation offloading based on the time and energy consumption is: 

0 0
min[ , ]
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where  and  represent the time and energy consumption of component i, respectively,  
and  represent the content utilization rate and memory utilization threshold of the CPU, 
respectively, and  represents the threshold of the probability of successful offloading. 

3.4. Dynamic computation offloading algorithm based on a mutation operator particle swarm 
optimization 

(1) Problem coding of computation offloading in a multi-access edge computing environment 
The n components of the application are numbered from 1 to n in sequence, and the position 

vector of each particle is encoded using a one-dimensional binary encoding: , 

. When , the component is offloaded to the edge server, and  indicates that the 

component is executed on the mobile terminal. In other words, the position vector of the particles can 
represent a kind of computation offloading scheme. For example,  represents 8 

components in the current edge computing applications, components 1, 4, 5, 7 and 8 are executed on 
the mobile terminal, and components 2, 3 and 6 are offloaded to the edge server for execution. In this 
way, for applications with n components,  solution spaces are needed, and the mutation operator 
particle swarm optimization algorithm searches for the optimal solution in these solution spaces. 

In this paper, the particle velocity  in the computation offloading algorithm is also a 
one-dimensional vector encoding , where , . If , it means 

that the particle position is unchanged and the offloading scheme of component i does not change; if 
, the position vector of the particle is updated to   

(2) Computation offloading fitness function construction 
The objective of the computation offloading algorithm proposed in this paper is to minimize the 

execution time and energy consumption. Two objective functions 1( )f x  and 2 ( )f x  are set, of which 

1( )f x  represents the execution time of the edge computing application and 2 ( )f x  represents the 

terminal energy consumption. Using the power coefficient method, Eq (14) can be converted to: 
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 indicates that the ideal design scheme is obtained, and  indicates that this scheme is not 
feasible; therefore, it is necessary to solve the set of solutions with a value of  that is closest to 1.

 and  respectively represent the maximum and minimum values of , and 

 and  respectively represent the maximum and minimum values of 2 ( )f x . 

Therefore, the fitness function can be defined as: 

1 1 2 2

1 1 2 2

(max) ( ) (max) ( )
( )

(max) (min) (max) (min)

f f x f f x
f X

f f f f

    
        

                 

(16) 

The goal of offloading in a multi-access edge computing environment is to reduce the 
application execution time while minimizing the terminal energy consumption. Therefore, the 
computation offloading can be transformed to solve the solution of  that is closest to 1. 

(3) Design of offloading particle operator in multi-access edge computing 
In multi-access edge computing environment, in order to use particle swarm optimization 

algorithm to solve the optimal computing offloading strategy, the particle operator needs to be 
redesigned. 

1) Addition operator (+) 
In particle swarm optimization algorithm, different positions of particles represent different 

offloading schemes. The driving force for particles to find the optimal offloading scheme is the 
update of particle velocity. The new offloading scheme iA  is jointly determined by the original 

offloading scheme iA  and the particle velocity V , which can be expressed as: 

i iA A V                                  (17) 

, 2

,

ij j

ij
j

a if v
a

v otherwise

  


                         (18) 

where ija  and ija  represent the two offloading results of component j  under the new scheme iA  

and the original scheme iA . jv  represents the j  dimensional component of speed V , which is 

the most direct cause of offloading strategy change. 
2) Subtraction operator (−) 
The flight speed of particles can be obtained by subtracting the particle position, which can be 

expressed as: 

1  0 
 

 1 f max  1f min  1f x

 2f max  2f min

 f x
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i iV A A                                  (19) 

The value jv  of each dimension in the velocity V can be calculated as: 

2,

,

ij ij

ij

if a a
v

a otherwise

   
                          (20) 

3) Speed multiplication (×) 

Let iV  be the velocity of particle i, and the value of particle velocity is updated by multiplying 

the velocity, which can be expressed as: 

1 2i iV c V c                                                                         (21) 

1c  and 2c   represent randomly generated natural number, 1 21 c c n   ，n   is the number of 

components divided by the application, the value ijv  of velocity iV   in each dimension can be 

expressed as: 

1 2, [ , )

2,

ij

ij

v if j c c
v

otherwise


  


                        (22) 

4) Particle renewal equation 
The new offloading scheme is determined by the original calculated offloading scheme, the 

historical optimal scheme and the optimal scheme of the population. The particle renewal equation 
can be expressed as: 

1 2 1 2

4 3 4

( ) , 1

( ) , 1
b

g

A A c P A c c c n

A A c P A c c c n

       
        

           (23) 

where bP  represents the optimal offloading scheme of particles, gP   is the optimal offloading 

scheme of the population, n   indicates the number of components divided by the application, 

1 2 3 4, , ,c c c c   represents a positive integer randomly generated from 1 ~ n . 

4. Realization of a dynamic computation offloading algorithm based on particle swarm 
optimization with a mutation operator in multi-access edge computing 

4.1. Model DCO-PSOMO algorithm description 

The dynamic computation offloading algorithm based on particle swarm optimization with a 
mutation operator in a multi-access edge computing environment is described as follows. 

(1) Determination of offloading time: The dynamic adaptive hotspot detection strategy based on 
strong, locally weighted regression is used to solve the overload time with high CPU resource 
utilization or memory utilization to obtain the offloading time (lines 1–2 of algorithm 1); 

(2) Prediction of the offloading success probability: The probability of successful mobile 
terminal computation offloading is calculated according to the service scope of edge computing and 
the residence time of users (line 4 of algorithm 1); 
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(3) Optimization of computation offloading: Particle swarm optimization with a mutation 
operator is used to determine the optimal offloading strategy of mobile users (lines 5–35 of 
algorithm 1). Lines 8-13 of algorithm 1 are the initial position and initial historical optimal position 
of each randomly generated particle, lines 16–22 are the particle fitness function for offloading, lines 
23–27 are the updated particle position, and lines 29–31 are the execution mutation.  

The pseudo-code of the algorithm is presented in algorithm 1. 

Algorithm 1: Offloading algorithm DCO-PSOMO 
Input：User’s application request   

Output：Optimal computation offloading strategy  
 1:   ; 
 2:   ; 
 3:   if ( || ) 
 4:    ;  

 5：     if ( ) 
6:        Initializing   
 7:         
 8:     while( ) 

 9:      Randomly generated particle i position s; 
10:       Add i to the particle swarm; 
11:         
12:       ;  
13:     end while 
14:       ; 
15:     while( ) 
16:        for(each particle k in particles)
17:          Calculate the fitness of k ; 
18:             if( )  
19:               ;   
20:               if( ) 
21:                  ; 
22:         end for 
23:         for(each particle k in particles) 
24:          Update k's position; 
25:          if( )  

26:            Mutate k; 
27:         end for 
28:      if( ) 
29:            for(each particle k in particles) 
30:               Mutate k; 
31:            end for 
32:      ;   
33:    end while 
34:  ;   
35:  return   

1 2{ , , , }i nA s s s 

1 2{ , , , }kV s s s   

()i CpuUtilizationRatioc 

()i MemoryUtilizationRatiom 

i thresholdc c i thresholdm m

( )i getOffloadSuccessProbability 

i threshold 

PopNum MaxIter Particles、 、

1i 

i PopNum

[ ]pbest i s

1i i 

1j 

j MaxIter

[ ]fitness k

[ ] [ ]fitness k pbest k

[ ]pbest k k

[ ]fitness k gbest

gbest k

kC 

D 

1j j 

Stragegy gbest

1 2{ , , , }kV s s s   
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4.2. Algorithmic complexity analysis 

Time complexity analysis of the DCO-PSOMO algorithm: In the preceding description of the 
algorithm, lines 8–13 describe the random initial position of each particle, and, based on this 
position and the optimal value of the population history, the complexity is ( * )O M N , where M  

represents the size of the particle swarm and N  is the number of components applied to the cloud. 
Lines 16–22 describe the calculation of the particle fitness function, and the time complexity is 

( * )O M N . Lines 23–27 describe an update of the particle position, and the complexity is ( * )O M N . 

Lines 23–27 perform a mutation operation that allows particles to enter a new area for searching, and 
the time complexity is ( * )O M N . Therefore, the time complexity of the entire algorithm is 

( * )O M N . 

4.3. Algorithm correctness analysis 

Theorem 1: Assuming any mobile terminal P  and edge cloud user application request B , a 

reasonable calculation offloading strategy 1 2{ , , , }kV s s s     and 
off Noffp pE E  are obtained through 

algorithm 1. 
Proof: The correctness proof of the algorithm can be divided into the following three steps: 
1) Acquisition of offload opportunity: Using the strong local weighted regression method, the 

overload opportunity of mobile terminal (Eq (3)) can be correctly obtained, that is, the offloading 
opportunity can be calculated 

2) Calculation of offloading success probability: The calculation formula of the residence time 
of the mobile terminal in a cloud is equivalent to: 

 2 2
2 0

1
[( ) ]( )

3

R

i i i i i i
i i

R
T r dr r R r dr

v R v
      


3

2 2

0
[( ) ]( )

3

R

i i i i i i

R
T r dr r R r dr      

If 2( )f x x , then 2 2( ) ( ) ( ) ( )i i i i i if r dr f r r dr r      

0

( ) ( )
lim ( )

i

i i i
i

dr
i

f r dr f r
f r

dr

  
 

 0 0
( )( ) ( ) ( )

R R

i i i i i iT f r R r dr R r df r      
3 3

2
0 00 0

( ) ( ) | ( ) ( ) 0 |
3 3

R RR Ri
i i i i i i

r R
R r f r f r d R r r dr        

 

The specific meaning of the symbol is in Section 3.2.2, and the offloading success probability is 
calculated according to Eq (5). 

3) Optimal offloading policy: According to the calculation offloading model of time and energy 
consumption, the optimal calculation offloading strategy V  is obtained, and condition 

off Noffp pE E  

is satisfied. 
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5. Experimental verification and comparison 

5.1. Experimental environment and configuration 

1) Experimental environment 
As shown in Figure 3, a multi-access edge computing experimental environment was set up, in 

which the feasibility and effectiveness of the proposed dynamic computation offloading algorithm 
based on particle swarm optimization with a mutation operator were verified. The experimental 
environment included three components, namely the mobile terminal, edge computation, and remote 
cloud. In the experiment, mobile terminals used Samsung phones and Lenovo laptops to interact with 
the edge server through Wi-Fi hotspots. To simulate a real scenario, three edge servers were set up in 
the experiment, each of which was built with 1 Inspur server and 6 different Lenovo desktop 
institutions such that the three edge servers could interact with each other in their coverage areas. 
The remote cloud used 11 AliCloud instances to build the environment. The server used a CentOS 
operating system, and OpenStack was installed to virtualize its resources. Based on these conditions, 
the Apache Hadoop distributed platform was built to implement the computation offloading in a 
multi-access edge computing environment. 
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Figure 3. Experimental test environment. 

2) Experimental data source 
In this experiment, the power consumption of the mobile terminal in different states was 

determined via the powerprofile.xml provided by the Android operating system application 
framework, and the unit of power consumption was milliwatts. The power consumption parameters 
of the Samsung I9500, Samsung I9308, Samsung p3108, Lenovo Xiaoxin V4000, and Lenovo 
deliverer 15-ISK i5 devices are listed in Tables 1 and 2. 
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Table 1. Hardware power consumption of the mobile terminal in different CPU states. 

Mobile terminal equipment 
CPU state 

Idle Function 

Samsung p3108 25.9 1106.3 

Samsung I9308 14.8 921.3 

Samsung I9500 16.7 914.9 

Lenovo Xiaoxin V4000  197.4 7892.3 

Lenovo deliverer I5-ISK i5 228.6 8012.5 

Table 2. Hardware power consumption of the mobile terminal in different states under Wi-Fi. 

Mobile terminal equipment 
WIFI 

Closed Idle Sending Receive 
Samsung p3108 0 3.7 555.0 549.7 
Samsung I9308 0 1.1 355.2 340.7 
Samsung I9500 0 0.9 360.1 358.2 
Lenovo Xiaoxin V4000 0 12.3 1984.2 1970.4 
Lenovo deliverer I5-ISK i5 0 12.5 2012.8 2020.6 

3) Experimental parameter settings 
In the algorithm verification experiment, the number of mobile users was 10, and included 

two Samsung i9500 mobile phones, two Samsung i9308 mobile phones, two Samsung p3108 
mobile phones, two small, new Lenovo V4000 laptops, and two Lenovo Savior 15-isk i5 laptops. 
All users identified the same QR code, the uplink bandwidth and downlink bandwidth were the 
same, and the bandwidth size was [120 KB/s, 480 kb/S]. The experimental configuration 
parameters are listed in Table 3. 

Table 3. Experimental configuration parameters. 

Parameter name Value 

Inspur NF5270M3 rack server 3 

Number of mobile users 14 

Sam sung I9500 2 

Sam sung I9308 

Sam sung P3108 

Lenovo Xiaoxin V4000 

Lenovo deliverer 15-ISK i5 

2 

2 

2 

2 

4) Performance index 
The following three indicators were used to evaluate the performance of the dynamic 

computation algorithm based on particle swarm optimization with a mutation operator: 
a) Energy consumption: the energy consumption required for the mobile terminal to perform the 

offloading task;  
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b) Response time: the time required for task offloading to edge devices and the calculation of 
the feedback results to mobile terminals; 

c) Offloading success rate: the ratio of the number of tasks successfully uninstalled to the total 
number of tasks uninstalled. 

5.2. Experimental results and analysis 

To verify the feasibility and effectiveness of the DCO-PSOMO algorithm proposed in this paper, 
it was compared with the ECOMC [11], ESRLR [14], and JOCAP [19] algorithms. 

1) Influence of wireless network bandwidth on the performance of the algorithm 
This experiment mainly investigated the effects of different wireless network bandwidths on the 

performances of the proposed DCO-PSOMO offloading algorithm and other similar algorithms, 
namely the JOCAP, ECOMC, and ESRLR algorithms. In the experiment, the mobile terminal 
adopted a Samsung I9500, the wireless network used a Wi-Fi connection, and the terminal moved at 
a constant speed of 10 km/h. The experiment involved adjusting the network bandwidth from 120 
kbps to 480 kbps with a step size of 60, and the experimental results are presented in Figures 4–6. 

Figure 4 presents the response time of each algorithm under different network bandwidths, from 
which it can be seen that as the bandwidth of the wireless network increased from 120 kb/s to 480 
kb/s, the response time of each computation offloading algorithm decreased. In addition, the 
response times for both the JOCAP and DCO-PSOMO algorithms were similar, because both 
algorithms consider the terminal energy consumption and response time. The response time of the 
DCO-PSOMO algorithm was slightly higher than that of the JOCAP algorithm, but still within the 
acceptable range, when the bandwidth was 240 kb/s and 420 kb/s; this was because the 
DCO-PSOMO algorithm predicts the success probability of offloading before offloading. 

 

Figure 4. Comparison of response times for different network bandwidths. 
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Figure 5. Comparison of terminal energy consumption for different network bandwidths. 

 

Figure 6. Comparison of offloading success rates for different network bandwidths. 
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of the JOCAP and DCO-PSOMO algorithms were in the middle because these two strategies take 
into account the energy consumption and response time of mobile terminals. When the bandwidth 
was 420 kb/s, the energy consumption of the DCO-PSOMO algorithm was higher than that of the 
JOCAP algorithm because the DCO-PSOMO algorithm predicted the timing and success rate of 
offloading, thereby leading to a slightly higher energy consumption. 

Figure 6 presents the offloading success probability of each algorithm under different network 
bandwidths. The DCO-PSOMO offloading success rate was higher than those of the other three 
offloading strategies because DCO-PSOMO predicts the probability of offloading success according 
to the mobile terminal’s stay time in the cloud cover to decide whether to offload immediately or 
delay the offloading.  

2) Influence of mobile terminal type on algorithm performance  
Considering the differences of the mobile terminal itself, the impacts of different mobile 

terminal types on the proposed DCO-PSOMO offloading algorithm and the other similar algorithms 
were determined through a set of experiments. The mobile terminals in the experiments included a 
Samsung P3108, Samsung I9308, Samsung I9500, Lenovo Xiaoxin V4000, and Lenovo saver ISK. 
The wireless network type adopted Wi-Fi, the network bandwidth was 240 kb/s, and the user moved 
at a speed of 10 km/h. The experimental results are presented in Figures 7–9. 

Figure 7 presents the response times of mobile terminals running different offloading algorithms 
under different terminal types. The response time of the ESRLR algorithm was the highest for most 
cases, and that of the ECOMC algorithm was the lowest. The response time of the DCO-PSOMO 
algorithm was close to that of the JOCAP algorithm, as the JOCAP and DCO-PSOMO algorithms 
both take into account the energy consumption and response time of the mobile terminal. 
Additionally, when the DCO-PSOMO algorithm was run on the mobile terminal for the Samsung 
I9308 and the Samsung I9500 devices, its response time was higher than that of the JOCAP 
algorithm. This occurred because the DCO-PSOMO algorithm predicts the probability of successful 
offloading before offloading, but the response time was still within the acceptable range. 

 

Figure 7. Comparison of response times for different mobile terminals. 
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Figure 8. Comparison of terminal energy consumption for different mobile terminals. 

 

Figure 9. Comparison of offloading success rates for different mobile terminals. 
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middle because these two strategies take into account the energy consumption and response time of 
mobile terminals. When the DCO-PSOMO and JOCAP were operated on a Lenovo V4000, the 
energy consumption of the DCO-PSOMO terminals was higher than that of the JOCAP terminals 
because the DCO-PSOMO algorithm predicts the offload timing and offload success rate; however, 
the energy response time was still within the acceptable range. 

Figure 9 presents the probability of successful offloading of each algorithm running on different 
types of terminals, from which it is evident that the DCO-PSOMO offloading success probability 
was much higher than those of the other three offloading strategies. This outcome arose because the 
DCO-PSOMO algorithm is calculated the residence time before offloading. The residence time 
predicts the probability of successful offloading and determines whether to immediately offload or 
delay offload, which greatly increases the probability of offloading success. 

3) Influence of network type on algorithm performance 
A performance comparison was made between the proposed DCO-PSOMO algorithm and the 

JOCAP, ECOMC, and ESRLR algorithms in different network environments. In the experiment, a 
Samsung i9500 was used as the mobile terminal, and 2G, 3G, 4G and Wi-Fi were used as the types 
of wireless networks. The user moved at a speed of 10 km/h. The effects of different network 
bandwidths on the response time, terminal energy consumption, and probability of successful 
offloading of the algorithms were tested, and the results are respectively presented in Figures 10–12. 

Figure 10 presents the response time of each algorithm in different wireless networks 
environments, from which it is evident that the response time of the mobile terminal in the 2G 
wireless network environment was the longest, and that of mobile terminal in the Wi-Fi wireless 
network environment was the shortest. This is because the wireless network bandwidth of the 2G 
network was the smallest, while that of Wi-Fi was the largest. With the increases of the wireless 
network bandwidth and the data transmission per unit time, the offloading time and the return time of 
the calculation results were reduced, so the response time during computation offloading was also 
reduced. It can also be seen that the response time of the high-energy and efficient computation 
offloading ESRLR algorithm was the highest in most cases, and that of the ECOMC algorithm was 
the lowest. The response time of the JOCAP algorithm based on energy consumption and time was 
close to that of the DCO-PSOMO algorithm. 

Figure 11 presents the energy consumption of each algorithm in different wireless network 
environments, from which it is clear that the mobile terminal with the 2G wireless network type 
calculated the maximum terminal energy consumption for offloading, and the mobile terminal with 
the Wi-Fi network type calculated the minimum terminal energy consumption for offloading. This is 
because the 2G network had the smallest network bandwidth, while the Wi-Fi network had the 
largest bandwidth. The energy consumption of data transmission during computation offloading 
gradually increased with the decrease of the wireless network bandwidth. In addition, the mobile 
terminal energy consumption of the ESRLR offloading strategy was the lowest for different network 
bandwidths, that of the ECOMC offloading strategy was the highest in most cases, and those of the 
JOCAP and DCO-PSOMO algorithms were in the middle. 
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Figure 10. Comparison of response times in different wireless network environments. 

 

Figure 11. Comparison of energy consumption of mobile terminals in different wireless 
network environments. 
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successful uninstallation than did the uninstallation strategies of the other algorithms. 

 

Figure 12. Comparison of the probability of successful offloading in different wireless 
network environments. 

4) Influence of terminal moving speed on the performance of the algorithm 
A performance comparison between the proposed DCO-PSOMO algorithm and the JOCAP, 

ECOMC, and ESRLR algorithms at different terminal moving speeds was subsequently made. In the 
experiment, the mobile terminal adopted a Samsung I9500, the wireless network used a Wi-Fi 
connection, and the network bandwidth was 240 kb/s. The moving speed of the terminal was 
adjusted from 5 km/h to 40 km/h in increments of 5 km/h. The experimental results are presented in 
Figures 13–15. 
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Figure 14. Comparison of terminal energy consumption at different moving speeds. 

 

Figure 15. Comparison of offloading success rates at different moving speeds. 
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whether to immediately offload or delay offloading, which reduces the influence of the movement 
speed of the terminal on the probability of offloading success and increases the probability of 
successful offloading. 

5.3. Experiment summary 

The following conclusions can be drawn from the analysis of the four groups of experiments:  
1) The network bandwidth and network type have impacts on the offloading algorithm; the 

larger the wireless network bandwidth, the shorter the response time, and the higher the probability 
of successful offloading;  

2) The mobile speed of the terminal has a certain influence on the success probability of 
offloading. The faster the mobile speed of the terminal, the lower the success probability of 
offloading, and vice versa; 

3) The DCO-PSOMO offloading algorithm proposed in this paper considers both the time of 
offloading and the probability of successful offloading, which makes the algorithm superior to other 
similar offloading algorithms in terms of the response time and probability of successful offloading. 

6. Conclusions and future work 

The decision of whether to offload immediately or delay is determined according to the success 
probability of the offloading of mobile users. On this basis, a dynamic algorithm based on particle 
swarm optimization with a mutation operator in a multi-access edge computing environment was 
proposed in this work. The algorithm can dynamically determine the overload time via a strong, 
locally weighted regression method, the computation offloading model is established by using the 
response time and the energy consumption of the mobile terminal, and the optimal algorithm is 
designed based on particle swarm optimization with a mutation operator. The DCO-PSOMO 
algorithm was compared with the JOCAP, ECOMC, and ESRLR algorithms, and the experimental 
results demonstrated that the DCO-PSOMO offloading method can effectively reduce the offloading 
cost and terminal energy consumption, as well as improve the offloading success probability and the 
user’s QoS. 

In future research, more attention will be paid to the dynamic offloading scheme of multi-access 
edge computing in a 5G environment, and a more advanced offloading decision algorithm will be 
proposed. For example, by using various prediction techniques of user mobility and channel quality 
during the process of offloading, the cost of offloading in different conditions can be better 
estimated. 
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