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Abstract: The purpose of this study was to assess the overall survival of patients with HGG using a 

nomogram which combines the optimized radiomics with deep signatures extracted from 3D Magnetic 

Resonance Images (MRI) as well as clinical predictors. One training cohort of 168 HGG patients and 

one validation cohort of 42 HGG patients were enrolled in this study. From each patient's 3D MRI, 

1284 radiomics features were extracted, and 8192 deep features were extracted via transfer learning. 

By using Least Absolute Shrinkage and Selection Operator (LASSO) regression to select features, the 

radiomics signatures and deep signatures were generated. The radiomics and deep features were then 

analyzed synthetically to generate a combined signature. Finally, the nomogram was developed by 

integrating the combined signature and clinical predictors. The radiomics and deep signatures were 

significantly associated with HGG patients’ survival time. The signature derived from the synthesized 

radiomics and deep features showed a better prognostic performance than those from radiomics or deep 

features alone. The nomogram we developed takes the advantages of both radiomics and deep signatures, 

and also integrates the predictive ability of clinical indicators. The calibration curve shows our predicted 

survival time by the nomogram was very close to the actual time. 

Keywords: high grade gliomas; radiomics; transfer learning; Magnetic Resonance Imaging; nomogram 

 

1. Introduction  

Glioblastoma multiforme is the most frequent malignant primary brain tumor in adults [1]. It is a 

deadly disease with a high mortality rate [2]. The median survival is only 12 to 14 months even with 

active treatment [3]. It is difficult to capture the comprehensive information of tumors in a non-invasive 
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way because of the spatial and temporal intra-tumor heterogeneity. Therefore, it is difficult to 

accurately predict the prognosis of patients. 

In recent years, in the fields of health care and science, medical images can be analyzed at any 

time through radiomics [4]. Therefore, medical and scientific information can be provided repeatedly 

in detail, which enables the comprehensive understanding of the characteristics of the entire tumor. 

With the rapid development of MRI technology, repeated and non-invasive assessment of tissue 

characteristics is becoming one of the main methods in the field of gliomas, such as tumor diagnosis, 

staging, targeted therapy, and evaluation and monitoring of treatment response [5,6]. Conventional 

MRI mainly shows the difference in signal intensity and mass effect of glioma hemorrhage, necrosis, 

edema tissue and the extent of lesion invasion. Multimodal MRI can not only reflect the morphological 

characteristics of glioma, but also reflect the function and metabolic status of tumor tissue. However, 

the traditional medical imaging mode limits the analysis of images to a range of visual judgment. The 

resolution of the human eye is limited, so the fine and minute features in each image are not easily 

noticed by the naked eye [7]. Radiomics is a developing research field that aims to extract a large 

amount of complex information from traditional medical images to form a high-dimensional 

developable feature space, including features that are not easily being visible or quantifiable. This is 

not only a diagnostic method, but also a method to extract more useful information from tumor 

phenotypes, which can be used for personalized medicine. 

In the past few years, a number of radiomics models have been proposed for survival prediction, 

distant metastasis prediction [8], molecular characteristics classification [9], etc. The high-throughput 

feature extraction is a critical task in radiomics. In previous studies, most extracted features are 

explicitly designed, or handcrafted. These handcrafted features include tumor shape, intensity, texture 

and wavelet textures. Although the number of handcrafted features can reach tens of thousands, these 

features are shallow and low-order image features. These features may not fully characterize the 

heterogeneity of the tumor, and therefore limit the potential of survival prediction models. In this case, 

it is necessary to extract deeper and higher-order features, which may improve the prediction 

performance of the survival prediction model. 

Recently, the application of deep learning has been intensively demonstrated in computer 

vision [10,11]. Convolutional Neural Network (CNN) is a typical artificial neural network in deep 

learning [12], which has achieved great success in image and video recognition and segmentation [13,14]. 

When the data sets are large enough, the deep learning algorithms often perform better compared to 

traditional algorithms. However, when it comes to medical image analysis, the data sets are often 

inadequate to reach the full potential of deep learning. In computer vision, transfer learning and fine 

tuning are often used to solve the problem of a small data set [15]. Transfer learning can also be 

incorporated into current radiomics model, with the help of transfer learning, extracting a large number 

of deep features from hidden layers of CNN becomes possible [16]. These deep features contain more 

abstract information of medical images. 

The main contributions of this work are as follows: 

(1) A new method for the prediction of prognosis of high grade gliomas based on MRI is proposed. 

(2) Radiomics and deep features are extracted based on multimodal MRI. 

(3) Transfer learning is used to solve the problem of insufficient sample size when 

extracting deep features. 

(4) Radiomics and deep features are combined to construct a nomogram in order to predict the 
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prognosis of high grade gliomas. 

2. Materials and Method 

2.1. Participants 

In this study, pre-treatment MR images of 259 HGG patients were collected, and 210 of them met 

the screening criteria. The data set is from Multimodal Brain Tumor Segmentation Challenge 2019 

(BraTS 2019) [17–19]. As BraTS 2019 are publicly available database without patient identifier, no 

institutional review board approval is required for the data set. The inclusion criteria were that patients 

with newly diagnosed and treatment-naive HGG and survival information and pre-treatment MR 

imaging including T1-weighted, T1-weighted Gadolinium contrast-enhanced, T2-weighted, and T2-

weighted Fluid Attenuated Inversion Recovery (short for T1, T1ce, T2, and FLAIR). The exclusion 

criteria are patients with a history of surgery or chemoradiation therapy and patients missing survival 

information. Overall survival is calculated from the initial pathologic diagnosis date to death or censure 

point if still alive. We randomly divided patients into training cohort (n = 168) and a validation cohort 

(n = 42) according to the ratio of 4:1. 

2.2. Data analysis and preprocessing 

Background information occupies a large proportion of images which is not helpful for extracting 

radiomic features and deep features. Therefore, it is necessary to remove the background information 

around the brain area. The slice size after cutting is 128 × 128. Each sequence of the original data 

contains 155 slices, and after removing 27 all-black slices, 128 slices can be obtained for each sequence. 

After the above processing, the size of the MRI is 128 × 128 × 128. Then, the three-dimensional tumor 

subregions were manually drawn slice by slice by an MRI radiologist with 15-year experience and a 

radiologist with 10-year experience using ITK-SNAP. Both radiologists were blind to the pathological 

results. The segmentation results were also evaluated by three independent reviewers to make sure 

they agree. Three tumor subregions include necrosis area, enhancement area and edema area as shown 

in Figure 1. 

 

Figure 1. Segmentation labels. 

As shown in Figure 1, the green part is the edema area, the yellow part is the enhancement area 

and the red part is the necrosis area. The necrosis area was the low intensity necrotic structures within 

the enhancing rim in T1ce and had hyper-intense signal in T2 and FLAIR. The enhancement area was 

confirmed as the Gadolinium enhancing rim excluding the necrotic center and hemorrhage with both 
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T1ce and T1 images. The edema area may include both peritumoral edema and any non-enhancing 

tumor. The segmented tumor subregions were then used for subsequent experiments. The follow-up 

experimental process includes feature extraction and selection, construction of radiomics signature, 

deep signature and combined signature, and nomogram modeling to obtain the survival prognosis of 

HGG patients. The overall framework is shown in Figure 2. 

 

Figure 2. The framework for developing a nomogram. 

As shown in Figure 2, we first segment the tumor region for each case. From each case’s 3D MRI, 

1284 radiomics features were extracted, and 8192 deep features were extracted via transfer learning. 

By using LASSO regression to select features, the radiomics signatures and deep signatures were 

generated. The radiomics and deep features were then analyzed synthetically to generate a 

combined signature. Finally, the nomogram was developed by integrating the combined signature 

and clinical predictors. 

2.3. Feature extraction 

In this paper, the radiomics features were extracted from three subregions and four MR modalities. 

The feature extraction subregions include necrosis, enhancement and edema. The radiomics features 

can be divided into three groups: (I) geometry, (II) intensity, (III) texture. The geometry features 

describe the three-dimensional shape characteristics of the tumor. The intensity features describe the 

first-order statistical distribution of the voxel intensities within the tumor. The texture features describe 

the patterns, or the second-and high-order spatial distributions of the intensities. A total of 1284 (107 

× 4 × 3) radiomics features were extracted. Details of the radiomics features can be found in Appendix 

A1. All the features were extracted through the pyradiomics package version 3.0 [20]. 

Radiomics features are explicitly designed or handcrafted. Although the number of handcrafted 

features can reach tens of thousands, these features are shallow and low-order image features. These 

features may not fully characterize the heterogeneity of the tumor, and therefore may limit the potential 

of survival prediction models. In this case, it is necessary to extract deeper and higher-order features. 

In this study, deep features were extracted from pre-trained CNN via transfer learning. 3D-ResNet50 

was chosen as the pre-trained CNN model [21]. The hyper-parameters of 3D-ResNet50 were weight 

decay 0.001, momentum 0.9, initial learning rate 0.001. Deep feature extraction includes 3 steps: pre-

training of 3D-ResNet50, fine-tuning and feature extraction. 

1. Pre-training: The 3D-ResNet50 model is pre-trained on 23 magnetic resonance data sets. The model 

had the ability to recognize the basic contours and details in the magnetic resonance image after pre-
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training which could accelerate the gradient descent in the subsequent fine-tuning process. 

2. Fine-tuning: The HGG patients in the BraTS 2019 data set were divided into 3 categories, which 

were postoperative survival time of less than 2 years, 2~3 years and more than 3 years. For four 

kinds of magnetic resonance sequences (including T1, T1ce, T2, and FLAIR), the model was fine-

tuned by classification tasks. A total of four fine-tuned models could be obtained, and these models 

have the ability to identify the length of survival of patients after surgery. 

3. Feature extraction: First, the gray values were normalized to range [0, 255] using linear 

transformation. Then, according to the segmentation results, the whole tumor (necrosis, 

enhancement and edema) area was used as the input of 3D-ResNet50. Finally, the deep features that 

could be computed by only forward propagation were extracted from the fully connected layer 

before the softmax layer. In total, 8192 (2048×4) deep features could be extracted for each patient. 

This procedure was accomplished by using the deep learning toolkit Pytorch. The structure of 3D-

ResNet50 is shown in Figure 3. The details of 3D-ResNet50 can be found in Appendix A2. 

 

Figure 3. Illustration of deep features extraction. 

2.4. Feature selection and signature construction 

LASSO is a computationally attractive alternative to standard covariance selection for sparse 

high-dimensional graphs and an effective approach for the biomarker selection of high-dimensional 

data [22]. We used LASSO to select a subset of the most significant radiomics features and deep 

features from the training cohort. 

For each patient, we use the selected linear combination of each radiomics feature and its 

corresponding weight as the radiomics score (Rad-score) [23], that is, the radiomics signature. The 

calculation method of the deep signature and the combined signature is the same as the radiomics 

signature. Without loss of generality, both deep signature and combined signature are represented 

by Rad-score. 

2.5. Assessment of signatures 

The association of the three signatures with patients’ survival time was evaluated in the training 

cohort and then validated in the validation cohort. A univariate cox proportional hazards model was 

applied in the training and validation cohorts by using radiomics, deep and combined signature to 

calculate C-index and hazard ratio (HR) [24,25], enabling the evaluation of three signatures’ predictive 

accuracy [26]. In addition, Kaplan-Meier survival analysis was performed in three cases to analyze the 
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correlation between the three signatures and patients’ survival. We used the median Rad-score as the 

cut-off line to divide all patients into low-risk and high-risk groups. The significant differences in 

survival rates between two groups were accessed using a log-rank test. 

2.6. Development and performance of the nomogram 

We used combined signature and clinical information (age) to draw a nomogram of the survival 

probability of COX regression in the training cohort, considering that age has a greater impact on the 

prognosis of patients. The nomogram was evaluated in the training cohort and validated in the 

validation cohort. The discrimination performance of nomogram was assessed by the Harrell’s C-index. 

The calibration curves of the radiomics nomogram for 1-, 2-, and 3-year survival time were evaluated 

by plotting the actual survival against predicted survival probabilities. 

2.7. Statistical analysis 

The statistical analysis of this research was based on R software (R: a free software environment 

for statistical computing and graphics. URL: https://www.r-project.org/). The details of the packages 

used are described in Appendix A3. All statistical tests were with a significance level at 0.05. 

3. Results 

3.1. Feature extraction and radiomics signature construction 

In this paper, a total of 1284 radiomics features and 8192 deep features were extracted from the 

3D images. In order to eliminate redundant or low-relevant features, we used the LASSO regression 

model to select the features of radiomics, deep and combined features. 

As shown in Figure 4, a, b and c represent the coefficient distribution of each feature, and a 

coefficient profile plot was produced against the log (λ) sequence. And d, e and f are to use the 10-fold 

cross-validation to adjust the parameters in the LASSO model to get the minimum standard. The partial 

likelihood deviance was plotted versus log (λ). Dotted vertical lines were drawn at the optimal values 

by using the minimum criteria, and the dotted line indicated the number of selected features. As can 

be seen in d, e and f, seven, nine, and fifteen features with non-zero coefficients were chosen. They are 

used as the predictive features of radiomics, deep and combined feature groups, respectively. 

We linearly combine the selected features of each group with their corresponding coefficients to 

obtain radiomics signature, deep signature and combined signature. Without loss of generality, 

radiomics signature, deep signature and combined signature were all represented by Rad-score. 

3.2. Assessment of signatures in the training cohort 

In this section, we assessed the prognosis performance of radiomics, deep and combined 

signatures using cox hazard regression model. In order to compare the prognostic performance of the 

three categories of signatures, we calculated the HR of each label, as shown in Table 1. 
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Figure 4. Feature selection using the LASSO cox regression model. 

Table 1. HR analysis for the different signature groups. 

 Training cohort Validation cohort 

HR p value 95% CI for HR HR p value 95% CI for HR 

Lower Upper Lower Upper 

Radiomics signature 6.430 0.007 2.587 15.984 4.636 0.014 1.365 15.747 

Deep signature 9.712 < 0.0001 5.080 18.567 8.302 < 0.0001 4.273 16.129 

Combined signature 12.328 < 0.0001 6.578 23.106 10.965 < 0.0001 5.959 20.178 

It can be seen from the table that the HR values of the three signatures are all greater than 1, 

indicating that the larger the signature value, the higher the patient’s risk of death and the shorter the 

survival time. 

In addition, Kaplan-Meier survival analysis was performed in three cases to analyze the 

correlation between the three signatures and patients’ survival. We used the median Rad-score as the 

cut-off line to divide all patients into low-risk and high-risk groups. The significant differences in 

survival rates between two groups were accessed using a log-rank test. Figure 5 shows the survival 

probability of the patients in the high-risk or low-risk cohort. The results of the log-rank test indicate 

the significant discrimination between two groups. 
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Figure 5. K-M analysis of the patients in the high- and low-risk groups in the training cohorts. 

3.3. Validation of the signatures 

In order to further evaluate the relationship between the three features and patient survival time, 

a univariate cox proportional hazards model was applied in the training and validation cohorts by using 

radiomics, deep and combined signature to calculate C-index. The higher the C-index, the better the 

prediction performance of the model. In the validation, the radiomics signature yielded a C-index of 

0.679. The deep signature yielded a C-index of 0.707. The combined signature yielded a C-index of 

0.718. Table 2 shows the C-index calculated for the training and validation cohorts. 

Table 2. The Harrell concordance index of different radiomics signature and nomogram. 

 Training cohort Validation cohort 

C-index 95% CI C-index 95% CI 

Radiomics signature 0.688 0.646-0.730 0.679 0.636-0.722 

Deep signature 0.722 0.697-0.747 0.707 0.683-0.731 

Combined signature 0.736 0.711-0.761 0.718 0.693-0.743 

Nomogram 0.741 0.716-0.766 0.720 0.660-0.780 

3.4. The nomogram and its performance 

Considering that age has a greater impact on the prognosis of patients, we integrated the combined 

signature with clinical information (age) to generate a nomogram in the training cohort (Figure 6). 

In the training cohort, the C-index of nomogram is 0.741, and in the validation cohort, the C-

index of nomogram is 0.720. Figure 7 shows the calibration curve of nomogram. It can be seen that 

the predicted probability is very close to the actual survival time of the patient. 
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Figure 6. Nomogram. 

 

Figure 7. The calibration curve of the nomogram. 

4. Conclusion 

In conclusion, we proposed a prognostic model whose feature extraction is no longer limited to 

radiomics features. High-level deep features were extracted and integrated into our prognostic model. 

The results show that the deep features extracted through transfer learning are better than traditional 

radiomics features in predicting the survival rate of HGG patients. The results are as expected, because 
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deep features reflect higher-order imaging modes and capture more imaging heterogeneity than low-

level shape, intensity, and texture features. According to the hypothesis of radiomics, the prognosis is 

poor because imaging heterogeneity of intra-tumor may be an expression of potential genetic 

heterogeneity, and it may cause the tumor to become resistant to treatment. However, how to explain 

the association between deep features and genetic features is still challenging. It is related to complex 

biological processes. Further work is needed to establish the principles of genomics to explain the 

correlation between deep features and genetic heterogeneity. 

In the validation cohort, combined signatures can successfully predict the survival rate of patients, 

and they perform better than radiomics and deep signatures. From the statistical perspective, 

multivariate model is statistically robust in survival analysis [27]. Moreover, the intra-tumor genetic 

heterogeneity suggests that tumor subregions could be genetically different and may comprise multiple 

subclones. This could be better reflected by multiple high-order deep features extracted from multi-

subregions in multi-modalities rather than individual feature. Similar to the genomic studies of 

exploring biomarkers from high-throughput genomic data, it is also regarded as a common “-omics” 

approach to construct a multi-factor radiomics signature for outcome prediction. 

In this study, the performance of the combined signature is superior to clinical factors, such as 

age. None of these clinical factors successfully divided patients into groups with different prognostic 

risks. Based on the combined signature and clinical risk factors (age), we drew a nomogram that can 

intuitively predict the likelihood of survival. According to the calibration curve, we can see that the 

nomogram is of good prediction performance. 

Despite encouraging results, this study still has some limitations. First, this is a retrospective study 

with a relatively small sample size. In the future, large-scale multi-center research is needed to fully 

evaluate the generalization ability of prognostic models. Second, due to the limitation of sample size, 

this study uses transfer learning to extract deep features. By fine-tuning on the pre-trained network or 

training from scratch, further work is required to train a dedicated feature extractor. 
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