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Abstract: Prostate cancer is the fifth most common cause of death from cancer, and the second most
common diagnosed cancer in men. In the last few years many mathematical models have been pro-
posed to describe the dynamics of prostate cancer under treatment. So far one of the major challenges
has been the development of mathematical models that would represent in vivo conditions and therefore
be suitable for clinical applications, while being mathematically treatable. In this paper, we take a step
in this direction, by proposing a nonlinear distributed-delay dynamical system that explores neuroen-
docrine transdifferentiation in human prostate cancer in vivo. Sufficient conditions for the existence
and the stability of a tumour-present equilibrium are given, and the occurrence of a Hopf bifurcation is
proven for a uniform delay distribution. Numerical simulations are provided to explore differences in
behaviour for uniform and exponential delay distributions. The results suggest that the choice of the
delay distribution is key in defining the dynamics of the system and in determining the conditions for
the onset of oscillations following a switch in the stability of the tumour-present equilibrium.
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systems; stability switches; local asymptotic stability

1. Introduction

Prostate cancer (PCa) is the second most common cause of cancer among men worldwide [1, 2].
Much work has been done to understand the development of this disease. Over the last few decades
many biological models, such as TRAMP and LADY [3] have been created using various strains of
genetically engineered mice to simulate PCa growth observed in humans. Due to the limitations of
these mouse models, in vitro experiments have been designed using cells taken from specific strains of
human prostate cancer, such as the LNCaP cell line that was established in 1980 by Horoszewicz et al.
[4]. In the last few years, many mathematical models have been proposed to describe the rich dynamics
of prostate cancer with or without treatment, and one the major challenges has been the development of
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dynamical systems that would represent in vivo conditions, while being mathematically tractable [5].
Early mathematical models investigated the link between the concentration of serum prostate specific
antigen (PSA) and tumour volume [6–8]. Others explored how different chemical resources would
affect tumour growth, e.g. Kuang et al. proposed the KNE model [9], in which they apply ideas from
ecological stoichiometry to tumour growth, and consider that tumour growth is limited by various
physical constraints such as space, nutrients, and vasculature. However, as the link between androgen,
the male sex hormones testosterone and dihydrotestosterone, and prostate cancer was explored further
[10–12], mathematical models began to focus on the response of PCa tumour growth to androgen
concentration. In 2004 Jackson modelled the tumour as two populations, one androgen dependent (AD)
and the other androgen independent (AI) [13,14]. Using these models Jackson predicted that androgen
deprivation therapy (ADT) would successfully control tumour growth in a well-defined region of the
parameter space for all time, but that cancer could recur through AI mechanisms after undergoing ADT.
These concepts were further explored by Ideta et al. [15], who showed that using intermittent ADT can
reduce the time to cancer relapse. They stated, counter intuitively, that the reduced time before cancer
reappears is an acceptable trade offwhen considering the known side effects of ADT and other possible
improvements in the quality of the patient’s life. Later, in 2010, Eikenberry et al. [16] proposed two
mathematical models that consider the intracellular kinetics of the androgen and its receptors. The
authors found that decreasing androgen levels could increase the PCa cell mutation rate, resulting in a
more heterogeneous population.

Recent work has considered the role of neuroendocrine cells in the re-emergence of PCa tumours.
Neuroendocrine cells are specialised secretion cells, with a cell structure similar to neurons. They are
found throughout the human body, including in glands such as the prostate, and usually contribute to the
homeostasis of the surrounding tissues [17] by secreting various hormones and proteins [18]. Whilst
there have been multiple observations of neuroendocrine cells being present in prostate tumours, the
current theories for their role in cancer development are still considered controversial. One of these
theories concerns the role of neuroendocrine transdifferentiation, which is believed to be caused by the
reduction in androgen levels [17]. This theory proposes that after the tumour has been under castrate
conditions for 16 to 18 months, such as those caused by ADT, a proportion of the PCa cells undergo
transdifferentiation and become neuroendocrine cells. Transdifferentiation is the irreversible switch of
one type of cell to another [19]. Once this switch occurs, neuroendocrine cells are believed to secrete
androgen or similar anabolic hormones which promote tumour growth.

In 2015 Cerasuolo et al. [20] proposed a discrete delay dynamical system to investigate neuroen-
docrine transdifferentiation in PCa, based on in vitro experiments of androgen-deprived conditions
on LNCaP cells growing in Petri dishes. In these experiments the LNCaP cells were first grown
in an androgen-rich environment, before being transferred to the androgen-deprived condition of
the Petri dishes. The mathematical model was inspired by previous work on cell differentiation in
hematopoiesis [21,22] and on PCa, where the cancer cell population is divided in androgen-dependent
and androgen-independent cells that are able to proliferate under in vivo conditions [16,23]. In [20] the
model represents two cancer cell populations, one with androgen-dependent cells and the other with
neuroendocrine androgen-independent cells. The model also considers the androgen concentration.

The model was parameterised against experimental data and was used to forecast tumour growth
in the long term. In the first instance, the authors showed agreement between the in vitro experiments
and the simulated growth curve. They then simulated the long-term behaviour over 400 days, and
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observed that at the beginning androgen-dependent cells would become almost extinguished while
the neuroendocrine cells remained nearly constant for the first 150 days. This was followed by an
increase in both cell populations, with the system reaching an equilibrium after another 150 days. This
predictive analysis led to the assertion that androgen-dependent cells react to hormone deprivation by
favouring the establishment of a neuroendocrine cell population, which leads to the development of
androgen-resistant PCa in most patients. The authors concluded that the main novelty of the model
stemmed from considering cell transdifferentiation as a consequence of androgen concentration, and
that the most interesting result was the active role that differentiated cells can play in sustaining the
tumour in castrate conditions. A mathematical and numerical analysis of the system proposed in [20]
was performed by Turner et al. [24]. Here, the authors found sufficient conditions that would ensure
the existence of tumour-present equilibria, but it was not possible to locate or explore the equilibria
stability analytically. In [24], several amendments were suggested that would aid the analysis of the
model, as well as move the model from in vitro to in vivo conditions.

The first amendment concerned the proliferation of PCa cells. A condition of in vivo models is
that inter-cellular competition for space and resources have a large effect on the growth rate of the
population. This led us to consider a logistic growth instead of the cell-doubling mechanism used
in [20]. The second major change concerned the two delays in the model. In [24] the authors showed
that both delays are not highly significant parameters for the model and are not involved in the local
stability of the trivial steady state. In the revised new model, we therefore no longer consider a delay in
the transdifferentiation from LNCaP cells to NE cells, nor in the mitosis rate. However, like Hutchinson
[25], we assume that the per capita growth rate is negatively affected by the population density after a
time τ representing the development and maturation of the species. Following Cassidy and Humphries
[26], who consider a heterogeneous cell-cycle duration more realistic than a discrete delay, we consider
τ to be a distributed delay, as discrete delays assume uniform and constant behaviour across all cells,
while a distributed delay will allow for variation in a small interval. In this way we take into account
the fact that the dependence of the growth limitation on population density is distributed over a past
time interval and not concentrated in a single instant. With this distributed delay, our logistic term will
be similar to that in Volterra’s proposed predator-prey system introduced in 1931, which was translated
by Scudo and Ziegler’s [27].

The paper is organised as follows. Section 2 is devoted to the model formulation and the proof of
its basic properties. The model is a distributed-delay system that considers the dynamics of two cell
populations, the androgen dependent LNCaP cells, denoted by L(t), and the neuroendocrine androgen
independent cells, denoted by N(t), and the dynamics of the androgen concentration in the environment,
denoted by A(t). Sufficient conditions that ensure non-negativity and boundedness of the solutions are
found. In Section 3 conditions for the existence of a tumour-free and a tumour-present equilibrium are
given. The local stability analysis of the tumour-free equilibrium is performed. Furthermore, sufficient
conditions for the existence of bifurcations for the tumour-present equilibrium are given in the case
of a uniformly distributed delay. In Section 4 we illustrate the systems behaviour with numerical
simulations in the case of uniformly and exponentially distributed delays, and finally a discussion of
our results and further research ideas are in given in Section 5.
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2. The model and its basic properties

For brevity in the following, we will denote x(t) as x for x ∈ {A , L ,N}. The equation for the
androgen dynamics follows the modelling by Baez and Kuang [28], where Amin represents the minimum
androgen concentration required to sustain the tumour, and Amax > Amin, the maximum androgen
concentration of the system. Here we consider that androgen can be produced from other endocrine
glands such as the adrenal glands and kidneys, with production rate γ and diffusion rate proportional to
the difference between Amax and A. Androgen depletion depends on its maximum rate, µA, and assumes
the existence of a minimum threshold of androgen required to sustain the cancer. Androgen is secreted
by N cells with secretion rate, κ, which leads to the equation

dA
dt
= γ(Amax − A) − µA(A − Amin) + κN. (2.1)

In the model we assume that L cells are generated through asymmetric cell division, undergo apoptosis
at rate δL, and transdifferentiate into N cells with a maximum rate kp during growth, and a maximum
rate kt when fully mature. The process of transdifferentiation depends on the androgen concentration
through the Ricker function α(A), which is

α(A) = rAe−aA.

The proliferation of L cells is governed by A through the Droop equation [29]

F(A) = βP

(
1 −

Amin

A

)
,

where βP is the maximum proliferation rate of L and Amin is the minimum androgen concentration
required for tumour growth, as in (2.1). Also, we assume that the growth of L cells is limited by the
population density, and that such limitation is distributed over a past time interval τ [26]. Therefore,
the equation for L is

dL
dt
= (1 − kpα(A))F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
− δLL − ktα(A)L,

where ηk is the carrying capacity of the environment, ω(θ), the delay kernel or delay distribution func-
tion and finally Lθ = L(t + θ) is the delay term for LNCaP cells.

The growth of N-cells depends on the production through asymmetrical cell division of L cells and
on the transdifferentiation of L cells; and based on experimental evidence, the death rate contains a
linear term for the apoptosis, with maximum rate µN , and a quadratic term, −δN N2, representing the
intraspecific competition for space and resources [20, 28]:

dN
dt
= kpα(A)F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
+ ktα(A)L − δN N2 − µN N.
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The final model is

dA
dt
= γ(Amax − A) − µA(A − Amin) + κN,

dL
dt
= (1 − kpα(A))F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
− δLL − ktα(A)L,

dN
dt
= kpα(A)F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
+ ktα(A)L − δN N2 − µN N.

(2.2)

For biological relevance we consider that all parameters are positive, and that the initial conditions
are non-negative continuous functions defined as

A(θ) = ϕ1(θ); L(θ) = ϕ2(θ); N(θ) = ϕ3(θ),

where ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C is such that ϕi(θ) ≥ 0, (−τ ≤ θ ≤ 0, i = 1, 2, 3). C denotes the Banach
space C([−τ, 0],R3

+) of continuous functions mapping the interval [−τ, 0] into R3
+ with the supremum

norm
||ϕ|| = sup

θ∈[−τ,0]
|ϕ(θ)|

where | · | is any norm in R3
+ [30].

Also, by observing that the proportion of L cells produced by asymmetric division must satisfy

0 < 1 − kpα(A) ≤ 1 ∀ A,

and that αmax =
re−1

a
, then we must impose the condition

kpαmax ≤ 1. (2.3)

To prove the boundedness of the solutions to (2.2) we use Theorem 2.1 from Faria and Liz [31],
which is

Theorem 2.1. Consider
ẋ(t) = b(t)x(t)[1 − M(x(t))], (2.4)

where the following hold.
(H1) We have

(i) b : R → R is a continuous function, and there are constants β0, β0 such that 0 < β0 ≤ b(t) ≤ β0

for all t ∈ R;
(ii) M : C → R is a positive linear operator with l := ||M|| > 0.

Define x∗ = l−1 and consider the IVP for (2.4) with x0 = φ, with solution x(φ)(t). Then the following
results hold.

(i) x(φ)(t) is defined for t ≥ 0, bounded below from zero and bounded on [0,∞).
(ii) If x(φ)(t) is non-oscillatory around x∗, then x(φ)(t)→ x∗ as t → ∞.
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(iii) Moreover, if x(φ)(t) is oscillatory around x∗ and∫ t

t−τ
b(τ)dτ ≤

3
2

for large t,

then x(φ)(t)→ x∗ as t → ∞.

Lemma 2.2. Let ϕi(s) ≥ 0 and ϕ1(s) ≥ Amin, with s ∈ [−τ, 0] and i = 2, 3. If either of the following
conditions hold,

LB∆

ηk
< 1, or (2.5)

LB∆

ηk
≥ 1 and kt >

(
LB∆

ηk
− 1

)
kpβP, (2.6)

where LB = sup[0,+∞) L(t) and ∆ =
∫ 0

−τ

ω(θ)dθ, then the solutions of (2.2) are non-negative and

bounded. In particular, A(t) ≥ Amin ∀t ≥ 0.

Proof. By considering the second equation of (2.2)

dL
dt
= L

(
(1 − kpα(A))F(A)

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
− δL − ktα(A)

)
,

with L(0) = ϕ2(0) > 0, then

L(t) = L(0) exp
[
(1 − kpα(A))F(A)

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
− δL − ktα(A)

]
> 0 ∀ t ≥ 0.

If L(0) = 0 then L(t) = 0 ∀ t ≥ 0.
Let t0 > 0 be such that A(t0) = Amin, we wish to prove that A(t) ≥ Amin ∀t > 0. Let us assume, on the

contrary, that A(t) < Amin for all t ∈ (t0, t0 + ϵ) with 0 < ϵ < τ and for t < t0, A(t) > Amin. Then the first
equation of (2.2) at t0 becomes

dA(t0)
dt

= γ(Amax − Amin) + κN(t0).

We will determine the sign of N(t0). From the third equation of (2.2) at t0

dN(t0)
dt

= ktα(A(t0))L(t0) − δN N(t0)2 − µN N(t0),

dN(t0)
dt

+ N(t0) fN(N(t0)) =: B(A(t0), L(t0)),

where fN(N(t0)) := (δN N(t0) + µN) and B(A(t0), L(t0)) = ktα(A(t0))L(t0). Then by the variation of
constant formula, we obtain

N(t0) = N(0) exp
[
−

∫ t0

0
fN(N(s))ds

]
+

∫ t0

0
B(A(s), L(s))ds
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and as all initial conditions are non-negative, A(t0) > 0 and L(t) ≥ 0∀ t ≥ 0, then N(t0) ≥ 0, and
therefore dA(t0)

dt ≥ 0. This is a contradiction of the initial hypothesis, and therefore A(t) ≥ Amin ∀ t ≥ 0.
Before proving the positivity of N, we need to prove the boundedness of L. Following Faria and

Liz [31], and as L(θ) = ϕ1(θ) ≥ 0 with θ ∈ [−τ, 0] and L(t) ≥ 0, A(t) ≥ Amin ∀t ≥ 0, from the second
equation of (2.2) we obtain

L̇ < F(A)L
(
1 −

1
ηk

∫ 0

−τ

Lθω(θ)dθ
)
,

that is,
L̇ < βPL

(
1 − M(Lθ)

)
,

where M : C → R is a non-zero positive integral linear operator, i.e. M(ϕ2) ≥ 0∀ ϕ2 ∈ C, s.t. ϕ2 ≥ 0.
We can observe that all hypotheses of Theorem 2.1 are satisfied for the equation

L̇ = βPL
(
1 − M(Lθ)

)
.

This result, together with Gronwall’s Inequality, ensures that L is bounded on [0,+∞).
We can now prove the positivity of N. Let us consider the third equation of (2.2)

dN
dt
= kpα(A)F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
+ ktα(A)L − δN N2 − µN N.

Let there exist a t0 such that N(t0) = 0, N(t) > 0 for t < t0, and N(t) < 0 for t ∈ (t0, t0 + ϵ], then

dN(t0)
dt

= L(t0)α(A(t0))
(
kpF(A(t0)) + kt −

kpF(A(t0))
ηk

∫ 0

−τ

L(t0 + θ)ω(θ)dθ
)
,

so if either hypothesis (2.5) or (2.6) holds then dN(t0)
dt is greater than zero, which is a contradiction of

N(t) < 0 for t ∈ (t0, t0 + ϵ]. Therefore, N(t) ≥ 0 for all t ≥ 0.
Having shown non negativity of N we now prove its boundedness. Let us consider the third equation

of (2.2)
dN
dt
= kpα(A)F(A)L

(
1 −

∫ 0

−τ

Lθ
ηk
ω(θ)dθ

)
+ ktα(A)L − δN N2 − µN N.

As L is bounded, α(A) ≤ αmax ∀A and from (2.3), our equation becomes
dN
dt

< βPLB + ktαmaxLB − µN N,

where LB := supt∈[0,+∞) L(t). This can be solved to give

N(t) < N(0)e−µN t +
LB(βP + ktαmax)

µN

(
1 − e−µN t) ,

and therefore N(t) is bounded above for all t ≥ 0.
Finally, from the first equation of (2.2) and using the variation of constant formula and Gronwall’s

Inequality we get

Ȧ < γAmax + µAAmin − A(γ + µA) + κNB,

A(t) < e−(γ+µA)tA(0) +
(
κNB + γAmax + µAAmin

)
e−(γ+µA)t

∫ t

0
e(γ+µA)sds,

=⇒ A(t) < e−(γ+µA)tA(0) +
(
κNB + γAmax + µAAmin

γ + µA

) (
1 − e−(γ+µA)t

)
,
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where NB := sup[0,+∞) N(t). Therefore A(t) is bounded for all t ≥ 0, which completes the proof of
non-negativity and boundedness of the solutions to (2.2). □

3. Equilibria and their stability properties

The equilibria of (2.2) solve the system

(γ + µA)A∗ − (γAmax + µAAmin) = κN∗, (3.1)

0 = L∗
(
(1 − kpα(A∗))F(A∗)

(
1 −

L∗

ηk
∆

)
− δL − ktα(A∗)

)
, (3.2)

and

N∗(δN N∗ + µN) = kpα(A∗)F(A∗)L∗
(
1 −

L∗

ηk
∆

)
+ ktα(A∗)L∗, (3.3)

where ∆ =
∫ 0

−τ

ω(θ)dθ, and X∗ is an equilibrium point with X = (A, L,N). From (3.1) we get that

N∗ =
(γ + µA)A∗ − (γAmax + µAAmin)

κ
, (3.4)

and by considering that (3.2) has a common factor L∗ it becomes apparent that there is a tumour-free
equilibrium E1 at

(A1, L1, N1) =
(
γAmax + µAAmin

γ + µA
, 0, 0

)
.

It is also possible to prove the existence of a tumour-present equilibrium (all non-zero coordinates).
From (3.2) we get

(1 − kpα(A∗))F(A∗)
(
1 −

L∗∆
ηk

)
− δL − ktα(A∗) = 0. (3.5)

This can be solved for L∗ to give

L∗ =
ηk

∆

(
1 −

A∗(δL + ktα(A∗))
βP(A∗ − Amin)(1 − kpα(A∗))

)
. (3.6)

Since, for biological reasons, L∗ > 0, we obtain

A∗(δL + ktα(A∗))
βP(A∗ − Amin)(1 − kpα(A∗))

< 1. (3.7)

Summing (3.2) and (3.3) we get that

N∗(δN N∗ + µN) = L∗F(A∗)
(
1 −

L∗∆
ηk

)
− δLL∗, (3.8)

and substituting F(A)
(
1 − L∗∆

ηk

)
=
δL + ktα(A∗)
1 − kpα(A∗)

into (3.8) gives

N∗(δN N∗ + µN) = L∗
(
δL + ktα(A∗)
1 − kpα(A∗)

− δL

)
. (3.9)
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Therefore, for the equilibrium to exist (3.7) and (3.9) must be satisfied. Observing that L∗ and N∗ can
be expressed as functions of A∗, by (3.4) and (3.6) we can rewrite (3.9) as a function of A∗. If we
consider a tumour-present equilibrium, then the right-hand side becomes

H(A∗) =
ηk

∆

(
1 −

A∗(δL + ktα(A∗)
βp(A∗ − Amin)(1 − kpα(A∗))

) (
δL + ktα(A∗)
1 − kpα(A∗)

− δL

)
, (3.10)

and the left-hand side becomes

G(A∗) :=
δN

κ2

(
((γ + µA)A∗ − (γAmax + µAAmin))2 +

κµN

δN
((γ + µA)A∗

−(γAmax + µAAmin))
)
.

Note that G(A∗) is a quadratic function whose minimum can be obtained by solving

dG
dA∗
=
δN

κ2

(
2(γ + µA)((γ + µA)A∗ − (γAmax + µAAmin)) +

κµN(γ + µA)
δN

)
= 0,

which yields

A∗ =
(γAmax + µAAmin)

γ + µA
−
κµN(γ + µA)
2δN(γ + µA)2 .

Therefore, if we define

A2 =
2δN(γAmax + µAAmin) − κµN

2δN(γ + µA)
,

then

G(A2) =
−µ2

N

4δ2
N

,

which means that minA>A1 G(A) < 0. As A2 < A1 and G(A1) = 0 we have that G(A∗) > 0 for all
A∗ > A1, which is also the condition that ensures the existence of an equilibrium with positive N∗. If
we now focus our attention on H(A∗), defined in (3.10), from its expression we can see that

lim
A∗→A−min

H(A∗)→ +∞ and lim
A∗→A+min

H(A∗)→ −∞,

and that
lim

A∗→+∞
H(A∗)→ 0.

Therefore, if we can show that H(A1) ≥ 0 then there exist Ā > A1 such that H(Ā) = G(Ā), which
implies the existence of a tumour-present equilibrium. Since,

H(A1) =
ηk∆

δN

(
1 −

A1(δL + ktα(A1))
βP(A1 − Amin)(1 − kpα(A1))

) (
δL + ktα(A1)
1 − kpα(A1)

− δL

)
,

for H(A1) to be non-negative, we require that either the factor inside both brackets are greater than
zero, both are less than zero or that one or both are equal to zero. As the second bracket is positive due
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to (2.3) then we only need to consider the first bracket being greater or equal to zero. Therefore, if we
define

R0 =
A1(δL + ktα(A1))

βP(A1 − Amin)(1 − kpα(A1))
,

we require that
R0 ≤ 1.

The following lemma can be proved easily,

Lemma 3.1. If A∗ > A1 ≥
1
a

and R0 ≤ 1 then condition (3.7) holds.

Proof. If A∗ > A1 and A1 ≥
1
a then we obtain that α(A1) > α(A∗) and since the function h(A) =

A
A − Amin

is strictly decreasing for all A ∈ R+ we obtain that

A∗(δL + ktα(A∗))
βP(A∗ − Amin)(1 − kpα(A∗))

<
A1(δL + ktα(A1))

βP(A1 − Amin)(1 − kpα(A1))
≤ 1.

□

Using Lemma 3.1 we can state the following:

Theorem 3.2. System (2.2) always admits the tumour-free equilibrium

E1 = (A1, L1, N1) =
(
γAmax + µAAmin

γ + µA
, 0, 0

)
,

and if the conditions
R0 ≤ 1, (3.11)

and

A1 ≥
1
a
, (3.12)

hold, then there exists a tumour-present equilibrium E∗ = (A∗, L∗,N∗), whose coordinates are given by

L∗ =
ηk

∆

(
1 −

A∗(δL + ktα(A∗))
βP(A∗ − Amin)(1 − kpα(A∗))

)
,

N∗ =
(γ + µA)A∗ − (γAmax + µAAmin)

κ
,

and where A∗ (> A1) solves the equation

δN

κ2

(
((γ + µA)A∗ − (γAmax + µAAmin))2 +

κµN

δN
((γ + µA)A∗ − (γAmax + µAAmin))

)
=
ηk

∆

(
1 −

A∗(δL + ktα(A∗)
βp(A∗ − Amin)(1 − kpα(A∗))

) (
δL + ktα(A∗)
1 − kpα(A∗)

− δL

)
.
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3.1. Local stability analysis

Given the generic equilibrium Ē = (Ā, L̄, N̄) and by using the following change of variables x1 =

A − Ā, x2 = L − L̄ and x3 = N − N̄ we can rewrite system (2.2) as follows

dx1

dt
= −(γ + µA)x1 + κx3 + γ(Amax − Ā) − µA(Ā − Amin) + κN̄,

dx2

dt
= (1 − kpα(x1 + Ā))F(x1 + Ā)(x2 + L̄)

(
1 −

1
ηk

∫ 0

−τ

(x2θ + L̄)ω(θ)dθ
)

−(δL + ktα(x1 + Ā))(x2 + L̄),

dx3

dt
= kpα(x1 + Ā)F(x1 + Ā)(x2 + L̄)

(
1 −

1
ηk

∫ 0

−τ

(x2θ + L̄)ω(θ)dθ
)

+ktα(x1 + Ā)(x2 + L̄) − δN(x3 + N̄)2 − µN(x3 + N̄).

(3.13)

The stability analysis of Ē can be performed by analysing the characteristic equation associated
with the linearised system of (3.13), which is calculated by using a truncated Taylor expansion about
(0, 0, 0), that is:

dx1

dt
= −(γ + µA)x1 + κx3,

dx2

dt
= b1x1 + b2x2 − c1

∫ 0

−τ

x2θω(θ)dθ,

dx3

dt
= b3x1 + b4x2 − (2δN N̄ + µN)x3 − c2

∫ 0

−τ

x2θω(θ)dθ,

(3.14)

where
b1 = −kpα

′(Ā)F(Ā)L̄
(
1 − L̄∆

ηk

)
+ F′(Ā)(1 − kpα(Ā))L̄

(
1 − L̄∆

ηk

)
− ktα

′(Ā)L̄,

b2 = (1 − kpα(Ā))F(Ā)
(
1 − L̄∆

ηk

)
− (δL + ktα(Ā)),

b3 = kpα(Ā)F′(Ā)L̄
(
1 − L̄∆

ηk

)
+ ktα

′(Ā)L̄ + kpα
′(Ā)F(Ā)L̄

(
1 − L̄∆

ηk

)
,

b4 = kpα(Ā)F(Ā)
(
1 − L̄∆

ηk

)
+ ktα(Ā),

and
c1 =

1
ηk

(1 − kpα(Ā))F(Ā)L̄,

c2 =
1
ηk

kpα(Ā)F(Ā)L̄.

Remark 3.1. We can represent system (3.14) as a sum of two terms as follows:

ẋ = Bx +
∫ 0

−τ

C(θ)xθdθ

where

B =


−(γ + µA) 0 κ

b1 b2 0
b3 b4 −(2δN N̄ + µN)
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and

C =


0 0 0
0 −c1 0
0 −c2 0

 .
The characteristic equation is then given by

det
[
λI − B −

∫ 0

−τ

Cω(θ)eλθdθ
]
= 0,

which can be written as:∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣
λ + γ + µA 0 −κ

−b1 λ − b2 + c1Φ(λ) 0

−b3 −b4 + c2Φ(λ) λ + 2δN N̄ + µN

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣ = 0, (3.15)

where

Φ(λ) =
∫ 0

−τ

ω(θ)eλθdθ.

At E1 = (A1, 0, 0) equation (3.15) yields

(λ + γ + µA)(λ − (1 − kpα(A1)F(A1) + δL + ktα(A1))(λ + µN) = 0,

which admits the two negative roots λ1 = −(γ + µA) and λ2 = −µN , and

λ3 = (1 − kpα(A1))F(A1) − δL − ktα(A1).

Therefore E1 is locally asymptotically stable if

δL + ktα(A1) > (1 − kpα(A1))F(A1),

that is,
A1(δL + ktα(A1))

βP(A1 − Amin)(1 − kpα(A1))
> 1.

This result is summarised in the next lemma.

Lemma 3.3. The tumour-free equilibrium E1 is locally asymptotically stable if

A1(δL + ktα(A1))
βP(A1 − Amin)(1 − kpα(A1))

> 1

and is unstable otherwise.

Remark 3.2. We can observe that the condition for the instability of E1 ensures the existence of a
tumour-present equilibrium (see Theorem 3.2).
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If we consider E∗ = (A∗, L∗,N∗), the tumour-present equilibrium, then from (3.5) we obtain b2 = 0,
and from (3.3) we get that

α(A∗)
(
kpF(A∗)

(
1 −

L∗∆
ηk

)
+ kt

)
= N∗(δN N∗ + µN),

and therefore (
kpF(A∗)

(
1 −

L∗∆
ηk

)
+ kt

)
> 0.

Using this we can rewrite b4 = N∗(δN N∗ + µN) > 0. Then the associated characteristic equation is

0 = λ3 + λ2(γ + 2δN N∗ + µA + µN)

+ λ(2γδN N∗ + 2µAδN N∗ + γµN + µAµN − κb3) − κb1b4

+ Φ(λ)[c1λ
2 + λc1(γ + µA + 2δN N∗ + µN)

+ c1(2γδN N∗ − κb3 + 2µAδN N∗ + γµN + µAµN) + κb1c2].

(3.16)

For τ = 0, this becomes

0 = λ3 + λ2(γ + 2δN N∗ + µA + µN)

+ λ(2γδN N∗ + 2µAδN N∗ + γµN + µaµN − κb3) − κb1b4.
(3.17)

From the conditions (3.11) and (3.12) that ensure the existence of a tumour-present equilibrium, and
observing that A∗ > 1/a, we obtain α′(A∗) < 0 and L∗ < ηk

∆
which imply b1 > 0. Hence, by Descarte’s

rule we have that at least one solution to (3.17) has a positive real part, and therefore the tumour-present
equilibrium is unstable when τ = 0, and we thus have the following theorem.

Theorem 3.4. If τ = 0 then whenever E∗ exists, it is unstable.

To understand how the stability properties of E∗ change with increasing τ we need to specify the
distribution function ω(θ). We will consider two delay distributions, the uniform and the exponential
distributions, [32, 33]. The uniform distribution uses the kernel

ω(θ) =


1
τ

if − τ ≤ θ ≤ 0,

0 otherwise,
(3.18)

and therefore gives equal weight to all of the history incorporated by the delay. From a biological point
of view, this type of distribution assumes that the development and maturation time are bounded above
by τ days, and that an individual cell will mature in t days, with t ∈ [0, τ]. The uniform distribution is
typically used if there is no a priori information on the behaviour of the delay, as is the case considered
in this paper. On the other hand, the exponential distribution is the one mostly used in the literature
and is represented by

ω(θ) = ζeψθ. (3.19)
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In this case the history of the L cells is assumed to have a much greater weight closer to the present
time. Firstly, using the uniform distribution (3.18), we have that when τ , 0

Φ(λ) =


1 λ = 0,
1 − e−τλ

τλ
λ , 0.

Then for λ , 0 and τ , 0 the characteristic equation (3.16) becomes

τλ4 + λ3(γ + 2δN N∗ + µA + µN)τ

+ λ2(c1 + 2τδN(γ + µA)N∗ + µNτ(γ + µA) − κτb3)

+ λ(c1(γ + 2δN N∗ + µA + µN) − κτb1b4)

+ c1(2δN(γ + µA)N∗ + µN(γ + µA) − κb3) + κb1c2

− e−τλ(c1λ
2 + c1λ(γ + 2δN N∗ + µA + µN)

+ c1(2δN(γ + µA)N∗ + µN(γ + µA) − κb3) + κb1c2) = 0.

(3.20)

We can observe that the characteristic equation is of the type:

D(λ, τ) = Pn(λ, τ) + e−τλQm(λ, τ)

where Pn(λ, τ) =
∑n

k=0 pk(τ)λk and Qm(λ, τ) =
∑m

k=0 qk(τ)λk, with n,m ∈ N, n > m and pk(τ) and qk(τ)
are continuous and differentiable functions of τ. In this case n = 4 and m = 2. For such characteristic
equations, where the coefficients depend upon the delay, we can follow the geometric stability switch
criteria introduced by Beretta and Kuang [34] to define functions whose zeroes are the critical values
at which Hopf bifurcations occur.

Let us consider λ = iω. We separate P4(iω, τ) and Q2(iω, τ) into real part

PR(iω, τ) = τω4 − ω2(c1 + τz1) + z3,

QR(iω, τ) = −z3 + c1ω
2,

and imaginary part
PI(iω, τ) = ω(c1z2 − κτb1b4) − τz2ω

3,

QI(iω, τ) = c1z2ω,

where
z1 = (2δN N∗ + µN)(γ + µA) − κb3,

z2 = γ + 2δN N∗ + µA + µN ,

z3 = c1z1 + κb1c2.

We define the function F(ω, τ) as:

F(ω, τ) = |P4(iω, τ)|2 − |Q2(iω, τ)|2,
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which is such that its zeroes are the Hopf frequencies associated with the imaginary roots of the char-
acteristic equation (3.20). Factorising ω2 out we obtain the equation:

F(ω, τ) = τω6 + ω4(τz2
2 − 2(c1 + τz1))

+ ω4(2c1z1 + τz2
1 + 2z3 − 2c1z2(z2 − κτb1b4))

− 2z1z3 − 2b1b4c1z2κ + b2
1b2

4κ
2τ = 0.

(3.21)

Note that ω = 0 cannot be considered as a solution to F(ω, τ) for λ , 0.

Lemma 3.5. If A∗ > 1
a + Amin and τ < τ∗

(
=

2(b1b4c1κz2+z1z3)
b2

1b2
4κ

2

)
in (3.21), then F(ω, τ) has at least one

positive real root ω∗.

Proof. Taking A∗ > 1
a + Amin implies that b3 < 0 and therefore z1 > 0, which ensures that τ∗ > 0.

Since F(ω, τ) is a continuous function of ω over the interval [0,+∞), lim
ω→∞

F(ω, τ) = +∞, and F(0, τ) =

−2z1z3 − 2b1b4c1z2κ + b2
1b2

4κ
2τ < 0 when τ < τ∗, then there exists at least one positive solution to the

equation F(ω, τ) = 0. □

Lemma 3.5 states that if τ ∈ (0, τ∗)(= I) then the tumour-present equilibrium can experience a
stability switch in which system (2.2) undergoes a Hopf bifurcation. However, that does not give us
information about the critical value τc at which the bifurcation occurs. For this, let us substitute λ = iω
in D(λ, τ) = 0. In this way we obtain:

PR(iω, τ) + iPI(iω, τ) + e−iωτ(QR(iω, τ) + iQI(iω, τ)) = 0.

By considering real and imaginary parts we obtain:

τω4 − ω2(c1 + τz1) + z3 = cos(τω)(z3 − c1ω
2) + c1ωz2 sin(τω),

ω(c1z2 − κτb1b4) − τz2ω
3 = c1z2ω cos(τω) − sin(τω)(z3 − c1ω

2),

which gives

sin(τω) =
τω(z2(−c1z1 + z3)ω2 + b1b4κ(z3 − c1ω

2))
z2

3 − 2c1z3ω2 + c2
1ω

2(z2
2 + ω

2)
,

cos(τω) =
c1z2ω

2(c1z2 − b1b4κτ − z2τω
2) + (z3 − c1ω

2)(z3 − c1ω
2 − z1τω

2 + τω4)
z2

3 − 2c1z3ω2 + c2
1ω

2(z2
2 + ω

2)
.

Dividing cos(τω) by sin(τω) we obtain that

τω(τ) = θ(τ) + kπ, k ∈ N, τ ∈ I

where
θ(τ) = ATan if sin(τω) > 0, cos(τω)) > 0;
θ(τ) = π/2 if sin(τω) = 1, cos(τω)) = 0;
θ(τ) = π + ATan if cos(τω)) < 0;
θ(τ) = 3π/2 if sin(τω) = −1, cos(τω)) = 0;
θ(τ) = 2π + ATan if sin(τω) < 0, cos(τω)) > 0.
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with

ATan = arctan
c1z2ω

2(c1z2 − b1b4κτ − z2τω
2) + (z3 − c1ω

2)(z3 − c1ω
2 − z1τω

2 + τω4)
τω(z2(−c1z1 + z3)ω2 + b1b4κ(z3 − c1ω2))

,

from which we obtain the map

τk(τ) =
θ(τ) + kπ
ω(τ)

, k ∈ N, τ ∈ I,

where ω(τ) is a positive real solution to (3.21). We now define the functions

S k(τ) = τ − τk(τ), k ∈ N, (3.22)

which are continuous and differentiable in τ as proved in [34], and whose solutions represent the values
of the time delay at which the Hopf bifurcation occurs.

Let us now assume that ω(τ) is a positive real root of (3.21) defined for τ ∈ I and that τc is a root of
(3.22) for some n ∈ N. Then Theorem 2.2. of [34] ensures that there exists a pair of roots that crosses
the imaginary axis from left to right at the pure imaginary values λ±(τc) = ±iω(τc), with

sign
{

dRe(λ)
dτ

∣∣∣∣∣
λ=iω(τc)

}
= sign{F′ω(ω(τc), τc)} · sign

{
dS n(τ)

dτ

∣∣∣∣∣
τ=τc

}
> 0,

and from right to left otherwise, where λ(τ) is a solution to the characteristic equation (3.20) for τ in a
neighbourhood of τc.

Therefore, from Lemma 3.5 and applying Theorem 2.2. of [34] we can obtain the following theorem
about the stability of the tumour-present equilibrium of system (2.2) and the occurrence of a Hopf
bifurcation.

Theorem 3.6. Let ω(θ) be defined as in (3.18). If (i) A∗ > 1
a + Amin, (ii) (3.21) has at least one

positive real root ω(τ) defined for τ ∈ I, and (iii) at some τc ∈ I, S k(τc) = 0 for some k ∈ N and
F′ω(ω(τc), τc) , 0, then the tumour-present equilibrium undergoes a Hopf bifurcation at a critical
value of the time delay τ = τc if sign{F′ω(ω(τc), τc)} · sign

{
dS n(τ)

dτ

∣∣∣
τ=τc

}
> 0.

The results stated above, together with Theorem 3.6, will be used to calculate the values τc where the
stability switches occur once the parameter values are chosen.

On the ground of analytical tractability, the exponential distribution will only be used to run nu-
merical simulations and to emphasise how strongly the choice of the delay kernel can influence the
dynamics of the system.

4. Numerical simulations

In order to perform numerical simulations of (2.2) we transform the distributed-delay into an equiv-
alent discrete-delay system using the linear chain trick [35]. This transformation retains the same
equilibria, properties and behaviour of the original system, and it is specific to the distribution function
used. Details of the transformation in the case of uniform and exponential distributions can be found
in the Appendix.
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4.1. Parameter values and initial conditions

Using (A.1), (A.3) and the dde23 solver in Matlab R2020a we were able to produce numerical
simulations that highlight the difference between the dynamics produced by the two distributions. For
the following figures we define the history ϕ(θ) = (ϕ1, ϕ2, ϕ3, ϕ4)T , such that ϕi(θ) ≥ 0 for −τ ≤ θ < 0
and i = 1, 2, 3, 4. To mimic in vivo conditions we choose the history to reflect normal physiological
conditions for the prostate, and the initial conditions to represent the start of the ADT. Therefore, we
have that ϕ(θ) = [10, 3.1, 0, U0]T with initial conditions [1, 3.1, 0, U0]T [20], where for the uniform

distribution U0 = 3.1, and for the exponential distribution U0 =
3.1ζ
ψ

(1 − e−ψτ). It should be noted that

all simulations are run for a time span of 200 days, and for clarity we plot only the dynamics of A, L
and N.

Most of the parameter values are taken from [20] (see Table 1). However, the value for κ has been
decreased to 0.009 (from 0.017 in [20]) to account for the fact that we are now considering external
sources of androgen secretion and a higher value for this parameter would have resulted in an over-
production of androgen; and µN (µ in [20]) has been increased from 0.006 to 0.08, as we now consider
an in vivo situation in which cells can become apoptotic more easily than in in vitro conditions, such
as the one described in [20] where all resources for cell growth except for androgen were provided in
abundance.

Table 1. Parameter values taken from [20] or amended from the first model.

Parameter Definition Value Units
γ External androgen production rate 0.013 day−1

Amax Maximum androgen concentration of the system 6 %
µA Androgen depletion rate 0.08 day−1

Amin Minimum androgen concentration for tumour growth 0.1 %
κ Secretion rate from N cells 0.009 day−1

δL L cell apoptosis rate 0.013 day−1

kt Maximum transdifferentiation rate for mature L 0.52 day−1

kp Maximum transdifferentiation rate during growth 0.41 day−1

r Gradient of the differentiation increase 3.67 -
a Inverse of the maximum differentiation rate 1.5 -
βP Maximum proliferation rate of L 1.4 day−1

ηk Carrying capacity of the environment 3 ×106 cells/l
δN Intraspecifc competition death rate for N 0.013 day−1

µN Apoptosis death rate for N 0.08 day−1

τ History of the distributed delay 1.42 day
ψ Scale parameter for the exponential distribution 1 -
ζ Shape parameter for the exponential distribution 1.318 -
t Numerical simulation time span 200 day

Remark 4.1. As shown in Figure 1, by using the parameter values in Table 1 we obtain that the function
S 0(τ) has two roots. The first root, (τ1

c ≈ 0) is such that sign
{

dRe(λ)
dτ

∣∣∣
λ=iω(τ1

c )

}
< 0, therefore there exists

a pair of pure imaginary roots that crosses the imaginary axis from the right to the left half-plane,
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which implies that the tumour-present equilibrium becomes stable. The second root (τ2
c ≈ 7.6) is such

that sign
{

dRe(λ)
dτ

∣∣∣
λ=iω(τ2

c )

}
> 0, which means that a pair of pure imaginary roots crosses the imaginary

axis from left to right, and therefore a Hopf bifurcation occurs (Theorem 3.6). The same behaviour is
observed for all S k(τ), k > 0, suggesting that the only stability switch is the one observed with S 0(τ).

� � � � ��
τ

-��

-�

-�

-�

-�

�

�� (τ)

Figure 1. S 0(τ) (solid line) and S 1(τ) (dashed line) obtained with parameter values defined
in Table 1.

Figure 2a shows the system dynamics with uniform and exponential distributed delay obtained using
the parameters in Table 1. With this choice of parameter values, both transformed systems (A.1) and
(A.3) exhibit the same dynamics with the trajectories tending towards the tumour-present equilibrium
E2, which is to be expected as in this case A1 ≥

1
a and condition (3.7) is satisfied, which imply the

existence of a (stable) tumour-present equilibrium (Theorem 3.2).
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(a) Parameter values in Table 1.
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(b) Parameter values in Table 1 except for a = 1.

Figure 2. Plot of system (A.1) and (A.3) with parameter values as in Table 1 in (a), and with
a = 1 in (b).
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By choosing a = 1 neither conditions (3.11) nor (3.12) for the existence of the tumour-present
equilibrium is satisfied. This case is represented in Figure (2b), where for both distributions the system
solutions tend towards the tumour-free equilibrium E1. As proved in Theorem 3.6, the stability of
the tumour-present equilibrium is affected by τ. In Figure 3 different τ values are considered, τ =
0.01, 10, 20, to demonstrate the effect on the system dynamics.
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(a) τ = 0.01.
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(b) τ = 10.
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(c) τ = 20.

Figure 3. Plot of system (A.1) with parameter values as in Table 1, and different τ values
illustrating the stability switch of the tumour-present equilibrium in the case of uniform delay
distribution.

Decreasing τ (Figures 3a) does not affect the solutions of the system (A.1) with uniform distribu-
tion. Increasing τ to 10 days introduces oscillatory behaviour to system (A.1), as seen in Figure 3b.
Increasing further to τ = 20, we observe an increase in the amplitude and wavelength of the oscilla-
tions, Figure 3c. We can also note that the L population appears to get closer to zero cyclically, with
a value of approximately 1.1 × 10−4. In the case of the exponential distribution, the dynamics of the
solutions does not change by altering τ without also modifying the other parameters.

Since, in the case of exponential distributed delay, it was not possible to prove analytical results
on the stability properties of the tumour-present equilibrium, we explored the dynamics of the system
numerically, by considering the parameter ranges in Table 2. Simulations were run selecting parameter
values at random for each simulation.

Table 2. Parameter ranges used for searching stability switch in the case of the exponential
distribution.

Parameter Range Parameter Range
γ [0, 0.1] δN [0, 0.1]

Amax [3, 20] µN [0, 0.1]
µA [0, 0.1] r [3, 4.4]

Amin [0.001, 1] a [1, 2]
κ [0.0001, 0.01] βP [0, 2]
δL [0, 0.1] ηk [2, 12]
kt [0, 1] τ [0.01, 20]
kp [0, 0.61] ψ [0.005, 1]
ζ [0.052, 100.5] t 500
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We should observe that the proposed parameter ranges far exceed the ranges found in [20], and that
the parameter combinations were chosen so that they would satisfy condition (2.3), which ensures the
biological relevance of the solutions. Using this method we were able to find oscillatory behaviours
also in the case of exponential delay distribution, as observed in Figure 4.
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(a) Oscillatory behaviour of A, L and N.
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(b) Oscillatory behaviour in L only.

Figure 4. Plots showing different oscillatory behaviours in system (3.19) with parameter
values for (a) (or (b) respectively) given by γ = 0.04 (0.05), δN = 0.07 (0.005), Amax =

4.3 (19), µN = 0.03 (0.06), µA = 0.01 (0.002), r = 4.3 (3.7), Amin = 1 (0.7), a = 1.6 (1.5), κ =
0.003 (0.002), βP = 1.5 (1.5), δL = 0.06 (0.007), ηk = 11.7 (4.7), kt = 0.2 (0.8), τ = 15 (4.8),
kp = 0.3 (0.4), ψ = 0.055 (0.12) and ζ = 0.097 (0.27).

In Figure 4a we can see that both L and N populations oscillate with similar frequency (roughly 1
cycle every 23 days), but with L having a much larger amplitude than N. The A concentration does
also oscillate, but with a very small amplitude (less than 0.02%). Interestingly, it is possible to find a
parameter combination such that an oscillatory behaviour, with a large frequency (roughly one cycle
every 8 days) but small amplitude, can only be observed in L (Figure 4b), while A and N appear to
have reached a steady state.

As we have varied all the parameters to produce Figure 4 isolating the key parameters is very
difficult, but we can observe that those parameters that are similar in Figures 4a and 4b, but different
from the baseline parameters are γ, which is smaller in Table 1, and κ, which is much larger in 1.
These parameters regulate the production of androgen, either from other endocrine glands or from N
cells, further emphasising that the androgen dynamics plays a critical role in the survival and growth of
the PCa tumour. A further investigation showed that by choosing the scale parameter ψ = 0.055, and
keeping all other parameters but the delay equal to the baseline values (Table 1), a Hopf bifurcation
occurs when τ ≃ 11.8 (Not shown).

5. Conclusions

In this paper we proposed a new nonlinear distributed-delay dynamical system to model neuroen-
docrine transdifferentiation and the dynamics of human prostate cancer in in vivo conditions. The main
aim of this work was to analyse the effect of the delay in the development and maturation of the human
prostate cancer cell population, and of the delay distribution, on prostate cancer growth. The model
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was developed as an extension of the work by Cerasuolo et al. [20], whose strengths and weaknesses
were discussed in detail by Turner et al. [24].

Analytically, we showed that key parameters for the biological relevance of the system are those
regulating the final size of the L-cell population, the carrying capacity ηk and the maximum prolifer-
ation rate βp, and the transdifferentiation rates kt and kp. The stability properties of the tumour-free
equilibrium E1 were explored fully through a local stability analysis, and the delay τ was found to be
a bifurcation parameter when the kernel of the distributed delay was modelled as a uniform distribu-
tion, with the critical value of the bifurcation parameter identified. Interestingly, it was observed that
the presence of the delay initially stabilises the system, but as the delay increases the tumour-present
equilibrium loses its newly acquired stability properties. Finally, numerical examples were produced
to highlight the different possible behaviours that can be obtained with different delay distributions.
We found that also in the case of exponential distribution changes in the delay together with changes
in the scale parameter cause a Hopf bifurcation.

The modifications introduced in this model to the original system studied in [24] have significantly
changed the behaviour of the system. The most evident changes are the reduction of the number
of possible equilibria from five to two, the loss of a trivial equilibrium (all zero coordinates), and the
existence of a tumour-free equilibrium whose stability properties depend on the parameter values, but it
is independent of the delay. The changes to the system equations in (2.1), to incorporate the maximum
androgen concentration of the system, the minimum concentration for tumour growth, Amax and Amin,
and the external androgen production rate, γ, allowed us to explore further the effect of androgen
concentration on the existence of the equilibria. As the stability of E1 is reliant on A1, this suggests that
in androgen-depleted conditions the extinction of the PCa tumour is linked to the underlying androgen
dynamics, and in particular to the production of androgen from the other endocrine glands.

The stability of the tumour-present equilibrium was found to be dependent on the choice of the
distribution function. In the case of a uniform distribution (system (3.18)), the local stability analysis
showed that the delay τ is a bifurcation parameter, and the numerical simulations confirmed this finding
and showed that the system undergoes a supercritical Hopf bifurcation as the delay τ increases. Also,
we observed that as τ increases the frequency of the oscillations decreases and the amplitude increases,
which indicates that the longer the LNCaP cells take to fully mature, the more volatile the PCa tumour’s
growth becomes.

The analytical study of the system with exponential distribution (3.19) was very involved, didn’t
lead us to any conclusive result and was therefore omitted. However, numerical simulations showed
that τ is a bifurcation parameter for the stability of the tumour-present equilibrium only when changed
together with the scale parameter ψ. Exploring the parameter ranges further, we were able to find
examples of oscillatory behaviour with the exponential delay distribution, with indication that also γ
and κ can potentially be bifurcation parameters (not shown).

While the model proposed in this work successfully extends the one developed in [20] to the case
of in vivo conditions, the new system does have its limitations. Whilst the introduction of a logistic
growth term for LNCaP cells and the contribution of inter-cellular resource competition to the death
rate for NE cells has brought a concept of limited resources (space, nutrients, etc.) to the system, it
does not consider the spatial distribution of the cells and the effect this has on resource availability.
Also, currently there is no experimental evidence of the oscillatory behaviours displayed in the system
by neuroendocrine and LNCaP tumour cells, as there are no studies that produced time series of the
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dynamic evolution of the transdifferentiation in patients (or clonal cells) over an extended period of
time. This is probably due to the fact that neuroendocrine tumours are difficult to diagnose as they
usually occur in patients with multiple metastases, and in this condition clinicians are discouraged
from performing biopsies [36]. Another limitation is that while replacing the proliferation rate function
with F(A) and introducing the logistic growth function has helped in the simplification of the model,
α(A) has remained unchanged, which means that also in this case as in [24] its transcendental nature
caused complications in the analysis of the system. Further studies could focus on gaining additional
insights into the androgen-dependent mechanisms regulating LNCaP cell transdifferentiation, and look
for ways to simplify α(A) while retaining biological plausibility in the process.
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A. Appendix

A.1. Uniform Distribution

In the case of the uniform distribution (3.18), we augment the system by introducing the new state
variable

U(t) =
1
τ

∫ t

t−τ
L(s)ds,

where s = t + θ. Finding the derivative with respect to t gives

dU
dt
=

1
τ

(
L(t) − L(t − τ)

)
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Hence, system (2.2) becomes

dA
dt
= γ(Amax − A) − µA(A − Amin) + κN,

dL
dt
= (1 − kpα(A))F(A)L

(
1 − U

ηk

)
− δLL − ktα(A)L,

dN
dt
= kpα(A)F(A)L

(
1 − U

ηk

)
+ ktα(A)L − δN N2 − µN N,

dU
dt
=

1
τ

(L(t) − L(t − τ)),

(A.1)

with the following initial conditions for the original state variables

{A(t), L(t), N(t)} = {ϕ1(t), ϕ2(t), ϕ3(t)} for t ∈ [−τ, 0], (A.2)

and following [33] we define at t = 0 the initial condition for U, which is

U(0) =
1
τ

∫ 0

−τ

ϕ2(s)ds.

A.2. Exponential Distribution

For the exponential distribution (3.19) we introduce the new state variable

U(t) =
∫ t

t−τ
ζeψ(s−t)L(s)ds,

where s = t + θ. Therefore,
dU
dt
= ζL − ζe−ψτL(t − τ) − ψU.

Then system (2.2) becomes

dA
dt
= γ(Amax − A) − µA(A − Amin) + κN,

dL
dt
= (1 − kpα(A))F(A)L

(
1 − U

ηk

)
− δLL − ktα(A)L,

dN
dt
= kpα(A)F(A)L

(
1 − U

ηk

)
+ ktα(A)L − δN N2 − µN N,

dU
dt
= ζL − ζe−ψτL(t − τ) − ψU.

(A.3)

with the initial conditions (A.2) for the original state variables and following [33] we define at t = 0
the initial condition for U, which is

U(0) =
∫ 0

−τ

ζeψsϕ2(s)ds.

Since distribution kernels can be assumed, without loss of generality, to be positive-definite and
normalised to unity [37], we take ∆ = 1. We then find the following relationship between ζ, ψ and τ.
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∫ 0

−τ

ζeψθdθ = 1,

thus,
ζ

ψ
(1 − e−τψ) = 1,

hence
ζ =

ψ

(1 − e−τψ)
.

This relationship is used in 4.1 to define the parameter ζ in the simulations.
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