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Abstract: According to the mechanism of drug inhibition of hepatitis B virus and the analysis of 
clinical data, it is found that random factors in long-term treatment produced uncertainty and 
resistance to hepatitis B virus infection rate, a model of hepatitis B virus with random interference 
infection rate is established. By constructing Lyapunov function and using Ito’s formula, it is proved 
that the stochastic hepatitis B model has a unique global positive solution. The sufficient conditions 
for the asymptotic behavior of solution are given. The relationship between noise intensity and 
oscillation amplitude is obtained. The effects of noise intensity on the asymptotic behavior of the 
model and antiviral therapy are simulated, and the conclusion of the theorem is verified. An 
interesting phenomenon is also found that with the increase of noise intensity, the number of 
drug-resistant viruses will decrease, which will affect the accuracy of a single test of HBV DNA. 
Therefore, it is suggested to increase the frequency and interval of tests. 
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1. Introduction 

In real life, in the face of emerging and re-emerging infectious diseases, human behavior and 
environmental noise interference will produce many uncertain factors, which may accelerate the 
spread of the disease or make the disease exist for a long time, or even make the local epidemic 
situation beyond control. For example, currently popular novel coronavirus pneumonia (NCP), 
long-term existence of AIDS (AIDS), hepatitis B virus (HBV) and seasonal influenza virus 
(influenza virus). For these diseases, although there is no specific drug cure, standard treatment and 
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appropriate prevention and control measures can control the trend of viral infection. In the long term 
treatment, drug tolerance and human activity with uncertain interference will affect the control of the 
transmission of the virus. 

Many scholars find that the resistance of hepatitis B virus is affected by many factors when they 
study the mechanism of hepatitis B resistance. Zhang Jing et al. studied the changes of drug-resistant 
mutants in 268 cases of chronic hepatitis B patients and found that with the extension of drug 
treatment time, the increase probability of drug-resistant strains in different patients was different, 
but all of them would increase, even up to 100% [1]. Deng Jun et al. studied the mechanism of drug 
resistance of hepatitis B and found that multiple factors could lead to drug resistance, such as the 
reliability of viral polymerase, the pressure of drug selection, the patient’s past drug use history and 
the patient’s genetic factors (such as congenital metabolic defects), and the sensitive virus strains in 
the patient could mutate at one or more sites [2,3]. 

In order to be more practical, many scholars have combined the influence of environmental 
fluctuation factors to study the development trend of infectious diseases with stochastic models. Pang 
Haiyan et al. considered that variables oscillated around the equilibrium point caused by white noise, 
and the disturbance value was proportional to the amplitude of oscillation, thus establishing the virus 
dynamics model under immune response damage, and obtained the conclusion that the positive 
equilibrium point of the model was stable under random disturbance [4,5]. Xie Falan et al. took into 
account that the regeneration ability of liver cells was interfered by environmental factors, so that the 
infection rate would fluctuate around a certain average value. They established a random hepatitis B 
virus infection model with Logistic liver cell growth, and proved that the solution of this model had a 
unique stable distribution [6,7]. Hui Hongwen et al. established an HBV model with nonlinear 
incidence and random interference, obtained sufficient conditions for the exponential stability of the 
free virus in infected cells, estimated the oscillating behavior of the model near its deterministic 
model, and verified it by numerical simulation [8]. Bao Kangbo et al. analyzed the influence of 
environmental noise on stochastic hepatitis B virus dynamics model, and observed that high 
environmental noise intensity can inhibit the outbreak of hepatitis B, indicating the important role of 
intervention strategies in the control of hepatitis B [9,10]. Taking into account the variables directly 
proportional to the ambient noise, Liu et al. constructed a three-dimensional stochastic virus 
infection model, and obtained sufficient conditions for the ergonomically stationary distribution of 
the model solution and conditions for the extinction of the disease [11–13].  

Xia Peiyan established a random HTLV-I model with CTL immune response by considering the 
random perturbation of exposure rate, and proved the existence of a unique global positive solution 
to the model, and found the random threshold values of virus extinction, latent and epidemic [14–16]. 
By considering the random interference of the environment on the exposure rate, Cui Xiaowei 
established the dynamic model of virus infection with random immune effect, proved that the unique 
global positive solution existed in the model solution, obtained the threshold conditions of virus 
extinction and persistence, and gave the upper and lower bounds of the persistence, and verified the 
theory through numerical simulation [17]. The research with stochastic model changes the law of the 
original determined model [18–20], and it is a meaningful work to pay attention to the problems of 
environment and personal noise. For patients with hepatitis B virus infection, white noise will 
interfere with the original infection rate in the presence of external environmental interference or 
drug resistance during long-term treatment. Therefore, the dynamic model of hepatitis B virus with 
random infection rate can be used to predict the effect of virus control under treatment more 
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accurately. This is worthwhile work. 
In the second part of this paper, according to the statistical data rules of drug treatment of 

hepatitis B virus, it is found that drug-resistant HBV is uncertain due to viral mutation, which 
resulted in the randomness of the infection rate of healthy cells, and a stochastic hepatitis B virus 
dynamics model is established. In the third part, Lyapunov function and Ito’s formula are used to 
prove the existence and uniqueness of the global positive solution of the model and the asymptotic 
property of the model solution. In the fourth part, several cases of the influence of noise intensity on 
HBV treatment are simulated numerically, and the rationality of the theorem is also verified. By 
comparing the results of no noise interference model, it is found that strong noise can affect the 
variation law of hepatitis B virus. 

2. Model establishment 

According to the principle of action of anti-hepatitis B virus drugs and the rule of therapeutic 
test data, it was found that the drug resistance of the virus was the main reason for the decrease of 
drug efficacy [21]. Therefore, the virus can be divided into drug sensitive virus and drug resistant 
virus. It is assumed that the inhibition rate of drugs to the resistant virus is related to the mutation 
rate of the virus, and the following kinetic model of hepatitis B virus with drug resistance is 
established. 
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here T  , sT  , sV  , rT  and rV  respectively represent the number of uninfected hepatocytes at 

time t  , the number of hepatocytes infected with drug-sensitive HBV, the number of drug-sensitive 
HBV, the number of hepatocytes infected with drug-resistant HBV, and the number of drug-resistant 
HBV;   is the growth rate of uninfected hepatocytes;   and   are the death rates of hepatocytes 
and viruses; sK  and rK  respectively denote the infection rate of drug-sensitive HBV and 

drug-resistant HBV on uninfected hepatocytes; sN  and rN  respectively denote the total number of 

viruses produced by drug-sensitive infected hepatocytes and drug-resistant infected hepatocytes 
during their life cycle; the mutation rate between drug-sensitive hepatocytes and drug-resistant 
hepatocytes is given by u ; )( NCf is the rate at which drug therapy causes the decrease of HBV; 

NC  denotes the average steady-state plasma concentration in a patient; )(u  denotes the inhibition 

rate of drug therapy on drug-resistant HBV; all parameters are positive. Suppose that )( NCf is a 

bounded function, and u1 . The basic regeneration number is as follows 
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The model has four equilibrium points, namely, the disease-free equilibrium point 0E , the sensitive 

virus equilibrium point sE , the drug-resistant virus equilibrium point rE  and the double virus 
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equilibrium point *E . When the basic regeneration number meets different conditions, the 
equilibrium point is globally asymptotically stable. 

In drug therapy, because the mechanism of its action on the virus is different from the body’s 
tolerance, the blood drug concentration is inversely proportional to the rate of decline of HBV DNA, 
which can be used to determine the occurrence of HBV mutation. Taking lamivudine as an example, 
Su Ying et al. studied its drug-resistant mutation site in the catalytic region of HBV polymerase or 
YMDD sequence in the C region, which was due to the mutation of rtM204V /I (methionine M at 
position 204 was replaced by isoleucine I or valine V), and the drug-resistant strains formed by the 
mutation of this sequence were called YMDD variants [2]. It was also found that there were some 
variations in the B region. The susceptibility of the virus to the drug is slightly reduced when only 
the B region variation is present, and is greatly reduced when they are accompanied by the 
RTM204V/I variation. Due to the differences in the variation types of HBV in patients, some patients 
only have YMDD variant strains in the body, some patients only have mutations in the B region, and 
some have these two variants. So the more mutated sites on HBV DNA, the more likely the virus is to 
infect liver cells, which leads to different rates of infection of the mutant strains on healthy liver cells. 

   

Figure 1. YMDD mutation rate of HBV DNA positive patients at different treatment time. 

 

Figure 2. The proportion of HBV DNA variation in patients with hepatitis B under the 
same treatment time. 
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According to the statistical analysis of the duration of medication and the number of virus 
strains [1], the length of treatment would also lead to different probabilities of YMDD variant strains 
appearing in patients, as shown in Figure 1. Even for the same treatment duration, the percentage of 
patients with the YMDD variant varies, as shown in Figure 2. Due to the influence of individual 
genetic factors or variation characteristics in B region in vivo, the replication rate of HBV in patients 
is different, and the infection rate of the virus on liver cells is uncertain. 

In [22], the hepatitis B virus genome is double-stranded relaxed circular DNA (rcDNA). When 
HBV DNA enters the cell, the rcDNA becomes covalently closed circular DNA (cccDNA), which is 
used as a template to start the replication process of the virus. Therefore, cccDNA is stable in 
infected liver cells, and there are about 5-50 cccDNA copies in each liver cell. When liver cells are 
damaged, cccDNA in the liver nucleus is released into the blood, so the amount of cccDNA detected 
in liver tissue and serum can be used to predict the number of infected cells. Therefore, the total 
amount of cccDNA and HBV DNA can be measured to determine the relationship between infected 
liver cells and the virus. In [23], changes in liver tissue cccDNA, serum cccDNA, and HBV DNA in 
88 patients with chronic hepatitis B were recorded before and at 24, 48, and 96 weeks after treatment. 
The data are shown in Table 1. 

Table 1. The amount of ccc DNA and cccDNA and HBV DNA in the liver tissue of the patient. 

DNA(log10 copies/ ml) Before treatment 24 weeks 48 weeks 60 weeks 
hepatic tissue cccDNA 3.83 2.30 1.25 0.94 
serum cccDNA 7.12 3.37 1.40 0.21 
serum HBV DNA 6.22 3.01 0.62 0.29 

The total amount of cccDNA can be considered to be composed of cccDNA in liver tissue and 
cccDNA in serum, represented by variable x ; The amount of serum HBV DNA was denoted by 
variable y . Statistical analysis shows that the two are linearly correlated and satisfy the relationship

6822.06302.0  xy , and the degree of correlation is 9906.0r . The drawing graph is shown in Figure 3. 

 

Figure 3. Clinical data and fitting curve. 

According to the image and fitting results, it can be approximately believed that there is a linear 
proportional relationship between infected liver cells and virus, as shown in the following expression 

(H)                          ss TkV 1

~
 , rr TkV 1

~
 . 
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To control the infection of healthy liver cells, that means to reduce the infection rate. According 
to the above data analysis, it is found that multiple factors during treatment will interfere with the 
infection rate, which may lead to some changes in the results given by Model (1). If the influence of 
random factors on the infection rate is considered, the infection rate rK  is rewritten into the 

following form 

)(tdBdtKdtK rr  . 

Let ),,( P  be a complete probability space and   is the -algebra. In this probability 

space, a  -algebraic stream   0ttF  is defined, which satisfies the usual conditions. 

1) For all  ts0 ,   ts , 

2) Right continuity: for all 0t , stst     . 

Moreover, the )(tB  belongs to the independent Brownian movement in this probability space, 

and 0)0( B . 02   is noise intensity. 

In summary, the following hepatitis B virus model with random interference infection rate is 
established based on Model (1): 
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(3) 

The variables and other parameters in Model (3) are the same as those in Model (1). 

3. Main research results 

3.1. Existence and uniqueness of global positive solutions 

Theorem 1. For any given initial value 5))0(),0(),0(),0(),0(( RVTVTT rrss , Model (3) has a unique 

global positive solution )0))((),(),(),(),(( ttVtTtVtTtT rrss . That is, 
5))(),(),(),(),(( RtVtTtVtTtT rrss  a.s.. 

Proof. The function at the right end of Model (3) satisfies the local Lipschitz condition, so any 
given initial value 5))0(),0(),0(),0(),0(( RVTVTT rrss , there is a unique local solution 
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Take a sufficiently large positive number 00 k  , so that every component of the initial )0(y  

is a member of the interval ],
1

[ 0
0

k
k  

. For any 0kk   , Nk , define the stopping time 

)},,
1

()(),,
1

()(

),,
1

()(),,
1

()(),,
1

()(:),0[inf{

k
k

tVk
k

tT

k
k

tVk
k

tTk
k

tTt

rr

ssek



 

 



8263 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8257–8297. 

here inf ( stands for the empty set). 
From the definition of the stop time, we know that when k , k monotonically increases. 

Let k
k


  lim , then e  a. s..  

If   can be proved for all 0t  and 5))(),(),(),(),(( RtVtTtVtTtT rrss , then e . 
Use contradiction. If not, there are constants 0~ t  and )1,0( , such that   }~{ tP k , so 
there is an integer 01 kk  , and for any 1kk  , there is 
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Integrate Eq (8) from 0 to tk
~  and take the expectation 
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It can be obtained from Eq (9) and the above equation 
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Proof. Define the 2C -function )5,4,3,2,1( iVi  
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Applying ôIt  formula to )5,4,3,2,1( iVi , we get 
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From uRs 1 and 1rR , Eq (10) can be reduced to the following form 
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We can define the function V  From )5,4,3,2,1( iVi  
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where 21,CC  is the normal number to be determined. 

Substitute Eqs (11)–(15) into Eq (10) to obtain 
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Inequality 222 baab   and the expressions in the second, third and fourth lines of Eq (17) 
can be obtained 
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Then substitute Eq (21) into Eq (16), and take the expectation of both ends after the integration 
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According to Theorem 2, the solution of Model (3) will oscillate around the equilibrium point of 
Model (1). The amplitude of oscillation is positively correlated with the noise intensity. 
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where ,1b  2b  is the normal number to be determined. 

Applying ôIt  formula to )5,4,3,2,1( iVi , we get 
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From the inequality 222 baab  , )6,5,4,3,2,1( iLVi  in Eq (21) can be reduced to the 

following form 
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s
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(24) 
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2
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
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(25) 

,)()))()(()1)((( 2*****
4 ssssssss TTTTVVVTKuTTLV              (26) 
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

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
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               (28) 

We can define the function V  From )5,4,3,2,1( iVi  

.
2

)1(

2
65**4*321 VV

VKVuK
V

VKu
VVVV

rrssss










 
 

Substituting Eqs (23)–(28) into Eq (22), we get 

).()1()()(
2 *

*
**

tTdBV
T

T
tTdBVTT

VKVuK
LVdtdV rrrr

rrss





        (29) 
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Then, LV in Eq (26) can be obtained from inequality 222 baab   and condition (H) 

,
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1
)

2
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)(
2

))()((
))(,(

)(
2

))((
))(())(,(

*22222
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
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      (30) 

where 
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1
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,
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2
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bbm                       (31) 
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
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There are positive numbers 1b  and 2b  such that 0)( 12 bm  and 0),( 213 bbm  are true. 

In fact, it’s just a matter of choosing 1b  and 2b  so that 0)( 1 bf  and 0),( 21 bbg  are true. 

Because )( 1bf  is a downward opening quadratic function of 1b , the discriminant is 

.
))(()(

100
))

)1(

2
1((

22*2

242
2

*1
Ns

s

ss CfVc

N

VKu 








 

We know from (H1) that 0)( 1 bf  has two positive roots, and the expression is as follows  
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VKu
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22
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

s

ss
N

N

VKu
Cf

b







 
 

So, for any ),( 12111 bbb  , there is a 0)( 1 bf . Therefore, 0)( 12 bm . 

We know from condition (H2) that we choose ),( 1211
*
1 bbb   such that 0)( *

1 bA , 0)( *
1 bB . 

From 0),( 2
*
11 bbm  , we can get 

.
))()()((2

3
*
1

2

2
N

r

CfubA

K
b

 
  

Substituting *
1b  into ),( 21 bbg  we get that ),( 2

*
1 bbg  is a downward opening quadratic 

function of 2b , the discriminant is 

.
))()(()(
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2242
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Nrrss
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CfuVKVuKc
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bB





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We know from (H3) that 0),( 2
*
1 bbg  has two positive roots, and the expression is as follows  

22
2

*
1

21 3

))())(((




r

N

N

bBCf
b
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 ， .
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2
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22 


r

N

N

bBCf
b


  

So, for any ),( 22212 bbb  , there is a 0)( 2 bg . Therefore, 0),( 2
*
13 bbm . 

We know from (H4) that there is )},
))()()((2

3
,(max{ 22*

1

2

21
*
2 b

CfubA

K
bb

N

r

 
 , such that 

0),( *
2

*
11 bbm  and 0),( *

2
*
13 bbm  are true. 

Equation (30) is simplified as 
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Integrate Eq (29) from 0 to t  and take the expectation of both ends, and we get 
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Therefore 
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According to Theorem 3, the solution of Model (3) will oscillate around the equilibrium point of 
Model (1).The amplitude of oscillation is positively correlated with the noise intensity. 

In the special case, when 0 , there is 

.0))()()()()((
1

suplim
0

2*2*2*2*2* 
dsVVVVTTTTTTE

t

t
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t  

This indicates that its equilibrium point *E with respect to Model (1) is globally asymptotically 
stable. 
Theorem 4. If 1sR

 
and 1rR , and satisfy: 
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Then, the solution ))(),(),(),(),(( tVtTtVtTtT rrss  of Model (3) has 
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Proof. Define the 2C -function )5,4,3,2,1( iVi  

,)(
2

1 2
111 rss TTTTTV 

 
,)(

2
2

1
1

2 ss VV
b

V   

,
2

22
3 rV

b
V 

 
,)(

2

1 2
14 ss TTV 

 
,

2

1 2
5 rTV 

 
,ln

1
116 T

T
TTTV   

where 1b ， 2b  is the normal number to be determined. 

Applying ôIt  formula to )5,4,3,2,1( iVi , we get 

 ,11 dtLVdV   ,22 dtLVdV   ,33 dtLVdV   ,44 dtLVdV              (32) 

),(55 tTdBVTdtLVdV rr  ).()1( 1
66 tTdBV

T

T
dtLVdV r  

Same as the proof method of Eqs (23)–(28) in Theorem 3, )6,5,4,3,2,1( iLVi  in Eq (32) is 
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simplified as 
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We can define the function V  From )5,4,3,2,1( iVi  
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Substituting Equations (33)–(38) into Eq (32), we get 
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Then, LV  in Eq (39) can be obtained from inequality 222 baab   and condition (H) 
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(40) 

where 
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Same as the proof of Theorem 3, under the conditions (H1)–(H4), we can find positive values 

*
1b  and *

2b  such that 0)( *
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2
*
13 bbm . Here, the discriminants are respectively 
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The selected parameters *
1b  and *

2b  are substituted into Eq (40), and LV  is simplified as 



8280 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8257–8297. 

.
2

1
)

2

1
(

2

))()((
),(

)(
2

))((
))(())(,(

1
22222

1

2
*
22*

2
*
13

2
1

*
12

1
*
12

2
1

*
2

*
11

TVTV
VuK

V
Cfub

Tbbm

VV
Cfb

TTbmTTbbmLV

rr
ss

r
N

r

ss
N

ss

















 

Integrate Eq (39) from 0 to t  and take the expectation of both ends, and we get 

.)
24

)
2

1
((

2

))()((

)(
2

))((
),(

)()()(),())0()((

2

2
1

22

4

224

1

0

2
*
2

0

2
1

*
1

0

2*
2

*
13

0

2
1

*
120

2
1

*
2

*
11

t
c

TN

c

N

VuK

dsVE
Cfub

dsVVE
Cfb

dsTEbbm

dsTTEbmdsTTEbbmVtVE

rr

ss

t

r
N

t

ss
N

t

r

t

ss

t

























 

Therefore 

,

)
24

)
2
1

((

))()()((
1

suplim

2
2

1
22

4

24

1

0

22
1

22
1

2
1

m

c
TN

c
N

VuK

dsVVVTTTTTE
t

rr

ss

t

rssrss
t

 




 

where },
2

))((
,

2

))((
),,(),(),,(min{

*
2

*
1*

2
*
13

*
22

*
2

*
11

NN CfbCfb
bbmbmbbmm





 

,
))()((2

3

))((2

5)(
),(

*
2

2

*
1

2
1*

2
*
11

N

r

N

sss

Cfub

K

Cfb

KVKc
bbm













 

,
))((2

5

))((

10
)

)1(

2
1()(

22*
1

*
1

2
1

2

22

1

*
12

N

s

Nsss Cf

Nb

CfbVcVKu
bm
















 

.
))()((2

3

))()(()(

6

))((
5
2

)~
2

()
2

(

)
2

1(),(

22*
2

2
1

*
2

2

222

*
1

2

1

2

1

1

*
2

*
13

N

r

Nss

r

N

s

ss

Cfu

Nb

CfuVuKbc

K

Cfb

kcV

VuK
bbm























 

According to Theorem 4, the solution of Model (3) will oscillate around the equilibrium point 
*E  of Model (1). The amplitude of oscillation is positively correlated with the value of noise intensity. 

In the special case, when 0  , there is 
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This indicates that its equilibrium point sE with respect to Model (1) is globally asymptotically stable. 
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Proof. Define the 2C -function )5,4,3,2,1( iVi  
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where ,1b  2b  is the normal number to be determined. 

Applying ôIt  formula to )5,4,3,2,1( iVi , we get 
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Same as the proof method of Equations (23)–(28) in Theorem 3, )6,5,4,3,2,1( iLVi  in Eq (42) 
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We can define the function V  From )5,4,3,2,1( iVi  
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Substituting Eqs (43)–(48) into Eq (42), we get 
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Therefore, defined by Eq (41), the selected parameters *
1b  and *

2b  are substituted into Eq (50) 

to be simplified as 
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Integrate Eq (49) from 0 to t  and take the expectation of both ends, and we get 
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According to Theorem 5, the solution of Model (3) will oscillate around the equilibrium point 

rE  of Model (1). The amplitude of oscillation is positively correlated with the noise intensity  . 

In the special case, when 0 , there is 
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This indicates that its equilibrium point rE with respect to Model (1) is globally asymptotically stable. 

4. Numerical simulation 

The resistance of hepatitis B virus due to individual differences or the interference of factors 
such as environmental changes may cause the virus to mutate and change the original infection rate. 
The drug cannot accurately act on the mutant virus, and the infection rate is uncertain, so it will be 
affected by the clinic. Treatment brings many unknown results. By studying the asymptotic behavior 
of the mathematical model solution with random noise, understanding the influence of the 
interference of uncertain factors on the model solution can provide a theoretical basis for determining 
the treatment plan. The following is numerical simulation of the influence of random noise intensity 
on the model solution. 

Table 2. Values of some parameters. 

symbol instructions Value unit 
  the growth rate of uninfected hepatocytes 510527.2   day-1 (ml)-1 
  the death rates of hepatocytes 012.0  day-1 
  the death rates of viruses 67.0  day-1 

sN  the total number of viruses produced by sensitive 
infected hepatocytes during their life cycle 

2 — 

rN  the total number of viruses produced by drug-resistant 
hepatocytes during their life cycle 

2 — 

Table 3. The values of the remaining parameters. 

case 
Mutation 

rate u  

Drug 
inhibiti-on 
rate   

the infection rate of 
sensitive HBV on 
uninfected hepatocytes

sK /day-1(mL)-1 

the infection rate of 
drug-resistant HBV on 
uninfected hepatocytes

rK /day-1(mL)-1 

Noise 
intensity  
(smaller) 

Noise 
intensity  
(larger) 

1 0.3 0.7 8108.3   8102.1   0.0000008 0.0000010 

2 0.02 0.98 8108   8102.1   0.0000008 0.0000015 

3 0.5 0.5 7108.2   8102.5   0.00000008 0.00000015 

4 0.9 0.1 8108.3   8106.3   0.00000008 0.00000020 

4.1. Parameter selection 

Some of the parameters in Model (1), such as the growth rate   of healthy liver cells, the 
mortality rate  of liver cells, the mortality rate   of viruses, the number of viruses sN  and rN  
produced in the life cycle of sensitive and drug-resistant infected liver cells, are shown in Table 2 [24], 
and the average steady-state plasma concentration is 8.0NC

 
ng/ml. 

Choose four situations to simulate the difference caused by noise. Related parameters such as 
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virus mutation rate u , drug inhibition rate  of virus, sensitive HBV infection rate sK , 

drug-resistant HBV infection rate rK  and noise intensity   are shown in Table 3. 

4.2. Influence of noise intensity on the solution of Model (1) 

In order to better understand the interference of noise on virus changes, Models (1) and (3) are 
simulated and compared. Divide Models (1) and (3) into sensitive sub-models and drug-resistant 
sub-models. The initial values of the model are taken as follows 

,109.1)0( 7T  ,1079.2)0( 8sT  ,1079.2)0( 7rT  

,10)0( 7sV  .10)0( 6rV  

 
a1) The time series diagram of               a2) The time series diagram of 

drug-sensitive submodel                  drug-resistant submodel 

 

a3) A phase diagram of a                a4) A phase diagram of a 

drug-sensitive submodel                drug-resistant submodel 

Figure 3. When 0000008.0 , the simulation of trajectory of Model (1) and stochastic 
Model (3). The red lines in a3) and a4) represent deterministic models and the blue lines 
represent stochastic models. 
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b1) The time series diagram of                b2) The time series diagram of 

drug-sensitive submodel                      drug-resistant submodel 

 

b3) A phase diagram of a                    b4) A phase diagram of a 

drug-sensitive submodel                     drug-resistant submodel 

Figure 4. When 000001.0 , the simulation of trajectory of Models (1) and (3). The red 
lines in b3) and b4) represent Model (1) and the blue lines represent Model (3). 

Case 1: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate 5778.0sR  

and 1825.0rR . It can be seen from paper [14] that Model (1) has a disease-free equilibrium point 

0E
 
, which is a global asymptotically stable point. From Theorem 2, we can see that the solution 

trajectory of Model (1) is asymptotically oscillating around 0E . The simulation results are shown in 

Figures 3 and 4. 
Comparing Figures 3 and 4, it can be found that when the noise intensity increases, the vibration 

amplitude of the solution of the Model (3) around 0E
 
will also increase. 
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c1) The time series diagram of             c2) The time series diagram of 

drug-sensitive submodel                    drug-resistant submodel 

 

c3) A phase diagram of a                  c4) A phase diagram of a 

drug-sensitive submodel                   drug-resistant submodel 

Figure 5 When 0000008.0 , the simulation of trajectory of Models (1) and (3).The red 
lines in c3) and c4) represent Model (1) and the blue lines represent Model (3). 

Case 2: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate 1920.1sR  

and 1853.1rR . It can be seen from paper [14] that Model (1) has a drug-sensitive type virus 

equilibrium point sE , which is a global asymptotically stable point. From Theorem 4, we can see 

that the solution trajectory of Model (1) is asymptotically oscillating around sE . The simulation 

results are shown in Figures 5 and 6. 
Comparing Figures 5 and 6, it can be found that when the noise intensity increases, the vibration 

amplitude of the solution of the Model (3) around sE  will also increase. 
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d1) The time series diagram of             d2) The time series diagram of  

drug-sensitive submodel                    drug-resistant submodel 

 

d3) A phase diagram of a                  d4) A phase diagram of a 

drug-sensitive submodel                    drug-resistant submodel 

Figure 6. When 000001.0 , the simulation of trajectory of Models (1) and (3). The red 
lines in d3) and d4) represent Model (1) and the blue lines represent Model (3). 

Case 3: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate 1286.2sR  

and 2733.1rR . It can be seen from paper [14] that Model (1) has double virus equilibrium point 

*E , which is a global asymptotically stable point. From Theorem 3, we can see that the solution 
trajectory of Model (1) is asymptotically oscillating around *E . The simulation results are shown in 
Figures 7 and 8. 
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e1) The time series diagram of              e2) The time series diagram of  

drug-sensitive submodel                drug-resistant submodel 

 

  

e3) A phase diagram of a                  e4) A phase diagram of a 

drug-sensitive submodel                    drug-resistant submodel 

Figure 7. When 00000008.0 , the simulation of trajectory of Models (1) and (3).The 
red lines in e3) and e4) represent Model (1) and the blue lines represent Model (3). 

Comparing Figures 7 and 8, it can be found that when the noise intensity increases, the vibration 
amplitude of the solution of the Model (3) around *E  will also increase. 
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f1) The time series diagram of             f2) The time series diagram of 

drug-sensitive submodel                   drug-resistant submodel 

 

f3) A phase diagram of a                   f4) A phase diagram of a 

drug-sensitive submodel                    drug-resistant submodel 

Figure 8. When 00000015.0 , the simulation of trajectory of Models (1) and (3). The 
red lines in f3) and f4) represent Model (1) and the blue lines represent Model (3). 

Case 4: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate 0578.0sR  

and 7230.1rR . It can be seen from paper [14] that Model (1) has a drug-resistance type virus 

equilibrium point rE , which is a global asymptotically stable point. From Theorem 5, we can see 

that the solution trajectory of Model (1) is asymptotically oscillating around rE . The simulation 
results are shown in Figures 9 and 10. 
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g1) The time series diagram of             g2) The time series diagram of  

drug-sensitive submodel                   drug-resistant submodel 

 

g3) A phase diagram of a                  g4) A phase diagram of a 

drug-sensitive submodel                    drug-resistant submodel 

Figure 9. When 00000008.0 , the simulation of trajectory of Models (1) and (3). The 
red lines in g3) and g4) represent Model (1) and the blue lines represent Model (3). 

Numerical simulation results show that:  
Case 4 is different from Cases 1–3. Comparing Figures 9 and 10, when the noise intensity is 
00000008.0 , the solution of Model (3) will eventually oscillate around the drug-resistance 

equilibrium point rE ; When the noise intensity increases to 0000002.0 , it can be seen from H2) 

and H4 in Figure 10 that, with the increase of noise intensity, the number of drug-resistant infected 
cells and drug-resistant HBV will gradually decrease and eventually reach a disease-free equilibrium 
point. In the other three cases, the oscillations only increased. Therefore, it can be inferred that the 
increase of noise intensity, which affects the infection rate of drug-resistant HBV, can inhibit the 
increase of drug-resistant infected cells and drug-resistant HBV when the degree of drug resistance 
of the virus in patients is high. All Cases 1–4 indicate that with the increase of noise intensity, the 
oscillation amplitude of the solution of Model (3) will increase, which verifies the conclusion of 
Theorems 2–5. Case 4 also shows that when drug resistance is high, the increase of noise intensity 
will inhibit the replication of the virus, that is to say, the interference of human factors can be 
increased in real life, so that the number of viruses in the patient’s body is decrease. 
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h1) The time series diagram of             h2) The time series diagram of 

drug-sensitive submodel                    drug-resistant submodel 

 
h3) A phase diagram of a                  h4) A phase diagram of a 

drug-sensitive submodel                    drug-resistant submodel 

Figure 10. When 0000002.0 , the simulation of trajectory of Models (1) and (3). The 
red lines in h3) and h4) represent Model (1) and the blue lines represent Model (3). 

4.3. Influence of noise intensity on antiviral therapy 

If drug-resistant virus has been produced in the treatment process, the interference of noise will 
produce uncertainty phenomenon, so the change trend of virus cannot be accurately judged, and the 
subsequent treatment cannot achieve the expected goal. Taking the drug-resistance equilibrium point 
as an example, the initial value in 4.2 and the parameter value in Table 2 are still selected. The average 
steady state plasma concentration NC is still 0.8 ng/ml. The infection rate sK of sensitive HBV and 

the infection rate rK drug-resistant HBV is 8109   and 8102.5  , the mutation rate u  is 0.4, and 
the drug inhibition rate   is 0.6. At this time, the Model (1) has a globally asymptotically stable 

equilibrium point rE . The changing law of the solution of Model (3) is numerically simulated, and 
the simulation result is shown in Figure 11. 

It can be seen from Figure 11 that due to the influence of noise factors, the number of viruses 
may fluctuate around the lower limit of detection ( 310 copies/mL, the critical value for clinical 
treatment). For example, in Figure11 i1), during the period of 1070 to 1324 days of antiviral 
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treatment, the number of virus will be below the lower limit of detection many times. From i1) to i3) 
in Figure 11, it can be seen that as the noise intensity increases, the fluctuations near the lower 
detection limit ( 310 copies/mL) become more frequent. When it is clinically detected that the HBV 
DNA of a patient is below the lower limit of detection for many times, the drug will be stopped, but 
the actual patient is still at the equilibrium point of drug resistance. Stopping the drug will lead to a 
rapid increase in the number of viruses. The intensity of noise provides an illusion for clinical 
detection of HBV DNA. 

    
i1) When 0000002.01  , the time series       i2) When 0000005.02  , the time series  

diagram of drug-resistant submodel         diagram of drug-resistant submodel 

 

i3) When 0000008.03  , the time series diagram of drug-resistant submodel 

Figure 11. The simulation of trajectory of Models (1) and (3). The blue line represent 
healthy cells T , the green line represents drug-resistant infected cells rT ,The red line 
represents drug-resistant virus rV . 

The simulation results found that when the drug-resistant HBV in the patient is the main group 
of viruses, the increase in noise intensity that affects the infection rate of drug-resistant HBV can 
effectively inhibit virus replication and reduce drug-resistant infected cells and HBV. But it will also 
interfere with the correct detection of HBV DNA. Therefore, it is recommended that in the process of 
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clinical treatment, when the patient has strong drug resistance, measures should be taken to suppress 
the infection rate of the mutant strain, such as dressing change or combined drug therapy, so as to 
achieve the purpose of treating resistant infection cells and eliminating HBV. When the noise 
intensity is large, the number of detections should be strengthened during the treatment process, and 
the time of two detections should be lengthened to improve the accuracy of detection. Even when the 
number of viruses in the patient's body reaches the lower limit of detection, reasonable consolidation 
treatment should be carried out to make the patient's treatment more thorough. Avoid noise 
interference to make the detection inaccurate and affect the patient's antiviral treatment. 

5. Conclusions 

This paper established a hepatitis B virus dynamic model with random interference infection 
rate, proved the existence and uniqueness of the global positive solution, and obtained the asymptotic 
behavior of the model solution near the equilibrium point of the deterministic model. Through 
numerical simulation, the conclusion of the theorem is verified, and when the random interference is 
small enough, the solution of the random model vibrates around the equilibrium point of the 
determined model. It is found that the amplitude of the oscillation is proportional to the noise intensity. 
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