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Abstract: Estimating the binding affinity between proteins and drugs is very important in the 
application of structure-based drug design. Currently, applying machine learning to build the 
protein-ligand binding affinity prediction model, which is helpful to improve the performance of 
classical scoring functions, has attracted many scientists’ attention. In this paper, we have developed 
an affinity prediction model called GAT-Score based on graph attention network (GAT). The 
protein-ligand complex is represented by a graph structure, and the atoms of protein and ligand are 
treated in the same manner. Two improvements are made to the original graph attention network. 
Firstly, a dynamic feature mechanism is designed to enable the model to deal with bond features. 
Secondly, a virtual super node is introduced to aggregate node-level features into graph-level features, 
so that the model can be used in the graph-level regression problems. PDBbind database v.2018 is 
used to train the model. Finally, the performance of GAT-Score was tested by the scheme 𝐶௦ (Core 
set as the test set) and CV (Cross-Validation). It has been found that our results are better than most 
methods from machine learning models with traditional molecular descriptors. 

Keywords: binding affinity; structure-based drug design; graph attention network; scoring function; 
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1. Introduction 

Estimating the binding affinity between proteins and drugs is very important in the application 
of structure-based drug design (CADD), such as virtual screening, optimization of lead compounds 
and so on. After recognizing the binding conformation of the ligand (docking) and determining 
whether the ligand has biological activity related to the target protein (screening), the estimated 
affinity indicates the protein-ligand binding strength. 

There are great differences in the success rate between the conformation with highest score and 
the best conformation (the conformation closest to the ligand crystal structure) predicted by the 
existing molecular docking software. The conformation with highest score is usually not the best 
conformation, which is caused by the defect of the scoring functions. Most of the molecular docking 
software is not designed for predicting the binding affinity of compounds, and the score is not 
representative of binding affinity, such as GOLD [1], GLIDE [2] and so on. The correlation between 
the score of these docking software and experimental binding affinity is very weak [3, 4]. 

Some researchers used machine learning methods to refit the weight of the descriptors used in 
the classical scoring functions. Li et al. [5] used a random forest algorithm based on Autodock [6]. 
Tanchuk et al. [7] combined the descriptors of Autodock and Autodock Vina [8], and adjusted the 
parameters by multiple linear regression. Although these methods improved the performance of 
classical scoring functions, their performance is still limited because there is no change made to the 
descriptors of the molecular docking software. 

Then, researchers focused on generating and using of problem-specific molecular descriptors to 
build prediction models based on the machine learning methods. Commonly used descriptors include 
simplified molecular-input line-entry system (SMILES) strings [9], molecular fingerprint [10], and 
descriptors derived from quantum physical chemistry and differential topology [11]. However, these 
kinds of methods are limited by the feature engineering as the feature extraction methods directly 
affect the prediction results. Recently, deep learning has gained considerable attention as it allows the 
model to “learn” to extract features. 

Deep learning has shown strong performance in image recognition [12], speech recognition [13] 
and natural language processing [14]. However, binding affinity prediction, based on the deep 
learning, faces a big challenge. Images are fixed-size grids, whereas the molecular conformation is a 
typical graphic structure and molecules are heterogeneous, which is hard to be processed by the deep 
learning methods that expect homogeneous input. Some researches [15–18] have presented the 
complex with a 3D grid, and utilized a 3D convolution [19] to produce a feature map of this 
representation. However, this model is sensitive to the orientation of the complex, and cannot 
identify the characteristics of the atomic bonds. Since the complex is composed of protein and ligand 
molecules, it can be presented as a graph where each node represents an atom of the molecule and 
each edge represents the bond between atoms. Graph neural network is the right choice to represent 
the molecular structure. 

Graph neural networks (GNNs) are deep learning based methods that operate on graph domain. 
Nowadays, there are great developments in GNN [20,21]. Advances in this direction are often 
categorized as spectral approaches and spatial approaches. Spatial approaches can be categorized as 
basic spatial approaches and attention-based spatial approaches [22]. The attention mechanism has 
been successfully used in many sequence-based tasks such as machine translation [23], machine 
reading [24] and so on. There are also several models which try to generalize the attention operator 
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on graphs. Attention-based operators assign different weights for neighbors, so that they could 
alleviate noises and achieve better results. 

In view of the advantages of attention-based spatial approaches, we have developed a 
protein-ligand binding affinity prediction model named GAT-Score based on the graph attention 
network (GAT) [25] which is a kind of attention-based spatial approaches. The protein-ligand 
complex is represented as a graph structure, and the atoms of protein and ligand are treated in the 
same matter. Two improvements are made to the original graph attention network. Firstly, a dynamic 
feature mechanism is designed to enable the model to deal with the bond features. Secondly, the 
virtual super node is introduced to aggregate node-level features into graph-level features, so that the 
model can be used in the graph-level regression problems. PDBbind 2018 database is used to train 
the model. Finally, the performance of GAT-Score is tested by the two schemes, 𝐶௦ (Core set as the 
test set) and CV (Cross-Validation). The experimental results show that our model is better than most 
methods from machine learning models with traditional molecular descriptors. 

2. Materials and methods 

2.1. Data sets 

The network was trained and tested with the protein-ligand complexes from the PDBbind 
database 2018 [26]. This database consists of 3D structures of molecular complexes and their 
corresponding binding affinities. Liu et al. [26] divided PDBBind complexes into 3 overlapping 
subsets: general set, refined set and core set. The general set (16126 complexes) includes all 
available data. The refined set (4463 complexes), which comprises complexes with higher quality, is 
subtracted from the general set. Finally, the complexes from the refined set are clustered by protein 
similarity, and 5 representative complexes are selected from each cluster. This fraction of the 
database is called the core set (285 complexes) and is designed as a high quality benchmark for 
structure-based CADD methods. 

In order to evaluate our model with the core set of PBDbind 2013 [27], we needed to exclude all 
data that overlap with the 195 complexes in core set of PBDbind 2013. Therefore, a total of 87 
overlapping complexes were excluded from the training set. Five complexes were part of the general 
set and 82 were part of the refined set. 

2.2. The construction of GAT-Score model 

2.2.1. Representation of the complex 

According to the definition of the graph neural network [28]，a graph is represented as 𝐺 ൌ
ሺ𝑉, 𝐸ሻ where 𝑉 is the set of nodes, 𝑉௜ ∈ 𝑉 denotes a node in 𝑉, and 𝐸 is the set of edges, 𝐸௜௝ ∈
𝐸 denotes an edge between node 𝑉௜ and 𝑉௝. 𝑁 denotes the number of nodes and 𝐀 denotes the 
adjacency matrix. A molecule is represented as a graph (Figure 1), the nodes of which stand for the 
atoms and the edges of which represent bonds between two atoms. Whether there exists an edge 
between the protein atom and ligand atom depends on the distance 𝑑௉௅ between the two atoms. 𝑑௉௅ 
is considered to be a hyper parameter. The characteristics of the graph are specified by the atomic 
features and the bond features. Adjacency matrix only represents the connectivity between atomic 
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pairs and does not include explicit edge features. We used the open source Python toolkit RDKit [29] 
to acquire the features of nodes and edges and the adjacency matrix of the graph. 

 

Figure 1. Graph structure representation of the complex. The blue nodes denote the 
atoms of the protein, and the orange nodes denote the atoms of the ligand. 𝐗𝟏 denotes 
the feature vector of node 𝑉ଵ, and 𝐗𝟐 denotes the feature vector of node 𝑉ଶ. 𝐀 denotes 
the adjacency matrix. 

Inspired by Stepniewska-dziubinska [15] and Liu [30], the following feature representation is 
used (Table 1). 

Table 1. Features of the complex. 

Type Feature Data type Size 
atomic feature Atomtype 9 integer (0 or 1) 9 
atomic feature Hybridization integer (1,2 or 3) 1 
atomic feature Hydrophobic integer (0 or 1) 1 
atomic feature Aromatic integer (0 or 1) 1 
atomic feature Acceptor integer (0 or 1) 1 
atomic feature Donor integer (0 or 1) 1 
atomic feature Ring integer (0 or 1) 6 
atomic feature Partialcharge float 1 
atomic feature Moltype integer (1 or −1) 1 
bond feature Bond type integer (0, 1, 2 or 3) 1 
bond feature Same ring integer (0 or 1) 1 
bond feature Distance float 1 

The following atomic features are used:  
1) Atom type: B, C, N, O, P, S, Se, halogen and metal, one-hot with 9 bits, denoted as 

Atomtype. 
2) Atom hybridization: Hybridization, encoding with 1 integer (1, 2, 3). 
3) Properties defined with SMARTS patterns: Hydrophobic, aromatic, acceptor, donor, 

encoding with 1 bit (1 if present) 
4) Whether the atom is in an aromatic ring with size 3 to 8, one-hot encoding by 6 bits. 
5) Partial charge: represented by 1 float. The partial charges were obtained by pybel—A Python 
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module that simplifies access to the Open Babel API. 
6) Distinguish between the protein and ligand: Moltype, represented by 1 integer (1 for ligand, −1 

for proteins). 
The following bond features (edge features) are used: 
1) The number of bonds between atomic pair, represented by an integer. 
2) Whether the two atoms is in the same ring, represented by 1 or 0. 
3) Euclidean distance between atom and atom is calculated by the three-dimensional 

coordinates of two atoms. 
The node feature vector is formed by the atomic feature and bond feature by dynamic feature 

mechanism which is described in the next section. The node feature is a 25 dimensional vector and 
changes dynamically according to the different aggregation nodes. 

2.2.2. Dynamic feature mechanism 

GAT [25] is not designed to make use of the edge information in the graph, because it only uses 
the connectivity of the nodes. The value of 1 in the adjacency matrix means that there exists an edge 
between the two nodes, and the value of 0 means that there does not exist an edge (Figure 1). 
However, the edge in the molecular graph in our study has a lot of information, such as Euclidean 
distance between two atoms, the type of atomic bond and whether two bonded atoms are in the same 
ring. Making full use of the edge information is helpful to extract the features of the graph effectively. 
Therefore, we designed dynamic feature mechanism to make improvement to the attention layer of 
GAT. The attention layer has sufficient expressive power to transform the input features into 
higher-level features. One of the steps is computing attention coefficients 𝑒௜௝  (Eq (1)), which 
indicates the importance of the features of node 𝑉௝ to node 𝑉௜. 

( , )ij i je a h h W W
r r

                                              (1) 

where 𝐖 denotes a weight matrix which is applied to every node to execute a learnable linear 
transformation. Attention mechanism a , which is a single-layer feedforward neural network and 
applying the LeakyReLU nonlinearity, is performed to compute attention coefficients. Consequently, 
the attention coefficients are used to compute a linear combination of the features corresponding to 
then, to serve as the final output features for every node (after potentially applying the eLU 

nonlinearity). The feature of node 𝑉௜ and 𝑉௝ is denoted as ℎሬ⃗ ௜ and ℎሬ⃗ ௝. The detailed explanation of 

attention mechanism is in the paper of Velikovi et al. [25] 
In our study, in order to get the edge information, we concatenated the edge feature of 𝐸௜௝ to 

the atomic feature of 𝑉௝ as ℎሬ⃗ ௝. Since 𝑉௝ connects different neighbour nodes, the node feature of 𝑉௝ 

changes dynamically when calculating the attention coefficient between 𝑉௝ and different neighbour 
nodes. In the operation of aggregating neighbour nodes in the graph attention layer, we can 
effectively aggregate the edge features. 
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Figure 2. Dynamic feature mechanism. 

The input of the attention layer is a set of node feature matrix 𝐡 ൌ ൛ℎሬ⃗ ଵ, ℎሬ⃗ ଶ, … , ℎሬ⃗ ேൟ, ℎሬ⃗ ௜ ∈ ℝி 

and a set of edge features 𝐝 ൌ ൛𝑑௜௝ൟ, 𝑑௜௝ ∈ ℝெ . Where N is the number of nodes, 𝐹  is the 

characteristic number of each node, and 𝑑௜௝ is the feature vector of the edge of any node 𝑉௝ and 𝑉௜, 
and 𝑀 is the characteristic number of each edge. In the attention layer with dynamic feature 
mechanism, ℎሬ⃗ ௜, ℎሬ⃗ ௝ in the original formula in GAT [25] are changed as follows. 

ℎሬ⃗ ௜ ← 𝑐𝑜𝑛𝑐𝑎𝑡൫ℎሬ⃗ ௜, 𝑑௜௜൯         ℎሬ⃗ ௝ ← 𝑐𝑜𝑛𝑐𝑎𝑡ሺℎሬ⃗ ௝, 𝑑௝௜ሻ                 (2) 

Next, we use an example to illustrate. The edge feature vector of the edge 𝐸௜௝ is [distance, 
bondtype, same ring], and the edge feature vector of the edge 𝐸௜௜ is [0,0,0]. As shown in Figure 2, 
suppose node 𝑉ଵ connects three neighbour nodes, 𝑉ଶ, 𝑉ଷ, 𝑉ସ, and the features of three edges are 
𝑑ଵଶ, 𝑑ଵଷ, 𝑑ଵସ . For 𝑉ଶ , 𝑉ଷ , 𝑉ସ , The feature vectors of 𝑉ଵ  are different. When 𝑉ଶ , 𝑉ଷ , 𝑉ସ 
aggregates their neighbour node 𝑉ଵ respectively, the feature vector of 𝑉ଵ changes dynamically. 

2.2.3. Virtual super node 

Learning graph-level is a central problem of molecule classification and regression. In the 
attention layer, higher-level features are learned for every node, but a graph-level presentation is 
needed to make graph-level prediction. The process is called readout. There are two kinds of 
methods for readout operation: statistic-based method and learning-based method. Statistic-based 
methods are the most common, such as Mean, Sum and Max. These methods without additional 
parameters are simple and effective, but it is obvious that these methods are prone to loss the 
information of the graph. Therefore, a learning-based approach is adopted. 

In order to learn graph-level feature and utilize GAT network for graph-level properties 
prediction, inspired by Scarselli et al. [28], we introduced a virtual super node that is connected with 
all nodes in the graph by a directed edge (Figure 3). Since the virtual super node is directly 
connected with all nodes in graph, it can easily learn global feature through one graph attention layer. 
The directed edge pointed to the virtual super node from other genuine nodes, indicates that the 
virtual super node could learn features from all other genuine nodes (Figure 3(a)), while none of the 
genuine nodes would be affected by the virtual super node (Figure 3(b)). Consequently, the virtual 
super node could learn the global feature while the genuine nodes keep learning local features. Since 
the feature of the graph is more complex than that of the node, we used a longer vector as the feature 
of the virtual super node. Therefore, we can deal with graph-level regression as we do with 
node-level regression. 
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Figure 3. Graphical representation of the major graph operation. The dark blue node 
represents the specific node V, the light blue nodes represent the genuine nodes, the 
dotted node represents the virtual super node S. (a) the virtual super node S aggregates all 
nodes. (b) the specific node V aggregates the neighbour nodes. 

2.2.4. The architecture of GAT-Score 

 

Figure 4. The network architecture of GAT-Score. 

The network architecture of GAT-Score is shown in Figure 4. The neural network we proposed 
here consists of eight layers including an input layer, three attention layers, three hidden layers and 
an output layer. The input layer includes node features (25 dimensional vectors) and connectivity 
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information. Since the number of atoms varies between molecules, standard batch normalization 
cannot be applied to a graph convolution network directly. We extended standard batch normalization 
to node-level batch normalization. We normalized the feature of each node, and made it zero mean 
and unit variance. Three attention layers extract low-level representations. The dynamic feature 
mechanism is introduced into the first attention layer. The weight matrixes, denoted as 𝐖ଵ

ୱ୦ୟ୰ୣୢ,
𝐖ଶ

ୱ୦ୟ୰ୣୢ and 𝐖ଷ
ୱ୦ୟ୰ୣୢ, are applied to the genuine nodes for learnable linear transformation in the 

three attention layers respectively, while the weight matrixes, denote as 𝐖ଵ
ୗ, 𝐖ଶ

ୗ and 𝐖ଷ
ୗ, are 

applied to the virtual super nodes. Our model used glorot_normal as initial method and the eLU 
activation [31]. To stabilize the learning process of self-attention, we have employed multi-head 
attention (with 𝐾 = 4 heads) [25] by each node on its neighbourhood. 𝐾 independent attention 
mechanisms execute the transformation, and then their features are concatenated. The attention layer 
produces a new set of the genuine node features (the dimension of the feature vector is 𝐹ᇱ ൈ 4 ൌ
128 ൈ 4 ൌ 512) and the virtual node features (the dimension of the feature vector is Fௌ

ᇱ ൈ 4 ൌ 512 ൈ
4 ൌ 2048). The feature of the virtual node in the last attention layer is used as an input for a dense 
layer with 1000 neurons, which is connected with two dense layers with 500 and 200 neurons. In order 
to improve generalization, dropout with drop probability of 0.2 is used for all dense layers. The dense 
layers are composed of rectified linear units (ReLU). ReLU is chosen because it speeds up the learning 
process compared with other types of activations. The output layer is a regression task (Binding affinity 
prediction). The mean square error (MSE) is used as the loss function. In the training process, the 
parameters of neurons are optimized by Adam optimizer to minimize the final loss function. The 
learning rate was set to 0.0001. The detailed parameters of the model are shown in Table 2. 

Table 2. Features of the complex. 

Super parameter Value 

Bath size 40 

Optimizer Adam 

Learning rate 0.0001 

Decay rate 0.97 

Dropout rate 0.2 

Number of epochs 80 

𝑑௉௅ 4 Å 

2.2.5. Training process and model selection 

Epoch is defined as the number of times that the whole training set is repeatedly trained. In the 
graph neural network, it is impossible to feed all the samples to the model at one time because of the 
huge number of parameters and samples, so it is necessary to train in batches. In the training phase, 
the batch size of each iteration is set to 40. It is necessary to choose an appropriate epoch value, 
because less epochs may lead to underfitting of the model, and more epochs may lead to overfitting 
of the model. The network structure trained 80 epochs on the training set. Each iteration can produce 
a model, and each model may be the final model. The root mean square error (RMSE) of the 
validation set is used to show the performance of each model. RMSE decreases with the increase of 
training times, and the model will converge at a certain epoch. A model with the minimum RMSE is 
chosen when it converges. 
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3. Results 

For each complex in the test set, binding affinity (in pKୢ/pK୧) was predicted and compared to 
the real value. Prediction error was measured with RMSE (in pKୢ/pK୧). The correlation between 
the scores and experimentally measured binding constants was assessed with Pearson correlation 
coefficient (R୮) and Spearman correlation coefficient (Rୱ).  

An important goal in this work is to objectively estimate the generalization accuracy of the 
proposed GAT-Score based on their familiarity with the test proteins and ligands. More specifically, 
our objective is to investigate how our model performs on test protein targets that are (i) already 
present in the training set (but bound to different ligands) and (ii) partially or fully unrepresented in 
their training samples. Accordingly, inspired by Hossam et al. [32], we designed two different 
training-test sampling strategies from the 16126 complex general set of PDBbind to evaluate our 
model in real-world modeling scenarios based on the degree of overlap between the training and test 
proteins and ligands. 

3.1. Multifold cross-validation: novel complexes with known and novel protein targets and ligands 

One of the testing schemes is based on 10-fold cross-validation (𝐶𝑉) where the general set of 
PDBbind 2018 is shuffled randomly and then partitioned into 10 nonoverlapping subsets of equal 
size. Upon training and validation, one out of the 10 subsets is used for testing, and the remaining 
nine are combined for training. Once the training and test round completes for this fold, the same 
process is repeated for the other nine folds one at a time. In a typical 10-fold 𝐶𝑉 experiment on a 
data set of 16126 complexes, the sizes of the 10 folds for training and test are (16126×9/10 ≈ 14513) 
and (16126×1/10 ≈ 1613) complexes, respectively. Every protein and ligand family is not necessarily 
present in both the training and test sets across the 10 folds due to the randomness of 𝐶𝑉. Therefore, 
some proteins and ligands in the test set may actually be “novel” for the model while others may be 
present in the training data. 

Table 3. The mean R୮, Rୱ and RMSE (in pKୢ/pK୧) of GAT-Score and RF-Score on 

the scheme 𝐶𝑉 and 𝐶௦. 

  GAT-Score RF-Score p-value 
 R୮ 0.772 0.719 < 2.2e–16 

𝐶𝑉 Rୱ 0.764 0.702 < 2.2e–16 

 RMSE 1.47 1.55 ___ 

 R୮ 0.778 0.728 < 2.2e–16 

𝐶௦ Rୱ 0.769 0.712 < 2.2e–16 

 RMSE 1.43 1.52 ___ 

We compared GAT-Score with RF-Score on the experimental scheme 𝐶𝑉. RF-Score is the most 
popular machine learning based scoring function recently, and it outperforms classical scoring 
functions and other feature-based machine learning methods in affinity scoring. RF-Score is often 
used as a benchmark method. GAT-Score and RF-Score have been repeated for 30 times respectively 
and a median R୮, Rୱ and RMSE (for test set) are obtained as the final results. The results are 
illustrated in Table 3. GAT-Score achieved better performance than RF-Score in R୮ and Rୱ. Maybe 
it is because that RF-Score is based on feature engineering and its prediction performance is greatly 
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affected by feature selection, whereas automatic feature extraction of GAT-Score based on GAT is 
helpful to improve the performance of our model. 

3.2. PDBbind core test set: novel complexes with known protein targets and ligands 

The core set has been a popular benchmarking test set for many molecular docking software and 
scoring functions [33–37]. The core set is denoted as 𝐶௦. The corresponding training set for 𝐶௦, 
referred to as the primary training set and denoted as 𝑃௥, was formed by removing all 𝐶௦ complexes 
from the total 16126 complexes in the general set. As a result, 𝑃௥ contains (16126 – 285 = ) 15841 
complexes that are disjoint from the complexes in the core set. The validation set is formed by 
randomly selecting 1000 complexes form 𝑃௥ to help evaluate the variance of our model. 

 

Figure 5. The RMSE of different epochs in 𝐶௦ scheme. 

Due to the overlap between their training and test proteins, the core test set complexes are 
considered targets that are “known” to scoring functions. More specifically, for each protein in the 
protein clusters of 𝐶௦, there is at least one identical protein present in the primary 𝑃௥ training data, 
albeit bound to a different ligand. In addition, every ligand in the core test set has at least one 
training ligand that shares the same ligand cluster. Therefore, the complexes in 𝐶௦ have some degree 
of similarity to training complexes in 𝑃௥ in terms of both the protein and ligand present. 

Table 4. GAT-Score’s performance in one experiment. The unit of RMSE and SD is 
pKୢ/pK୧. 

Dataset RMSE SD Rp 
Test 1.389 1.36 0.786 
Validation 1.43 1.40 0.764 
Training 1.23 1.18 0.803 

In the 𝐶௦ scheme, the model was trained for 80 epochs on the training set, as shown in Figure 5. 
Each iteration can produce a model with different parameters. We used RMSE to evaluate the quality 
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of each model. After 50 epochs of training, the model began to overfit, and the error on the validation 
set began to increase slowly and steadily. The best set of weights of the network, obtained after 50 
epochs of training, was saved and used as the final model. Model performance was evaluated on all 
subsets of the data. For each complex in the dataset, the predicted affinity was compared with its real 
value. R୮, RMSE and SD (standard deviation) for three subsets are illustrated in Table 4. As 
expected, the network achieved the minimum error on the training set (RMSE is 1.23), which is used 
to fit the weights of the network. R୮ on the validation set is 0.764, while R୮ on the core set is 
0.786 (Figure 6). When we repeated GAT-Score and RF-Score for 30 times respectively, a median 
R୮ of GAT-Score is 0.778 and Rୱ of GAT-Score is 0.769, which is still better than RF-Score. The 
detailed results are illustrated in Table 3. 

 

Figure 6. The results of 𝐶௦ scheme in one experiment. 

Furthermore, to have a better understanding of the performance of our models, we used the 
core set of PDBbind 2013 as the test set, and compared R୮ with the state-of-the-art results in 
literature [38,39]. The results are illustrated in Figure 7. It can be seen that our model is better than 
classical scoring functions and some machine-learning based methods. GAT-Score is not better than 
the recently proposed models, such as PerSpect-GBT, PSH-ML and FPRC, but R୮ is very close.  

Due to the complexity of deep neural network, it is always criticized for its lack of 
interpretability. However, for a better understanding of the protein-ligand interactions, the 
interpretability of protein-ligand interaction prediction model is very important. Therefore, designing 
architectures that have the ability of interpretation or visualization of protein-ligand interactions is 
both a challenge and an opportunity for the application of GNN in drug discovery. Our model used 
the attention mechanism to extract the important information of the graphs and produce the 
characteristics with attention perception. Attention-based operators assign different weights for the 
neighbors. The different weights represent the different importance of edges and atoms. Analysing 
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the learned weights may help to improve the explanatory ability. Therefore, we can further study the 
visualization of this model and the analysis method of the key structural characteristics for 
protein-ligand binding, which can help to clarify the reason for protein-ligand binding. Although the 
performance of our model is not the best among the current affinity prediction methods, it may 
contribute to improving the interpretability of the model. 

 

Figure 7. The comparison of our GAT-Score model and the state-of-art machine learning 
models, for the prediction of protein-ligand binding on PDBbind 2013. 

The experiments on the scheme 𝐶௦  and 𝐶𝑉  show the good performance of GAT-Score. 
Although both 𝐶௦ and 𝐶𝑉 test sets contain fully or partially overlapping targets with the training 
set, it has been found that more than 90% of recent drug targets are known with complexes already 
deposited in PDB database [40], which the complexes in our training set come from. This means that 
our model will be applied to known targets in the vast majority for real-world drug development 
applications. 

4. Conclusions 

In this paper, we developed GAT-Score, a graph attention network based model to predict 
protein-ligand binding affinity. We firstly utilized the graph attention mechanism of GAT to enable 
this model to assign different importance (weight) to different nodes within a neighbourhood; 
therefore, our model can produce the features with attention perception. In order to learn the 
information of bonds in the molecular, we proposed dynamic feature mechanism to solve the 
problem that GAT cannot deal with the edge feature. In order to learn graph-level representation, we 
introduced the virtual super node that is connected with all nodes in the graph by a directed edge and 
modify the graph operation to help the model learn graph-level features. Thus, the model can handle 
graph-level regression in the same way as node-level regression. The experiments 𝐶௦ and CV shows 
that GAT-Score achieves a better performance than the classical scoring functions and most machine 
learning based methods with traditional molecular descriptors. 
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