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Abstract: According to the mechanism of drug inhibition of hepatitis B virus and the analysis of
clinical data, it is found that random factors in long-term treatment produced uncertainty and
resistance to hepatitis B virus infection rate, a model of hepatitis B virus with random interference
infection rate is established. By constructing Lyapunov function and using Ito’s formula, it is proved
that the stochastic hepatitis B model has a unique global positive solution. The sufficient conditions
for the asymptotic behavior of solution are given. The relationship between noise intensity and
oscillation amplitude is obtained. The effects of noise intensity on the asymptotic behavior of the
model and antiviral therapy are simulated, and the conclusion of the theorem is verified. An
interesting phenomenon is also found that with the increase of noise intensity, the number of
drug-resistant viruses will decrease, which will affect the accuracy of a single test of HBV DNA.
Therefore, it is suggested to increase the frequency and interval of tests.

Keywords: drug resistance; stochastic virus dynamics model; asymptotic behavior; the numerical
simulation

1. Introduction

In real life, in the face of emerging and re-emerging infectious diseases, human behavior and
environmental noise interference will produce many uncertain factors, which may accelerate the
spread of the disease or make the disease exist for a long time, or even make the local epidemic
situation beyond control. For example, currently popular novel coronavirus pneumonia (NCP),
long-term existence of AIDS (AIDS), hepatitis B virus (HBV) and seasonal influenza virus
(influenza virus). For these diseases, although there is no specific drug cure, standard treatment and
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appropriate prevention and control measures can control the trend of viral infection. In the long term
treatment, drug tolerance and human activity with uncertain interference will affect the control of the
transmission of the virus.

Many scholars find that the resistance of hepatitis B virus is affected by many factors when they
study the mechanism of hepatitis B resistance. Zhang Jing et al. studied the changes of drug-resistant
mutants in 268 cases of chronic hepatitis B patients and found that with the extension of drug
treatment time, the increase probability of drug-resistant strains in different patients was different,
but all of them would increase, even up to 100% [1]. Deng Jun et al. studied the mechanism of drug
resistance of hepatitis B and found that multiple factors could lead to drug resistance, such as the
reliability of viral polymerase, the pressure of drug selection, the patient’s past drug use history and
the patient’s genetic factors (such as congenital metabolic defects), and the sensitive virus strains in
the patient could mutate at one or more sites [2,3].

In order to be more practical, many scholars have combined the influence of environmental
fluctuation factors to study the development trend of infectious diseases with stochastic models. Pang
Haiyan et al. considered that variables oscillated around the equilibrium point caused by white noise,
and the disturbance value was proportional to the amplitude of oscillation, thus establishing the virus
dynamics model under immune response damage, and obtained the conclusion that the positive
equilibrium point of the model was stable under random disturbance [4,5]. Xie Falan et al. took into
account that the regeneration ability of liver cells was interfered by environmental factors, so that the
infection rate would fluctuate around a certain average value. They established a random hepatitis B
virus infection model with Logistic liver cell growth, and proved that the solution of this model had a
unique stable distribution [6,7]. Hui Hongwen et al. established an HBV model with nonlinear
incidence and random interference, obtained sufficient conditions for the exponential stability of the
free virus in infected cells, estimated the oscillating behavior of the model near its deterministic
model, and verified it by numerical simulation [8]. Bao Kangbo et al. analyzed the influence of
environmental noise on stochastic hepatitis B virus dynamics model, and observed that high
environmental noise intensity can inhibit the outbreak of hepatitis B, indicating the important role of
intervention strategies in the control of hepatitis B [9,10]. Taking into account the variables directly
proportional to the ambient noise, Liu et al. constructed a three-dimensional stochastic virus
infection model, and obtained sufficient conditions for the ergonomically stationary distribution of
the model solution and conditions for the extinction of the disease [11-13].

Xia Peiyan established a random HTLV-I model with CTL immune response by considering the
random perturbation of exposure rate, and proved the existence of a unique global positive solution
to the model, and found the random threshold values of virus extinction, latent and epidemic [14—16].
By considering the random interference of the environment on the exposure rate, Cui Xiaowei
established the dynamic model of virus infection with random immune effect, proved that the unique
global positive solution existed in the model solution, obtained the threshold conditions of virus
extinction and persistence, and gave the upper and lower bounds of the persistence, and verified the
theory through numerical simulation [17]. The research with stochastic model changes the law of the
original determined model [18-20], and it is a meaningful work to pay attention to the problems of
environment and personal noise. For patients with hepatitis B virus infection, white noise will
interfere with the original infection rate in the presence of external environmental interference or
drug resistance during long-term treatment. Therefore, the dynamic model of hepatitis B virus with
random infection rate can be used to predict the effect of virus control under treatment more
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accurately. This is worthwhile work.

In the second part of this paper, according to the statistical data rules of drug treatment of
hepatitis B virus, it is found that drug-resistant HBV is uncertain due to viral mutation, which
resulted in the randomness of the infection rate of healthy cells, and a stochastic hepatitis B virus
dynamics model is established. In the third part, Lyapunov function and Ito’s formula are used to
prove the existence and uniqueness of the global positive solution of the model and the asymptotic
property of the model solution. In the fourth part, several cases of the influence of noise intensity on
HBYV treatment are simulated numerically, and the rationality of the theorem is also verified. By
comparing the results of no noise interference model, it is found that strong noise can affect the
variation law of hepatitis B virus.

2. Model establishment

According to the principle of action of anti-hepatitis B virus drugs and the rule of therapeutic
test data, it was found that the drug resistance of the virus was the main reason for the decrease of
drug efficacy [21]. Therefore, the virus can be divided into drug sensitive virus and drug resistant
virus. It is assumed that the inhibition rate of drugs to the resistant virus is related to the mutation
rate of the virus, and the following kinetic model of hepatitis B virus with drug resistance is
established.

T'(t)=A—-KV.(OT(t)-K,V.()T(t) - T (t)

T/(t) = (1-w)K V(0T (1)~ aT, (1)

V()= NaT,(t) - &V,()~ f(C, V., (1)
T/(6) =uK V()T (6) + K, V()T (1)~ T (1)

V/(6)= N,aT, (1)~ &, ()~ Bu) f(Cy )V,

here ' , T, , V,

s

, T. and V, respectively represent the number of uninfected hepatocytes at

time ¢ , the number of hepatocytes infected with drug-sensitive HBV, the number of drug-sensitive
HBYV, the number of hepatocytes infected with drug-resistant HBV, and the number of drug-resistant
HBV; A is the growth rate of uninfected hepatocytes; o and o are the death rates of hepatocytes
and viruses; K, and K, respectively denote the infection rate of drug-sensitive HBV and

drug-resistant HBV on uninfected hepatocytes; N, and N, respectively denote the total number of

viruses produced by drug-sensitive infected hepatocytes and drug-resistant infected hepatocytes
during their life cycle; the mutation rate between drug-sensitive hepatocytes and drug-resistant
hepatocytes is given by u; f(C,)1is the rate at which drug therapy causes the decrease of HBV;

C, denotes the average steady-state plasma concentration in a patient; A(u) denotes the inhibition
rate of drug therapy on drug-resistant HBV; all parameters are positive. Suppose that f(C,)1is a
bounded function, and £ =1-u . The basic regeneration number is as follows

_ANK(-w o ANK,
CaB+f(C) T alBH(C)

The model has four equilibrium points, namely, the disease-free equilibrium point £, the sensitive

2

virus equilibrium point £, the drug-resistant virus equilibrium point £, and the double virus
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equilibrium point E° . When the basic regeneration number meets different conditions, the
equilibrium point is globally asymptotically stable.

In drug therapy, because the mechanism of its action on the virus is different from the body’s
tolerance, the blood drug concentration is inversely proportional to the rate of decline of HBV DNA,
which can be used to determine the occurrence of HBV mutation. Taking lamivudine as an example,
Su Ying et al. studied its drug-resistant mutation site in the catalytic region of HBV polymerase or
YMDD sequence in the C region, which was due to the mutation of rtM204V /I (methionine M at
position 204 was replaced by isoleucine I or valine V), and the drug-resistant strains formed by the
mutation of this sequence were called YMDD variants [2]. It was also found that there were some
variations in the B region. The susceptibility of the virus to the drug is slightly reduced when only
the B region variation is present, and is greatly reduced when they are accompanied by the
RTM204V/I variation. Due to the differences in the variation types of HBV in patients, some patients
only have YMDD variant strains in the body, some patients only have mutations in the B region, and
some have these two variants. So the more mutated sites on HBV DNA, the more likely the virus is to
infect liver cells, which leads to different rates of infection of the mutant strains on healthy liver cells.

120
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Figure 1. YMDD mutation rate of HBV DNA positive patients at different treatment time.
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Figure 2. The proportion of HBV DNA variation in patients with hepatitis B under the
same treatment time.
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According to the statistical analysis of the duration of medication and the number of virus
strains [1], the length of treatment would also lead to different probabilities of YMDD variant strains
appearing in patients, as shown in Figure 1. Even for the same treatment duration, the percentage of
patients with the YMDD variant varies, as shown in Figure 2. Due to the influence of individual
genetic factors or variation characteristics in B region in vivo, the replication rate of HBV in patients
is different, and the infection rate of the virus on liver cells is uncertain.

In [22], the hepatitis B virus genome is double-stranded relaxed circular DNA (rcDNA). When
HBYV DNA enters the cell, the rcDNA becomes covalently closed circular DNA (cccDNA), which is
used as a template to start the replication process of the virus. Therefore, cccDNA is stable in
infected liver cells, and there are about 5-50 cccDNA copies in each liver cell. When liver cells are
damaged, cccDNA in the liver nucleus is released into the blood, so the amount of cccDNA detected
in liver tissue and serum can be used to predict the number of infected cells. Therefore, the total
amount of cccDNA and HBV DNA can be measured to determine the relationship between infected
liver cells and the virus. In [23], changes in liver tissue cccDNA, serum cccDNA, and HBV DNA in
88 patients with chronic hepatitis B were recorded before and at 24, 48, and 96 weeks after treatment.
The data are shown in Table 1.

Table 1. The amount of ccc DNA and cccDNA and HBV DNA in the liver tissue of the patient.

DNA(logl0 copies/ ml) Before treatment 24 weeks 48 weeks 60 weeks
hepatic tissue cccDNA 3.83 2.30 1.25 0.94
serum cccDNA 7.12 3.37 1.40 0.21
serum HBV DNA 6.22 3.01 0.62 0.29

The total amount of cccDNA can be considered to be composed of cccDNA in liver tissue and
cccDNA in serum, represented by variable x; The amount of serum HBV DNA was denoted by
variable y . Statistical analysis shows that the two are linearly correlated and satisfy the relationship
y=0.6302x—0.6822, and the degree of correlation is »=0.9906. The drawing graph is shown in Figure 3.

T T T T T T T T T T ’.L_.-’
51 * yvs. X )

untitled fit 1| |

Figure 3. Clinical data and fitting curve.

According to the image and fitting results, it can be approximately believed that there is a linear
proportional relationship between infected liver cells and virus, as shown in the following expression

(H) V.=kT, V,=kT,.
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To control the infection of healthy liver cells, that means to reduce the infection rate. According
to the above data analysis, it is found that multiple factors during treatment will interfere with the
infection rate, which may lead to some changes in the results given by Model (1). If the influence of
random factors on the infection rate is considered, the infection rate K, is rewritten into the

following form
K dt > K dt+odB(t) .

Let (Q,D,P) be a complete probability space and @ is the o -algebra. In this probability
space, a O -algebraic stream {E }20 is defined, which satisfies the usual conditions.

l)Forall 0<s<t<w, O, c® D,

2) Right continuity: forall >0, ®,=(_,®, .

Moreover, the B(¢) belongs to the independent Brownian movement in this probability space,
and B(0)=0. o> >0 is noise intensity.

In summary, the following hepatitis B virus model with random interference infection rate is
established based on Model (1):

dT =(A-KV.T —K,V.T —aT)dt — oV, TdB(t),

dT. =((1-u)K,V.T —aT.)dt,

dV, =(N,aT,~&V,~ f(C, )V, )dt, 3)
dT. =K V.T + K V.T —aT.)dt + oV, TdB(?),

dV, =(N,aT, - &V, - fu) f (Cy )V, )dt.

The variables and other parameters in Model (3) are the same as those in Model (1).
3. Main research results
3.1. Existence and uniqueness of global positive solutions

Theorem 1. For any given initial value (T(0),T.(0),V.(0),T.(0),V,(0)) e R’, Model (3) has a unique
global positive solution (T@),T.(2),V (), T.(2),V. ()t =0) . That is,
(TO).T.(0).V.(O. TV, (1) € R as.

Proof. The function at the right end of Model (3) satisfies the local Lipschitz condition, so any
given initial value (7(0),7.(0),7,(0),7.(0),V.(0))e R] , there is a unique local solution

y@)=(T@®),T.(t),V (¢),T.(¢),V.(t)) on [0,7,), where 7, is the blasting time, the solution is proved
to be global, only need to prove 7, = a.s..

Take a sufficiently large positive number k, >0 , so that every component of the initial y(0)

is a member of the interval [i’ k,] -Forany k=>k, , k € N, define the stopping time
ko

o =inflt €[0,2,):T(0) & (- k). T.(0) & (k). () & (),
k k k
1 1
LOe k.Y ¢ (k)
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here inf J =00 (J stands for the empty set).

From the definition of the stop time, we know that when k — oo, 7, monotonically increases.
Let 7, =limz,,then 7, <7 a.s.

If Tci%:woo can be proved for all >0 and (T(?),T.(t),V,(t),T.(¢),V,(t))eR’, then 7,=00.
Use contradiction. If not, there are constants ¢ >0 and &e(0,1), such that P{r, <t}>5, so
there is an integer k, > k,, and for any k >k, there is

P{r, <1}>6. (4)
when t<7,_,foreach k

1 1 1 1
dT+T,+—V +T +—V)<(A—c(T+T,+—V +T +—V)))dt. (5)

2N, 2N, 2N, 2N,

Thus, it is obtained from Eq (5)
1 1

TH+T )+—V.()+T.()+—V.(1) <M, 6
O +T.(0) N (O+T.(2) N (D) (6)

where

M=max{ﬂ/c,T(0)+]}(0)+ﬁVs(O)+Tr(0)+#Vr(O)}

S r

c= min{%, S5+ Pu) f(CN)}
Define the function 7 :R’ — R,

V(T,TS,VS,Tr,V,,):(T+a—a1n£)+(Ts +1—1nTs)+NL(VS +1-InV))
a

s

+(T. +1—lnTr)+NL(Vr +1-InV)),

r

where a is the positive number to be determined.
It is easy to prove that inequality w+1-Ilnu>0(m>0) is true, so there is

vr,T,,V,,T.,V,)>0.From Ito formula, we get

dv = Lth+(l—%)0'VerBl (t)+(1—Ti)aV;TdB(z),

r

where

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8257-8297.
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LV=<1—§>(ﬂ—KSVST—KrV,.T—aTHa—Tixa—u)KsVsT—aTs)

s

b (= )N.GT, =8V, = fCOV )+ (= WK VT + KT )

S s s

1 1 1 1, VT’
+—(1-—)N.al. -V, - B (C, V) +—ac’V’ +—0c" -
N( V)( r r r IB.f( N) r) 2 r 2 7—;2

s r

< /’L+KSV3_a+KrVra+aa+2a+NL(5+f(CN))—NL(5+f(CN))VS @

s s

+i(5+ﬂf(c ))—i(5+ﬂf(c W, RN L
N, YN, N T2 T

I

Let
6+ f(Cy) 6+Bf(Cy)

a =min{ , }
K N, K N,

Based on Eq (6), Eq (7) can be reduced to

LVS1+KSI/;a+KrVra+aa+2a+NL(5+f(CN))—NL(5+f(CN))V;

s s

+Ni<5+ﬁf<cN>>—Ni<5+ﬂf<cN»V, +2a0°N*M? +§02/€2M2

r r

<K,
where
K=A+aa+2a +NL(5+f(CN))+NL(5+/5’f(CN))
+2a0’N>M? +%02122M2.
Therefore
dV < Kdt+(1 —%)aVerBl 0+ —TL)aVerB(t). (8)

r

Integrate Eq (8) from 0 to 7, A7 and take the expectation
EV(T(r, NT),T.(t, AOV (z, AD)T.(z, AT),V.(z, AT)) <V (¥(0))+ KT . 9
Let Q, ={r, <7}, then for any k >k, as shown in Eq (4), there is P(Q,)> &, and for any
® €, , as can be seen from the definition of stop time, at least one of them is equal to k or %, SO

there is
V(T(rk,w),z<rk,w>,n(rk,w>,T,<rk,w),rc<rk,w»z<k+1—1nk)A(%+1+lnk>.

It can be obtained from Eq (9) and the above equation

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8257-8297.
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V(y(0)+K7 > E(l,, (W (I (7, 0), T (7, 0).V (7, 0),T.(7,,0),V.(7,,®)))

25(k+1—lnk)/\(%+l+lnk),

where [, represents an indicator function of €, .

When k — oo, the above equation is in contradiction with the boundedness of function V', so
there must be 7, =0 a.s., that is, the solution is positive and globally unique.
The result of Theorem 1 and Eq (3) can be obtained

1 1 A : 1 1
TH+T.+—V +T. +—V. <=+ “(T(0)+ T.(0)+ ——V,(0)+ T.(0) + ——V.(0)).
N 2]\[v N r 2N r e ( ( ) s( ) 2N s( ) r( ) 2N r( ))

r s 7

For any given initial value (7°(0),7,(0),V,(0),7.(0),7.(0)), the solution of Model (1) is

ultimately bounded, thus the region

U ={(T,T.V,,T,.V,)e R :T+T, +LVS +T, —_ g gi}
2N, 2N, T ¢

S

is the positive invariant set of Model (3). Let’s assume (7'(0),7.(0),V.(0),T.(0),V.(0)) eT", so all

the questions that follow will be discussed in T"".

3.2. The asymptotic behavior of the solution of Model (3)

Theorem 2. If R <1-u and R, <1, the solution (T(t),T.(t),V (¢),T.(¢),V.(t)) of Model (3) has

(4+C,+2C,)N A'o?

limsuplEJ‘(:((T—i)z T2+ T2+ V24V )ds <
t—0 t o - :

I’I’ZC4 ’
a
where m=minfer 1 (6+ F(C)srr 0+ ((C) D T g
2N; 2N, 20-uw) K, 2
C
-’ KN, (%+Ni(5+f<cN»)2 (N1+Ni(6+ﬂ<u>f(c]v)»2
C = < + s L ,
HOHIED 26 2 2 6+ sy 2 050+ P (C)

PRI Ni(6+ﬂ<u)f(c]v))
C, =min{—* g ,— g }.
u—K —K,

N

c c

Proof. Define the C ? _function V.(i=12,3,4,5)

1 1 1
=L@y, v =TT
2 a ‘ N =~ N

S r
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8266

Vo= s (=2 T 4V e, V=2 T2, V=T,
2 a N N

S r 2 2 ’
Applying Ito formulato V,(i=1,2,3,4,5), we get

AV = LV.dt—(T -V TaB(), dV, = LV,di+oV TdB(),
(04

dv,=LVdt, dV,=LV,dt, dV,=LVdt+T.oV.TdB(t). (10)
From R <l-wuand R, <I,Eq(10)can be reduced to the following form

LV, = (T—i)(/I—KSVST—K,V,T—aT)+%02VfT2
a

4
car-ty tra-ty - tra-ty 2ot (1)
a a a a a C

LV, =KV.T+ K,V,T—Ni<5+f(cN»Vg +Ni<5+ﬂ(u)f(cN»V, +§anfT2

N r

KVt ey Lrow kv -ty
a N, o a
‘ (12)
(LG pwrey-Lrw Lo
N, a 2

4
< KSVS(T—i)+KrVr(T—i)+20'2N,,2 1—4
o (24 c

y) 1 1 1
LV.=(T-2+T +T.+—V +—V)A—al —— (5 + f(C))V.

3 ( a K 7 NS K Nr r)( a NS( f( N)) s
——]\1[ (S+ W) f(CHWV)+cVT?

”

< —a(T—g)z —Nif(m FCOV? —Nif(mﬂ(u)f(cN»Vf

1 1
—V(5+f(CN))Vs(TS 1) =5 @SV (T+T)

N r

! 1 yl 1 )
—a(T-2NT +T)——(T-2W. ——(T -2,
( a)(s ’) Nz( a)s N2( a)r

N r

~ L rena-ty -6+ purrc -2y,
N, o N, o

pr (13)
+40°N? E

r

LV, =T.(1=wK V.T~aT) <= (-wK V.T. ~aT?, (14)
C

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8257-8297.
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LV,=T.uKV.T+KJV.T-aT) +%O‘2Vr2T2

A 2 (1)

<=WKV,T,+KJV,T)-al!+2N}o” ~—,
C C

We can define the function V' From V(i =1,2,3,4,5)

5+ f(Cy)

- > KN,
C

V=C, +iV2)+V3+ V,+CVs,
(04

where C},C, is the normal number to be determined.
Substitute Eqs (11)—(15) into Eq (10) to obtain

dV =LVdt-C, (T—%)GV,TdB(Z)+CZZ,GKTdB(t), (16)
a
where

LV <—Ca -2y —ar-2y -1 s+ rcowr -5+ puy s
o o N N

s r

—L(5+f(CN))VS(TS +T,)—L(5+f(CN))V,(TS +T,)—06(T—£)(Ts +T,)
N, N a

A r

A 1 A 1 A
=WV, —N—E(T—;)Vr —V(5+f(CN))(T—;)VS

1
__(T—
Nz( a

N N

LSH/(Cy)

s

LG+ B S CNT -2, + Lo v,
N, a 2

_a(5+—£(CN))TSZ+ C, iuKSVSTr +C, iKrVrTr ~C,al;
(l_u)iKva ¢ ‘
C

4 4 4
+2Clo-2Nfi4+4asz£4+2C202Nf£4. (17)
C C C

Inequality 2ab<a’+b* and the expressions in the second, third and fourth lines of Eq (17)
can be obtained

M-I 4T =aE DT+ el
(04 (04 a

A
(1-u)=K N« i)2+ a(5+ f(C,) -

< ¢ (T -
26+ f(Cy)) “ 2 _u)iKSNS
c
+- 2 (T—i)2+%Tf,
2C, 2
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—<%+Ni(5+f<cN>)>(T—§>VY
%+ L sy LG+rcy)
N. N N A, N? N
< (T-2) + = V2,
2yy: 0+ 1€ o 2
LG pwrcona-Yy
N, N, N a’’
a 1 ) 1
(vt @HA@ICH L@ fC)
<t (T-2) + 2 : V2.
257 G+ BWF(Cy)) ¢
Choose
a 1 2 a 1 2
. vy @+ C) ) (y *y GHAWIC)
2;‘3(5#(@) 2]\0,{3(5+ﬂ(u)f(CN))
(l—u)iKst 1
+ ¢ +—
26+ 1(Cy)) 26,
L6+ rco ]\1[(5+,3(u)f(CN))
C2:min{ * ﬂ, ° - ﬂ, }9
u—K, —K,
C C
meet
A 1 A 1
Cul K, ——(+ f(Cy) <0, CLK, ——(5+Pu)f(Cy))<0.
c N, c N,

Therefore, when Eqs (19) and (20) are substituted into Eq (17), there is

1 1
2N? 2N}

LV <—am-2y L (54 repwi——L @+ f(C
o

A a b 2
_a@+S(Cy) 1o, (1—M);KSNSOC (Ns +Ns 6+ f(Cy))

A s 2(8 C " 1
2(1-u) K N, 0+ 7(Cy)) 2—(6+/f(Cy))
C Nv
v LGy pw s,y
A + & Ca T2y K,
2C, a c

]53(5+ﬁ(u)f(CN))

(18)

19)

(20)
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—NL(5+ JECEVT +(C iKr —L(5+ Bw) f(ICONVT,

: 1)

4 4
—%C al’ +C,o° N2 2 +462N22—+2C o‘zN2 l

) a(5+f(C )) a(@+/(C)) 12, spoip A

2(1- u) KN, 2(1—u)iKSNS
C

4
+402Nf/1—4+2C 2N2 Z
c

Then substitute Eq (21) into Eq (16), and take the expectation of both ends after the integration
from Oto ¢, we get

E(V(1)-V(0) <-mE| ‘T -2y ds—m,E ['vids—mE [ V2ds
0 a 0

4
—m,E j T?ds— mSEj T2ds+(2C, 02N2 /1

+4<72N2/1 +2C, 2Nf—4)t.
C

Therefore

2C, +4+2C,)N*2o?
1 2 7

limsuplEJ't((T_i)z+T;2+Trz+VY2+Vr2)ds§
t—m t 0 a : s

mc4 ’
[04
where m =min{a, (5+ Sy (5 rcy, ot ;CN)) Lea
2N 20-u) K, 2
C

According to Theorem 2, the solution of Model (3) will oscillate around the equilibrium point of
Model (1). The amplitude of oscillation is positively correlated with the noise intensity.
In the special case, when o =0, there is

lim sup Ej (T - ) +T2 4T +V2+V)ds <0.

This indicates that its equilibrium point E;, with respect to Model (1) is globally

asymptotically stable.
Theorem 3. If R. >R and R, >1, and satisfy:
2a 100N2a* 2

) &=t oy ~avyerrcor "

(H2) max{e,e,}<b,,
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where

_ 5AK;
22a+c(a+ KV, + KV NG+ [(Cy)’

€

2A0uK 2
. —) +(=)
cwuKV, +K. V) k,

2 2a ’
0+ f(C I+
5( S(Cy))a( WKV +KrVr)

€, =

2
<5+f<cN>)(a(1+l_mm>+JA_l )

(
i SNla’

3670 N2 K? N
WKV, +K V) (5 +pw) f(Cy))

(H3) A, =(B())" -

b

where
Ay (22
B =a(l4— 20 CWKV AKV) ko
wK I+ K. 2B G+ £(C)
2a
G+ (CN e+ )=[A)
bl* € (b,,b,), b,= (21 _zu)KSVS .
SN a
o 3K; G+ SCOBOB)+4A,)
24(b )6+ Bu) [(Cy)) 3NYe? ’
where
AB Y=ot c(a+KV, +KV)) 5K
v A 26, (5 + £(Cy))’

Then, the solution (T'(t),T,(¢),V (¢),T.(¢),V.(t)) of Model (3) has
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limsup [ (7= 4 (1, =TV 4 (1 =TV 4 (7, =V (0, =V )ds
t—w

1 a A42°N? 2N°’T”
((7+ . . n roy 2r
< 2 ukKV, +KV =~ ¢ ¢

- b

m

)o’

where

= min o (b7, (52 ms (5 ), 2O 2f (C) DS+ /(C),

2
(b b*)_a+c(a+KSV:+KrV:)_ 5K? ~ 3K?
R A 26, (5+f(Cy)) 2b,(5+Bw)f(Cy))’
. 2a 10a* 2 5b N’
m2(b1):a(l+ *)_ 2 *\ 7 * - L >
(A-w)KV," V)b (0+f(Cy) 20+f(Cy))
e 2
2a c(uk V?L-:-Ié V*))2 +(l;)2
m3(b‘*’b;):“(l+u1< Vit K V*)_ 2 |
she LTy gbl 0+ f(Cy))
~ 6 a’K? 3N’
b,k YV, +K V) (5+Bw)f(Cy)) 2(5+pwm)f(Cy))’
. 3K?
b b Py * - ab ’
& G+ Ba sy

y _@HCBG)-A) G+ S(CONBE)+A,)
. 3N’a’ o 3Na? '

Proof. Define the C’-function V.(i=123,4,5)
VFE(T—T +T, =T, +T.-1,)", V2=E(VS—VS) ,

b * 1 * 1 * * * T
VF?Z(VV—VJZ, V4=§(Ts—7§)2, V5=5(TV—T,)2, Vo=T-T -T In—=,

where b, b, isthe normal number to be determined.
Applying Ito formulato V,(i=1,2,3,4,5), we get

dV,=LVdt, dV,=LV,dt, dV,=LV.dt, dV,=LVdL, (22)

*

. T
AV = LV:dt+ (T, ~T7)oV,TdB(). dV, = LV,dt+(1——)oV, TdB(0)
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From the inequality 2ab<a’+b*, LV (i=123,45,6) in Eq (21) can be reduced to the

following form

LV =-a(T~T"Y ~a(T, ~T) ~a(T, T, = 2a(T ~T")T, - T)

23
—20(T-T")T,-T,)-2a(T, - T, T, —T,,*)+%02V,2T2, =
2 2
V’z S Sblea (]: _]:*)2 + bl (5+f(CN)) (VY _I/:)Z
20+ f(Cy)) 10 S
~b(5+ f(C WV, =V,) (24)
2 2
— Sble a (T; _T;*)Z _ 9bl (5+f(CN)) (I/S _V;*)Z’
205+ f(Cy)) 10 ‘
2 2
LI/3 < 3b2Nra (Yvr _]-;*)2 + b2(5+ﬂ(u)f(CN)) (I/, _ I/’*)Z
200+ W) f(Cy)) 6
—b, (6 + ) f(C )V, =V,)?
2 2
_ 3b,N, a (T—-T') - 5b,(6+ ) f(Cy)) V-V, (25)
2(6+ Bw)f(Cy)) 6
LV, = (T, =T )N(A-w)K (T, ~V)+V (T =T -a(T,~T,), (26)
LV =(T, =T, YuK (T(V, = V) +V, (T =T W) +(T, T, XK (T(V,=V,)
27
+Vf(T—T*)))—a(Tr—Tf)2+%62VfT2, 7
— * 2
LV =+ KV + KISk -0, 1)
~-K(T-THWV. -V
r(+1< V)*(+rK Vr*) T-T) (28)
< xRV ARVDTZL) g o1y, -
A T ‘ s
~K(T-T")V,=V)).
We can define the function V' From V,(i=1,2,3,4,5)
VeV V4V —2 2y
(1-w)KV, ukK Ve + K.V,
Substituting Eqgs (23)—(28) into Eq (22), we get
dv = Lth+2—a(T —T)oV TdB(t)+(1 —T—*)O'V TdB(t) (29)
uk V. + Ky " T '
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Then, LV in Eq (26) can be obtained from inequality 2ab<a’+b> and condition (H)

LV <=m(B b )T =T =myo)(T, -1 2D gy

S O g S G (2”” ©D) iy _yry (30)
A o loyer
2 UKV +KV 2
where
3K?
ml(blabz)zA(bJ_ - )
25,3+ P f(Cy))
@)=L b,y = 8B 31)
bl bZ
2 2 2 212
P L\ S T S L S —
26+ 7Cy) T mwK T AW @6+ £(Cy)
62a*K? IN?ab?

g(b,b,) = B(b,)b, - 2 * 2 - ’
WKV, +K V) (6+pw)f(Cy)) 2(6+pw)f(Cy))

* * 2
A(b1)=a+c(a+KSVS +K.V,) 5K ’
A 2b(6+ f(Cy))
2AauK 2a
26‘( c(uK V*+IéV*))2+(7)2
Bb)=a(l+ )— LS L L !

KV +KV’ 2
uk Vo + K.V, FOYCRWA(E)

There are positive numbers b, and b, suchthat m,(b)>0 and m,(b,b,)>0 are true.
In fact, it’s just a matter of choosing b, and b, so that f(5)>0 and g(b,,b,)>0 are true.

Because f(b,) is a downward opening quadratic function of b,, the discriminant is

2a
(1-wK Y,

100N2a* 22

A =(a(l+ - -
(Vo) (6+ f(Cy))

)’

We know from (Hi) that f(b,)=0 has two positive roots, and the expression is as follows
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2a 2a
@+ /e o) =A) G @l )+ )
5N o’ e SNZa’ '

b11 =

So, forany b, €(b,,b,),thereisa f(b)>0. Therefore, m,(b)>0.
We know from condition (Hz) that we choose b, € (b,,,b,,) suchthat A(b)>0, B(b )>0.

From m, (b, ,b,)>0 , we can get

b s 3K’
2” 24(b) )8+ B)f(Cy))

Substituting b into g(b,b,) we get that g(b ,b,) is a downward opening quadratic

function of b,, the discriminant is
. 36X °a'NK;
AZZ(B(bl ))2_ 2 * PN - L D
c WKV, +K.V,)(6+pw)f(Cy))

We know from (H3) that g(b,,b,) =0 has two positive roots, and the expression is as follows

p, =S CNEO)—8y) -, @O+ CNBO)+A,)
! 3N’ CR 3Na

So, for any b, €(b,,,by,), thereisa g(b,)>0. Therefore, m,(b;,b,)>0.

. K’
We know from (Hs) that there is b, € (max{,,, . 3K, }+,b,,) , such that
2A(b, )0 + fu) f(Cy))

m (b, ,b;)>0 and my(b,,b;)>0 are true.
Equation (30) is simplified as

LV <—my (b BT —T°) —my (b )T ~T")? ”1*(5+2f C) iy _yrye

B 20 e A v A Gl BUWSCD y, _yy

G2 errilor
2 UKV A K 2

Integrate Eq (29) from 0 to ¢ and take the expectation of both ends, and we get
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E(V(0) =V (0) < =m (b b)) E[ (T ~T")ds—m, (5)E[ (T, =T, ds

-0 BB, =1 ds = OO [y

_B@BWICD gy ey
5 =,

1 a 42'N?c* 2°N*T o
+((=+ L+ =

* * t~
2 ukKV +K)V, c* ¢’ )

Therefore
. 1 t * 2 * 2 * 2 * 2 * 2
limsup— E[ (T =T") +(T, = T)) + (T, =T)) + (V, = V) +(V, = ¥,) s
t—o0

1 a A4'N? 22PN’T" .,
((=+ _ . .t 5 )o
2 ukKV, +KV =~ ¢ c

- b

m

where

m =min{m, (b, b2),m, (b.),m, (B, bY), bf(5+2f(CN)) ’ b3+ f(Cy)) '

2
ml(bl*,b;):a+c(a+KSVS +KV) * 5K __ 3K’ ’
A 2b,(6+ f(Cy)) 2b,(6+ ) f(Cy))
: 20 10’ X 5h.N’a’
m2(bl):a(1+ *)_ 2 *\ 0 - — 9
A-wK Y, " V) b6+f(Cy)) 25+ [(Cy))
2AauK 2a
. 2a UKV +K V"))2 ’ (7)2
my (b, b)) =a(l+ = KV*)— I !
R SH@+/(C))
62 a’K; 3b,N’a?

B WK +K V) 6+ W) f(Cy) 2A5+Bw)f(Cy)

According to Theorem 3, the solution of Model (3) will oscillate around the equilibrium point of
Model (1).The amplitude of oscillation is positively correlated with the noise intensity.
In the special case, when o =0, there is

limsup - E[ (T =T") +(T, =T ) + (T, =T, +(V, =1 + (¥, =, Y Xds <0.
1—00 14
This indicates that its equilibrium point E” with respect to Model (1) is globally asymptotically

stable.
Theorem 4. If R >1 and R, <1, and satisfy:
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2 4
(H) A = (a(l+ 2a ) 100N "4

(1_ )K? sl c (Vﬂ) (5+f(CN))
(H2) maxie,e,}<b,,

M

where

(2ﬂa
5/1K2 cV

2 2a,

)+ ()
e e, = sl k]
'T2Qatdat KV )60+ f(C) 272 2a

S @S (C)a(l+ )

s sl

@G+ CONal+ = )KV) J_)

5N2 2

s~ sl

b12 =

. 36/’ N'K]
Hy A, =BG >0,
() A =B = ) (64 B (Co)

3K? _G+/(C)BG, SEN/Y ).
240G+ P f(Cy)) 3N’a?

where

2 la
(

: v,
B =a(l+—% -

UKV ib;‘ S+ /(Cy))

2 27052
)+(];1)

c(a+KV,) 5K’
A 2171* 5+ £(Cy)’

A =a+

S+ f(C e+ — ) J_ )
bl*e(blli'blz)’ b11: (-u )K Va

5N2 2
(Ha) 3K; _ @G+ SCONBE)+ A, ]
2A(b) )6+ B(w) f (CN)) 3N*a?
where A(bl*) =a+ cla+K, sl) _ 5Ks2 ’
A 2b (6+ f(Cy))
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Then, the solution (T'(t),T,(¢),V (¢),T.(¢),V.(t)) of Model (3) has

limsup~ £[ (T ~T)° +(T, —Tslf R4, V) 4V Xds
{—0 t

1 a AAN; 2/12NT
—+
((2 uKsVsl) c4 o’
B m ’

where

m =min{m, (b} , by ),m, (b ),m; (b; ,b3), b(G+f(C) b§(5+f(cN))}

3

2 2
2 2
ml(bf‘,b;‘)=a+c(“+fs V) — oK. 3K ,
0+ (Cy) 2by(5+Bw)f(Cy))
2 12 * 2 2
(b)) = a1+ 2a ) 21(2051 _ ShN;a ’
(A-wKV," V)b (S+1(Cy)) 25+£(Cy))
2A0ukK 2a .,
(T 4 (50
b5 = a1+ )0 Wk V) K
R gbl(mf(cN»
6 a’K’ 3b,N’a’

b K V) (6+Bw)f(Cy) 25+ Bw)f(Cy)

b, € (maxib,,, * 3K, },0,,).
2405+ A) /(C)

Proof. Define the C’-function V.(i=12.3,4,5)

1
v, ZE(T—TI +T.-T,+T.), V, =%(Vs V)7

by oy Loy, vo=te voor-r—rw L,

V=2
2 27 2 T,

where b;, b, isthe normal number to be determined.
Applying Ito formulato V,(i=1,2,3,4,5), we get

dV,=LVdt, dV,=LV,dt, dV,=LVdt, dV,=LV,dt, 32)
dV, = LV,dt+T,oV,TdB(t), dV, = LVédt+(l—%)aVerB(t).

Same as the proof method of Eqs (23)—(28) in Theorem 3, LV,(i=1,2,3,4,5,6) in Eq (32) is
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8278

simplified as

LV, =-a(T-T)" —a(T, - T,)’ —al; =2a(T =TT, - T,)

33
~2a(T ~T)T, -2a(T, - T, )T, +%an£7’2, 9
5hN’a’ 9%,(5+ f(C
< N gy PHOSED gy, (34)
200+ f(Cy)) 10
2 2
v, < 3b,N, a Zz_b2(§+ﬂ(u)f(CN)) Ve, (35)
200+ pw)f(Cy)) 6
LV, =(T, =T K (T(V, =V, )+ V(T =) - (T, = T,,)", (36)
LV, =LKW+ K TY,(T-T)-al + 2 0T, (37)
— * 2
1y, < ORIV T o1y, -7,
A T ‘ c (38)
~-K(T-TV..
We can define the function V' From V(i =1,2,3,4,5)
VeV AV, 4V —2 2%y
(1 _u)KsV;I uKval
Substituting Equations (33)—(38) into Eq (32), we get
2a T
dV =LVdt+ T.oV.TdB(t)+(1- =)oV TdB(t). (39)
uKs sl T
Then, LV in Eq (39) can be obtained from inequality 2ab<a”+5b> and condition (H)
b0+ f(C
LV <= (b b)(T =1 =ma(b)(T, -1, -2 ED 7y
b br? OB C) o)
1 277202 1 2172
+(=+ YoV T +—oV'T,
2 uk/V. 2

s” sl

where
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P 3K f(b) _ g(b,by)
m,(b,,b,) = A(b)) 2b2(5+ﬂ(u)f(CN)) m, (b)) = b , my(b,b,)= b, > (41)
f(b1)=—ﬂ valls 2a - 210a2,12 |
200+ f(Cy)) (1-w)K .V, cVa(0+f(Cy))
6&2 2K2 3N2 2b2

g(b,b,) = B(b)b, -

UKV, (S+BW)f(Cy) 25+Bw)f(Cy)

24 2
c(a+KV,) 5K’ 2a (ch)2 " (120[)2
Ab)=a+ s sl s , B(b)=a(l+ ) ——1 !
A 2b,(5+£(Cy)) uk v, 2

L ICRA(SY)

Same as the proof of Theorem 3, under the conditions (H1)—(H4), we can find positive values

b, and b, suchthat m,(h)>0 and m,(b,,b,)>0. Here, the discriminants are respectively

2a 100N2a* 22
A] = (a(l ))2 - 2v-2 > 2
(I-w)KJV,, cVi(o+ f(Cy))
36 a*N’K’

A, =(B()) -

WKV, (S +Bu) f(Cy))'

b and b, satisfy the following conditions

bl* €(by,by),

2o
bn:(5+f(CN))(a<1+(l_ )KV> J_) b :<5+f(CN))<a<1+(l_)K> +4/A)

5N2 2 SNZ 2

ssl

b

b; € (max{,,, 3K2 10,1,05,),
2A4(b, NS+ Bu) f(Cy))

@+ fCBG)=A) O+ CNBG)+A;)
3N2 2 3N2 2

by =

The selected parameters b and b, are substituted into Eq (40), and LV is simplified as
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LV <—m (B BT ~T) —my(B )T ~T, ) =0 (5+2f CD) iy _y

T = <5+ﬂ(2u>f(cN)> p

1 a
+(=+
2 uKsVsl

YoV T? +%an,21;.
Integrate Eq (39) from 0 to ¢ and take the expectation of both ends, and we get
E( (t)=V () < -m,(b; ,b)E [ (T =T,)*ds—m, (b)) E[ (T, ~T,,)"ds
—my(by b)) |, T, ds —ME [[w,-v s

_B@BIC) prry 2y,

2
+((l+ a )4/”L4Nr2c72 +2/12Nlec72)t
2 uk/V. c* c’ '

s” sl

Therefore

. | Q_—
limsup— B[ (T =T)" +(T, =T, +T," +(V, = V,)* +7, s
t—0

1 a 4A'N} 22N, ,
((2+uK ot ' c’ o
S S S ,
m
where.m = min o (4 b5),my 05, (4 ), - TGN BCHTLE)
2 2
(b b= ORI SR 3K, ,
A 2b, (6 + f(Cy))  2b,(6+ fu) f(Cy))
212 *A72 2
(b)) = a1+ 2a ) 2100(), 55N« ’
A-wK YV, cVib(6+f(Cy)) 25+1(Cy))
2Aa 2 2a 2
+(=
2a (chl) (kl)

my(b ;) = a(l+———) -
KV 2«
T Sh G+ /()

~ 61 a’K’ _ 3pNa’
by (uK V) (5+Bw) f(Cy))  2(5+Pu)f(Cy))

According to Theorem 4, the solution of Model (3) will oscillate around the equilibrium point
E" of Model (1). The amplitude of oscillation is positively correlated with the value of noise intensity.
In the special case, when o =0 |, there is
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limsup— EJ‘ (T-T)>+(T.—T,)* +T +(V,—V,,))* +V," )ds <O0.

This indicates that its equilibrium point E_ with respect to Model (1) is globally asymptotically stable.
Theorem 5. If R <1 and R, >1 , and satisfy:
25N (1-u) K 2

) A== ey
(H2) max{e,e,}<b,,
where
2AaukK ,  2a.,
L 5K’ Y
Y 2atc(a+ K V) +f(Cy) 2 2a )’
SO+ S(Cyali+ K,V,.z)
y  GHICONa+A)
2 5N2a’
36 2a 4N2

(Hs) A, =(B(®))" -

b

V50 +Bw) f(C, -

where
(2/1auK )2+(2£)2
BOD—al+- 20K by g, g, O CON )
e gbl 5+ £(Cy) SNoa
o 3K> _ G+ 1B, N +A, ).
240 S+ B f(Cy)) 3N
where A(b:)=a+c(a+K’V’2)— p 5K, .
A 26, (5 + f(Cy))

Then, the solution (T(¢),T,(¢),V.(¢),T.(t),V.(¢t)) of Model (3) has

1imsup1Ej;((T—T2)2+T2+(T,—T,2) V2V —V.,) )ds
f—>0

s s

a AAN? 2/12N T,
((5 ) 2)o?
KV c

r-r2

m
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where. m =rin o (5 b5),m (b5, 4 ), - HLED), DO TED),
2 2
NN PP G ) N S .S ,
L G+ f(Cy) 2656+ B (Cy))
. 5(1-u)’* K22 5b N*o
(b)) =a-—a WAL SN
2765+ f(Cy) 26+f(Cy)
2AauK 2 2a P
Aok | (22
(b} b = ai+ 2%y

SR CRNIY)
_ 6 a’ B 3b,Na’
CHVAE+ B (C) 26+ Fw)f(Cy)

3K’

b, € (max{,., _ ,b,)).
2 € (maxiby 2A(b; )(6+ﬁ<u)f(CN))} 2)
Proof: Define the C”-function V.(i=1234,)5)
V—l 2 _b1 2 _bz 2
== (T-T,+T,+T,-T,)", V,==2V?, V,=22(,-V,,),
2 2 2
1 1 T
V=I5 V= (=T, V=T -T,-Lin -,

where b, b, is the normal number to be determined.
Applying Ito formulato V,(i=1,2,3,4,5), we get

dV.=LVdt, dV,=LV,dt, dV,=LV.dL,
dv,=LVdt, dV,=LVdt+(T,~T,)oV,TdB(1), 42)
T,
dV, = LV,dt+ (1=~ )0V, TdB().

Same as the proof method of Equations (23)—(28) in Theorem 3, LV,(i =1,2,3,4,5,6) in Eq (42)
is simplified as
LV, =-a(T~T'V —aT? ~a(T, ~T,,)* ~2a(T ~T))T,

. | P (43)
—2a(T-T )(T,,—T,,z)—2aTs(Tr—T,,2)+56 v,
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2 .2
ELLCA LML RN o) (44)

LV, <
10

_3b,Nla’

Ly, (T,-T,) +%<V,, V) by (84 B COV, ~Va)s (45)

LV, =(1-w)K TV (T -T,)+(1-w)K LTV, —aT/, (46)

LV =(T, =T, )UK V) + (T, =T, )K, (T(V, =V,,)+V,,(T =T")))

(47)
(T =T 4 VT

c@+K,V,) (T-T,)

LV, <
A T

~K,(T-T,,
1 (48)
K (T =TV, V)42 0 T

We can define the function V' From V(i =1,2,3,4,5)

V=V AV, 4V 4V, +—2 47

r’r2

Substituting Eqgs (43)—(48) into Eq (42), we get

av = Lvdi+-2%

(T, ~T,2)oV, TdB(6) + (1=~ TaB(O), (49)

r’r2 2

Then, LV in Eq (46) can be obtained from inequality 2ab <a’ +b

LV <—m,(b,b, )T -T,) _mz(bl)Tsz b1(5+§(CN)) Vs2

by )T, ~ Ty = O EOIED iy (50)

a

+%+ pﬁfﬂ+%aWﬁ;

rr2

where

my(b,,b,) = A(b,) -

et C ) =B b0y =8B (s
26,0+ B (Cy) b b,
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5h!N’a’ vab - 5(21—u)21<j/12 ,
26+ f(Cy)) 2c7(0+ f(Cy))
6o’ _ 3N!a’h)
V36 +Pw)f(Cy) 25+Pw)f(Cy))’

Jh)=~

g(by,b,) = B(b)b, -

P RNICEY S/ B 5
17— ’
A 2b,(6+f(Cy))
2/10{14KS 2 2a 2
+ T~
e O TG

B(b) = a(l+———)——
S YCEA(SD)

Same as the proof of Theorem 3, under the conditions (H1)—(H4), we can find positive values

b, and b, suchthat m,(h)>0 and m,(b,,b,)>0. Here, the discriminants are respectively

_25N}(1-u)’K} 2
6+ £(Cy))
36 °a*N?

V(S + B f(Cy)

b and b, satisfy the following conditions

Al :az(l )a

A, =(B()) -

b bbby = O CN@AA) G+ (Cy ey A)
SNSOl SNSOJ

3

b, < (max by, ———K b,
4G + @) f(Cy)

y _GHICBO) =) (E+[(CONBG)+A,)
2 3N?a? » o 3Na? '

Therefore, defined by Eq (41), the selected parameters b and b, are substituted into Eq (50)

to be simplified as
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LV <m0 )T =T, =y (i) -2 O LDy 2

B8 (A o S WHED , y,,y

1 o
+(=+
2 KV,

r

)O_ersz +lanrsz.
2

Integrate Eq (49) from 0 to ¢ and take the expectation of both ends, and we get
E(V ()= (0) < =m, (b ,b;) E [ (T~ T,) ds—m, (b E[ T ds

b (5 +f(Cy))
2

—my(b] b)E (T, ~T,,) ds E[ v} ds

_b2(5+ﬂ(u)f(CN))EJ.t(I/r_V;z)ZdS
2 0
a 4A'N'c® 22N’T,0’
+((= —+ ” .
((2 KV ) c* ¢’ )

r’r2

Therefore
limsup~ EJ. (T-T,)+T +(T. =T, +V. +(V. —=V.,)*)ds

a 4AAN? 2/12NT
((5 KV) o 2o’

r-r2

m
where

c(a+KV,) 5K ~ 3K’
p) 26/ (5+£(Cy)) 2b,(5+Pw)f(Cy))

m, (b b)) =a +

50-u)’K;F  ShNa’
2675 (5+ f(Cy)) 25+ f(Cy))’
2A0ukK

mZ(bl*):a_

(
- 2a K,V,
my(b, ,b,) =a(l+ )— 2

KV gbl G+ £(Cy))
B 6 2a’ B 3b;Nr2052
EBVA(S+BW)f(Cy)) 26+Bu)f(Cy)

According to Theorem 5, the solution of Model (3) will oscillate around the equilibrium point
E. of Model (1). The amplitude of oscillation is positively correlated with the noise intensity o .

2 27052
)+(1?1)

In the special case, when o =0, there is

limsup B[/~ L. +12 +(T, =T +V + (0, ~V.0) M5 <0
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This indicates that its equilibrium point £, with respect to Model (1) is globally asymptotically stable.
4. Numerical simulation

The resistance of hepatitis B virus due to individual differences or the interference of factors
such as environmental changes may cause the virus to mutate and change the original infection rate.
The drug cannot accurately act on the mutant virus, and the infection rate is uncertain, so it will be
affected by the clinic. Treatment brings many unknown results. By studying the asymptotic behavior
of the mathematical model solution with random noise, understanding the influence of the
interference of uncertain factors on the model solution can provide a theoretical basis for determining
the treatment plan. The following is numerical simulation of the influence of random noise intensity
on the model solution.

Table 2. Values of some parameters.

symbol  instructions Value unit
A the growth rate of uninfected hepatocytes 2.527x10° day! (ml)’!
a the death rates of hepatocytes 0.012 day!
o the death rates of viruses 0.67 day!
N the total number of viruses produced by sensitive
; . . S 2 —
’ infected hepatocytes during their life cycle
the total number of viruses produced by drug-resistant
N, . . 2 —
hepatocytes during their life cycle
Table 3. The values of the remaining parameters.
D the infection rate of the infection rate of ) )
Mutation . ;ulgj . sensitive HBV on drug-resistant HBV on NOlse_ NOlse_
case e u MAIbI-0N iy fected hepatocytes uninfected hepatocytes 1ntensity & intensity &
rate [ ) ) . . (smaller) (larger)
K /day'(mL)"! K /day!(mL)!
1 03 0.7 3.8x107° 1.2x107° 0.0000008 0.0000010
2 0.02 0.98 8x107® 1.2x107° 0.0000008 0.0000015
3 0.5 0.5 2.8x107 5.2x10°* 0.00000008 0.00000015
4 0.9 0.1 3.8x107°* 3.6x107° 0.00000008 0.00000020

4.1. Parameter selection

Some of the parameters in Model (1), such as the growth rate A of healthy liver cells, the
mortality rate o of liver cells, the mortality rate 0 of viruses, the number of viruses N, and N,

produced in the life cycle of sensitive and drug-resistant infected liver cells, are shown in Table 2 [24],
and the average steady-state plasma concentration is C, =0.8 ng/ml.

Choose four situations to simulate the difference caused by noise. Related parameters such as
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virus mutation rate u# , drug inhibition rate S of virus, sensitive HBV infection rate K,

drug-resistant HBV infection rate K, and noise intensity o are shown in Table 3.

4.2. Influence of noise intensity on the solution of Model (1)

In order to better understand the interference of noise on virus changes, Models (1) and (3) are
simulated and compared. Divide Models (1) and (3) into sensitive sub-models and drug-resistant
sub-models. The initial values of the model are taken as follows

T(0)=1.9x10", T.(0)=2.79x10°, T.(0)=2.79x10’,

V.(0)=10", V.(0)=10°

10 %10

T of rodel (1)
T, of model (1) 1

W, of model (1)

28¢

3 T of model (3}
oL T, of model (3)
25 Y of madel (3) [
T of madel (1) I
15l T, of model (1) | | 5L
V, of model (1)
T of madel (3) 1:5:-
1 T, of model (3) |
V, of model {3) 1

05

L . . L . n 1 L i L L . .
0 100 200 300 400 500 EOO FO0 800 900 1000 0 100 200 300 400 500 /OO FOO GO0 00 1000
t

al) The time series diagram of a2) The time series diagram of

drug-sensitive submodel drug-resistant submodel

a3) A phase diagram of a a4) A phase diagram of a

drug-sensitive submodel drug-resistant submodel
Figure 3. When & =0.0000008, the simulation of trajectory of Model (1) and stochastic

Model (3). The red lines in a3) and a4) represent deterministic models and the blue lines
represent stochastic models.
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&
% 10 o
T T T T T T T T T 10

T of model (1)
Tr of model (1)
Wr of model (13 ]
T of model (3)
Tr of model (3) 4
Wr of model (3)

28F

T of model (1)
Ts of model (17 |
We of model (1) 15
T of model (3)
Ts of model (3) |4
s of model (3) 1

04

N L . . L N Fal . . L L .
1} 100 200 300 400 500 60O 700 BOO 900 1000 DD 100 200 300 400 500 GO0 700 800 900 1000

t t
b1) The time series diagram of b2) The time series diagram of
drug-sensitive submodel drug-resistant submodel

b3) A phase diagram of a b4) A phase diagram of a

drug-sensitive submodel drug-resistant submodel

Figure 4. When & =0.000001, the simulation of trajectory of Models (1) and (3). The red
lines in b3) and b4) represent Model (1) and the blue lines represent Model (3).

Case 1: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate R, =0.5778
and R =0.1825. It can be seen from paper [14] that Model (1) has a disease-free equilibrium point
E, , which is a global asymptotically stable point. From Theorem 2, we can see that the solution
trajectory of Model (1) is asymptotically oscillating around E. The simulation results are shown in

Figures 3 and 4.
Comparing Figures 3 and 4, it can be found that when the noise intensity increases, the vibration
amplitude of the solution of the Model (3) around E, will also increase.
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%10

T of madel (1)
Ts of model (1)

25+ s of model (1) H
T of model (3)
Ts of model (3)

W's of model (3) H

i 500 1000 1500

cl) The time series diagram of
drug-sensitive submodel

% 10

T of rmodel (1
Tr of rodel {

)
1

25

' of model (1)
T of rodel (3)
Tr of rmodel (3)
roof rodel (3) H

o a00 1000 1500

c2) The time series diagram of
drug-resistant submodel

c3) A phase diagram of a

c4) A phase diagram of a

drug-sensitive submodel drug-resistant submodel

Figure 5 When & =0.0000008 , the simulation of trajectory of Models (1) and (3).The red
lines in c3) and c4) represent Model (1) and the blue lines represent Model (3).

Case 2: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate R =1.1920

and R =1.1853. It can be seen from paper [14] that Model (1) has a drug-sensitive type virus
equilibrium point E_, which is a global asymptotically stable point. From Theorem 4, we can see
that the solution trajectory of Model (1) is asymptotically oscillating around E_ . The simulation

results are shown in Figures 5 and 6.
Comparing Figures 5 and 6, it can be found that when the noise intensity increases, the vibration
amplitude of the solution of the Model (3) around E, will also increase.
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T of madel (1)
Ts of model (1)

251 s of model (1) H 25 “r of model (1) |
T of madel (3) T of model (3}
Ts of model (3) Tr of maodel (3)

ak e of model (3) H W of model (3) |]

w10

T of model (1
Tr of rnodel {

)
1)

0 500 1000 1600 ] 500 1000 1500

d1) The time series diagram of d2) The time series diagram of
drug-sensitive submodel drug-resistant submodel

d3) A phase diagram of a d4) A phase diagram of a
drug-sensitive submodel drug-resistant submodel

Figure 6. When & =0.000001, the simulation of trajectory of Models (1) and (3). The red
lines in d3) and d4) represent Model (1) and the blue lines represent Model (3).

Case 3: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate R =2.1286

and R =1.2733. It can be seen from paper [14] that Model (1) has double virus equilibrium point

E", which is a global asymptotically stable point. From Theorem 3, we can see that the solution
trajectory of Model (1) is asymptotically oscillating around E". The simulation results are shown in
Figures 7 and 8.
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x 10 4

& ‘ ‘ T of model (1)
T of model (1) 75 Tr of model 1)

T, of model (1) - “r of model (1)

25 —, of motel (1) [ T of madal (31

3l
T of model (2) Tr of model (3)
sl T, of model (2) ] Wr of model (3)
— W, of model {2)

0 500 1000 1500 a 500 1000 1500

el) The time series diagram of e2) The time series diagram of
drug-sensitive submodel drug-resistant submodel

e3) A phase diagram of a e4) A phase diagram of a

drug-sensitive submodel drug-resistant submodel

Figure 7. When & =0.00000008, the simulation of trajectory of Models (1) and (3).The
red lines in e3) and e4) represent Model (1) and the blue lines represent Model (3).

Comparing Figures 7 and 8, it can be found that when the noise intensity increases, the vibration
amplitude of the solution of the Model (3) around E" will also increase.
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251
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f1) The time series diagram of
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f3) A phase diagram of a

drug-sensitive submodel

Figure 8. When & =0.00000015, the simulation of trajectory of Models (1) and (3). The

w10
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Tr of model (3}
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1500

f2) The time series diagram of

drug-resistant submodel

f4) A phase diagram of a
drug-resistant submodel

red lines in f3) and f4) represent Model (1) and the blue lines represent Model (3).

Case 4: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate R, =0.0578
and R =1.7230. It can be seen from paper [14] that Model (1) has a drug-resistance type virus
equilibrium point £, which is a global asymptotically stable point. From Theorem 5, we can see

that the solution trajectory of Model (1) is asymptotically oscillating around E,. The simulation

results are shown in Figures 9 and 10.
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g1) The time series diagram of g2) The time series diagram of
drug-sensitive submodel drug-resistant submodel

g3) A phase diagram of a g4) A phase diagram of a

drug-sensitive submodel drug-resistant submodel

Figure 9. When & =0.00000008, the simulation of trajectory of Models (1) and (3). The
red lines in g3) and g4) represent Model (1) and the blue lines represent Model (3).

Numerical simulation results show that:

Case 4 is different from Cases 1-3. Comparing Figures 9 and 10, when the noise intensity is
o =0.00000008, the solution of Model (3) will eventually oscillate around the drug-resistance
equilibrium point £ ; When the noise intensity increases to o =0.0000002, it can be seen from H2)

and H4 in Figure 10 that, with the increase of noise intensity, the number of drug-resistant infected
cells and drug-resistant HBV will gradually decrease and eventually reach a disease-free equilibrium
point. In the other three cases, the oscillations only increased. Therefore, it can be inferred that the
increase of noise intensity, which affects the infection rate of drug-resistant HBV, can inhibit the
increase of drug-resistant infected cells and drug-resistant HBV when the degree of drug resistance
of the virus in patients is high. All Cases 14 indicate that with the increase of noise intensity, the
oscillation amplitude of the solution of Model (3) will increase, which verifies the conclusion of
Theorems 2-5. Case 4 also shows that when drug resistance is high, the increase of noise intensity
will inhibit the replication of the virus, that is to say, the interference of human factors can be
increased in real life, so that the number of viruses in the patient’s body is decrease.
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drug-sensitive submodel drug-resistant submodel

Figure 10. When o =0.0000002 , the simulation of trajectory of Models (1) and (3). The
red lines in h3) and h4) represent Model (1) and the blue lines represent Model (3).

4.3. Influence of noise intensity on antiviral therapy

If drug-resistant virus has been produced in the treatment process, the interference of noise will
produce uncertainty phenomenon, so the change trend of virus cannot be accurately judged, and the
subsequent treatment cannot achieve the expected goal. Taking the drug-resistance equilibrium point
as an example, the initial value in 4.2 and the parameter value in Table 2 are still selected. The average
steady state plasma concentration C, is still 0.8 ng/ml. The infection rate K of sensitive HBV and

the infection rate K, drug-resistant HBV is 9x10* and 5.2x107%, the mutation rate u is 0.4, and
the drug inhibition rate £ is 0.6. At this time, the Model (1) has a globally asymptotically stable
equilibrium point E,. The changing law of the solution of Model (3) is numerically simulated, and
the simulation result is shown in Figure 11.

It can be seen from Figure 11 that due to the influence of noise factors, the number of viruses

may fluctuate around the lower limit of detection (10’ copies/mL, the critical value for clinical
treatment). For example, in Figurell il), during the period of 1070 to 1324 days of antiviral
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treatment, the number of virus will be below the lower limit of detection many times. From i1) to i3)
in Figure 11, it can be seen that as the noise intensity increases, the fluctuations near the lower
detection limit (10’ copies/mL) become more frequent. When it is clinically detected that the HBV
DNA of a patient is below the lower limit of detection for many times, the drug will be stopped, but
the actual patient is still at the equilibrium point of drug resistance. Stopping the drug will lead to a

rapid increase in the number of viruses. The intensity of noise provides an illusion for clinical
detection of HBV DNA.

L L
o 500 1000 1800 t
t

il) When o, =0.0000002, the time series 12) When o, =0.0000005, the time series

diagram of drug-resistant submodel diagram of drug-resistant submodel

500 1000 1500
t

13) When o, =0.0000008 , the time series diagram of drug-resistant submodel

Figure 11. The simulation of trajectory of Models (1) and (3). The blue line represent
healthy cells 7, the green line represents drug-resistant infected cells7 ,The red line
represents drug-resistant virus V.

The simulation results found that when the drug-resistant HBV in the patient is the main group
of viruses, the increase in noise intensity that affects the infection rate of drug-resistant HBV can
effectively inhibit virus replication and reduce drug-resistant infected cells and HBV. But it will also
interfere with the correct detection of HBV DNA. Therefore, it is recommended that in the process of
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clinical treatment, when the patient has strong drug resistance, measures should be taken to suppress
the infection rate of the mutant strain, such as dressing change or combined drug therapy, so as to
achieve the purpose of treating resistant infection cells and eliminating HBV. When the noise
intensity is large, the number of detections should be strengthened during the treatment process, and
the time of two detections should be lengthened to improve the accuracy of detection. Even when the
number of viruses in the patient's body reaches the lower limit of detection, reasonable consolidation
treatment should be carried out to make the patient's treatment more thorough. Avoid noise
interference to make the detection inaccurate and affect the patient's antiviral treatment.

5. Conclusions

This paper established a hepatitis B virus dynamic model with random interference infection
rate, proved the existence and uniqueness of the global positive solution, and obtained the asymptotic
behavior of the model solution near the equilibrium point of the deterministic model. Through
numerical simulation, the conclusion of the theorem is verified, and when the random interference is
small enough, the solution of the random model vibrates around the equilibrium point of the
determined model. It is found that the amplitude of the oscillation is proportional to the noise intensity.
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