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Abstract: Some epidemiological models exhibit bi-stable dynamics even when the basic reproduction
number R0 is below 1, through a phenomenon known as a backward bifurcation. Causes for this phe-
nomenon include exogenous reinfection, super-infection, relapse, vaccination exercises, heterogeneity
among subpopulations, etc. To measure the reinfection forces, this paper defines a second threshold:
the basic reinfection number. This number characterizes the type of bifurcation when the basic repro-
duction number is equal to one. If the basic reinfection number is greater than one, the bifurcation is
backward. Otherwise it is forward. The basic reinfection number with the basic reproduction number
together gives a complete measure for disease control whenever reinfections (or relapses) matter. We
formulate the basic reinfection number for a variety of epidemiological models.
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1. Introduction

Mathematical epidemiology constructs mathematical models to understand the dynamics of trans-
missible diseases, study disease control and elimination, compare strategies of treatments and vaccina-
tions, predict the peak time of an epidemic, and estimate the final size of an outbreak. In the process,
mathematical theories on transmission dynamics of infectious diseases are enriched.

It was Kermack and McKendrick who established the celebrated threshold theory to prognosticate
the occurrence of an epidemic [1, 2]. Their threshold was given explicitly in terms of the initial size of
the susceptible population (the size of the community). If the initial size of the susceptible population
is less than the threshold value, no epidemic can occur; otherwise, it can occur. The use of mass-action
law by Kermack and McKendrick was the fundamental for them to address the threshold in terms of the
density of the susceptible. Adding vital dynamics from Kermack and McKendrick’s epidemic models,
Hethcote [3, 4] showed that the threshold is a global critical value (regardless of the initial conditions)
for S-I-S models and S-I-R models (even when vaccination was included). Lajmanovich and York [5]
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and Hethcote and van Ark [6] found that the global threshold is valid for multi-group S-I-S models for
the spread of gonorrhea, but each group had constant sizes.

Starting in the early 1980’s, the threshold for epidemic models has been consistently denoted by
R0, which is now formally defined as the expected number of secondary cases produced by a typical
infected individual during its entire infectious period in a susceptible population. Though it took many
iterations to define R0 [7], each step along the way to properly interpret this critical biological number
is a prominent landmark in mathematical epidemiology. For instance, basic reproduction rate had been
seen in [8–10]; infectious contact number and replacement number were seen in [3, 4, 11]; the basic
reproduction rate later was replaced by basic reproduction ratio such as in [12, 13]; and finally basic
reproduction number has been uniformly accepted since the earlier 1990’s [14].

As a fundamental threshold, the basic reproduction number plays the foremost role in determining
whether a disease can take off or not. If the basic reproduction number for a disease is greater than one,
that disease can invade a population. If it’s less than one, the disease dies out (for instance see [12,13]).
The primary purpose of this paper, however, is to demonstrate that the beauty of R0 is not the only story
in mathematical epidemiology.

In fact, many epidemiological models have questioned whether a single threshold could completely
determine the dynamics of a disease. One has observed that multi-threshold values are necessary to
completely determine the dynamics of the disease [15–18]. As a result, a collection of epidemic models
have shown that bi-stability occurs when R0 < 1, which typically has been driven by the occurrence of
backward bifurcations [19–22].

As is shown schematically in Figure 1, when the bifurcation at R0 = 1 is forward, R0 > 1 implies
disease can invade population; while R0 < 1, the disease cannot invade the population. If the bifur-
cation is backward at R0 = 1, there exists a stable equilibrium (even a stable limit cycle exists) when
R0 < 1 [17], i.e., the disease does not die out even though R0 < 1.

Figure 1. Left figure is a forward bifurcation diagram, right a backward bifurcation diagram.

The study of backward bifurcations has a fairly long history. We briefly review the earlier research
in mathematical epidemiology on backward bifurcations. Mathematical epidemiology literature first
reported the multiple endemic equilibria in mathematical models for the spread of HIV in 1989 by
Castillo-Chavez and collaborators [23]. It historically challenged that “thinking that S-I-R epidemic
models do not have multiple endemic equilibria is not accurate”. Their later papers further confirmed
that multiple group model of S-I-R type can have multiple endemic equilibria due to the varying sub-
population sizes [24]. By considering that the birth rate is affected by the disease, Diekmann and
Kretzschmar observed multiple stable equilibria in 1991 [25]. However, neither [23] nor [25] explicitly
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used the words–backward bifurcation. It wasn’t until 1995 that Hadeler and Castillo-Chavez first
formally used the name: backward bifurcation, and its the occurrence was due to the introduction of
core group and non-core group [26].

Hadeler and van der Driessche’s paper in 1997 entitled “Backward bifurcation in epidemic con-
trol” [22] studied groups of two that have different susceptibilities can lead to the bi-stability situation.
Dushoff et al. explored possible mechanisms behind backward bifurcations in simple disease models
in 1998 [27]. This research further developed a theoretical local bifurcation indicator that determines
whether forward or backward from earlier work in [24]. Later, this indicator was well formulated
in [18] and [21]. The new millennium saw an new exploration in the study of backward bifurca-
tions. Variety of mechanisms behind backward bifurcations have been identified in epidemic models.
Castillo-Chavez and Feng [15] constructed dynamic model for the transmission of tuberculosis, claim-
ing that exogenous reinfections can result in backward bifurcations, which was later found in other
mathematical models for the transmission of tuberculosis [28–30]. It was shown by Kribs-Zaleta and
Velasco-Hernández in [31] and by Brauer in [19, 20] that vaccinations can trigger backward bifurca-
tion. Martcheva and Thieme showed that super-infections, a sort of reinfection, are one mechanism
in generating backward bifurcations [32]. When looking back the mathematical models for tuber-
culosis [15, 28–30] collectively, one can conclude that reinfection would naturally cause backward
bifurcations. Wang [33] and our previous work [17] showed that non-standard treatment strategies can
cause the occurrence of backward bifurcation. Here, we very briefly review some well-known studies
for backward bifurcations in deterministic differential equation models for disease transmission. It
is worth mentioning that backward bifurcations have been found in stochastic and discrete epidemic
models (for instance, see [34, 35]).

The basic reproduction number was found in measuring the primary infection force. When rein-
fections take place, how do we measure the reinfection forces? Corresponding to R0, this paper finds
a basic reinfection number that measures the reinfection forces, which turns out to be a new tipping
point for disease dynamics.

The following Theorem 1 is a successful and convenient approach in determining whether or not a
system exhibits a backward bifurcation ( [18,21,27]). It will be repeatedly used in this article to guide
all our calculations.

Theorem 1. [21] Consider a system of ordinary differential equations
dx
dt

= f (x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R), (1.1)

with a parameter φ. Assume that:

1. 0 is an equilibrium of the system, that is, f (0, φ) ≡ 0 for all φ; and
2. Zero is a simple eigenvalue of Dx f (0, 0) =

(
∂ fi
∂x j

(0, 0)
)

and all other eigenvalues of Dx f (0, 0) have
negative real parts.

Let W = [w1,w2, · · · ,wn]′ and V = [v1, v2, · · · , vn] be a right and a left eigenvector matrix Dx f (0, 0),
respectively, corresponding to the zero eigenvalue; and let fk(x, φ) be the kth component of f (x, φ).
Then the local dynamics of system (1.1) around the equilibrium 0 is totally determined by the signs of
a and b below:

a =

n∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0), (1.2)
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b =

n∑
k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0). (1.3)

Particularly, if b > 0 and a > 0, then a backward bifurcation occurs for system (1.1) at φ = 0; while
b > 0 and a < 0, a forward bifurcation occurs.

When applying Theorem 1 to an epidemiological model, the equilibrium 0 corresponds to the
disease-free equilibrium and φ = R0 − 1. That is, φ = 0 corresponds to R0 = 1. Theorem 1 here
is not exactly the same as Thorem 4.1 in [21], because we have dropped the assumption that W is
nonnegative (see Remark 1 in [21]).

2. The Basic Reinfection Number

In this section, we use a simple epidemic model to introduce our essential concept: the basic rein-
fection number.

Figure 2. Diagram of model for cigarette smoking. Relapse of cigarette smoking is high-
lighted.

We first introduce a mathematical model for a socially transmitted disease such as cigarettes smok-
ing (or drug abuse), where peer pressure or peer influence presumably plays a critical role. The entire
population is divided into nonsmokers, smokers, temporary quitters, and permanent quitters. Let S be
the number of nonsmokers; I the number of smokers; R the number of the individuals who temporarily
quit smoking but have not decided if quit smoking forever; and T the number of individuals who has
commit to quitting cigarettes smoking permanently. A system of ordinary differential equations is used
to model the dynamics of cigarettes smoking. The model equations read

dS
dt = µN − β1S I

N − µS ,
dI
dt = β1S I

N + β2R I
N − µI − αI,

dR
dt = αI − β2R I

N − µR − γR,
dT
dt = γR − µT,

N = S + I + R + T.

(2.1)

The per-capita birth rate and the per-capita death rate are assumed to equal (µ). β1S I
N is the rate of new

smokers due to peer pressure. β2R I
N is the relapse rate, which is also driven by peer pressure. αI is the

rate of temporary quitting. γR is the rate of permanent quitting.
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In the study of epidemics models, it has become well known that the infection force β1S I
N is mea-

sured by the basic reproduction number. That is the well-known threshold phenomenon. When R0 > 1,
the disease takes off; and R0 < 1 the disease dies out. Now we are interested in how to measure the
reinfection force (relapse rate) β2R I

N and the role of the reinfection force in determining the dynamics
of the disease.

The basic reproduction number for model (2.1) is given by

R0 =
β1

µ + α
. (2.2)

But the dynamics of the model (2.1) can be described by two quantities: R0 and

Rr =

(
β2

µ + α

) (
α

µ + α

) (
µ

µ + γ

)
. (2.3)

Theorem 2. Consider model (2.1). When Rr < 1, a forward bifurcation occurs at R0 = 1; Conversely,
when Rr > 1, a backward bifurcation occurs at R0 = 1.

According to Theorem 2, the direction of bifurcation at R0 = 1 is completely determined by Rr. We
define Rr =

(
β2
µ+α

) (
α
µ+α

) (
µ

µ+γ

)
to be the basic reinfection number for the SIRT model (2.1). Formally,

basic reinfection number, denoted byRr, is defined to be the average number of reinfections of a typical
infectious during entire infectious period in a subpopulation of all recovered individuals.

The basic reinfection number Rr in (2.3) has clear epidemiological and biological meaning. Exactly
the same as R0, Rr measures both the availability of resources and capability to reinforce. Each term
in the expression has clear demographic or epidemiological implication.

Obviously, β2 is the transmission rate of reinfection; 1
µ+α

is the average reinfection period which
is the same as the average infection period. The first part of the expression in (2.3) is the same as
R0, except the for reinfection rate. The second and the third parts imply that the reinfection takes
place in the recovered subpopulation (R). To become a member of the R-class, an infected individual
must recover from I-class to R-class. This occurs with the probability α/(α + µ). Furthermore, an
individual in R-class can be reinfected only if the individual does not become a member of T -class.
This event happens with the probability µ/(γ+µ). Overall (α/(α + µ)) (µ/(γ + µ)) gives the probability
of contacting the recovered class. Comparing the expressions (2.3) and (2.2), it can be seen that the
only difference is that they each apply to distinct sub-populations. The basic reproduction number
is applied to the general susceptible population (naive population). The probability of contacting the
susceptible class is one because it is assumed that all individuals are susceptible from the definition of
R0. However, this is not the case for basic reinfection number, since reinfections take place only if the
recovered population is established. The term (α/(α + µ)) (µ/(γ + µ)) in (2.3) is exact the probability
of the establishment of the recovered population. Therefore, the basic reinfection number is applied to
the recovered population. In short, the basic reproduction number takes care of the primary infections
and the basic reinfection number accounts for reinfections, which were missing in R0 (It is beyond the
reach of R0).

Below, we mathematically prove Theorem 2.
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Proof. The Jacobian of system (2.1) around the smoking-free equilibrium (N, 0, 0, 0) is given by

JDFE =


−µ −β1 0 0
0 β1 − (α + µ) 0 0
0 α −(µ + γ) 0
0 0 γ −µ

 .
Choosing β1 as the bifurcation parameter, then R0 = 1 corresponds to β1 = β∗1 = µ + α. It can be seen
that λ = 0 is a simple eigenvalue of the matrix J(DFE, β=β∗1). A right and left eigenvector corresponding to

the zero eigenvalue are W′ = [w1,w2,w3,w4] = [−β
∗
1
µ
, 1, α

µ+γ
, αγ

µ(µ+γ) ] and V = [v1, v2, v3, v4] = [0, 1, 0, 0],
respectively. Using formula of (1.2) and (1.3), we obtain b = Λ

µ
> 0 and a = 2β∗1w1w2 + 2 β2α

µ+γ

which can be conveniently expressed as a
2 =

β2α

µ+γ
−

(µ+α)2

µ
. Therefore, a backward bifurcation occurs if

β2α

µ+γ
−

(µ+α)2

µ
> 0. It is equivalent to

(
β2
µ+α

) (
α
µ+α

) (
µ

µ+γ

)
> 1, i.e. Rr > 1. Applying Theorem 1, Theorem 2

follows. �

3. Examples of Basic Reinfection Number

This section demonstrates the basic reinfection numbers in some epidemic models for tuberculosis
and socially transmitted diseases.

Figure 3. Diagram of tuberculosis transmission (3.1).

3.1. Exogenous Reinfection of Tuberculosis

For more general tuberculosis (TB) exogenous reinfection models, we refer the reader to [15, 21].
Here, we construct a simpler model to illustrate the infection number. Basically, we assume that suc-
cessfully treated individuals are still susceptible individuals. The host population is divided into the
following three epidemiological classes: susceptible (S), exposed (L, infected but not infectious), in-
fectious (I), and successfully treated individuals are still susceptible. Let N denote the total population
size. The model takes the following ODE form of three equations:

dS
dt = Λ − β1S I

N − µS + r2L + r1I,
dL
dt = β1S I

N − β2L I
N − (µ + k + r2)L,

dI
dt = β2L I

N + kL − (µ + d + r1)I.

(3.1)
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Here, Λ is the recruitment rate of the population; β1 is the average number of effective contacts a
susceptible has per unit of time; β2 is the average number of effective contacts an exposed individual
has per unit of time. µ is the per-capita natural death rate; k is the primary progression rate at which an
exposed individual leaves the latent class by becoming a member of an infectious class; d is the per-
capita disease-induced death rate; r2 and r1 are the per-capita treatment rates for the exposed and the
infected, respectively. The term β2L I

N models the exogenous reinfection rates. The treated infections
and exposed become members of susceptible class. The basic reproduction number for (3.1) is

R0 =

(
β1

µ + d + r1

) (
k

µ + k + r2

)
.

Because of the exogenous reinfection, model (3.1) undergoes a richer dynamics due to the occurrence
of backward bifurcation, which can be characterized by the basic reinfection number.

The basic reinfection number for model (3.1) is

Rr =

(
β2

µ + d + r1 + k

) (
µ + r2

µ + k + r2

)
. (3.2)

Again, we conclude that the basic reinfection number characterizes the occurrence of backward bifur-
cation. We formally summarize this result into theorem 3 below. The proof of this theorem can be
found in Appendix A.

Theorem 3. Consider model (3.1). The basic reinfection number is given by equation (3.2). When
Rr < 1, a forward bifurcation occurs at R0 = 1; Conversely, when Rr > 1, a backward bifurcation
occurs at R0 = 1.

Similar to the interpretation to the basic reinfection number for SIRT model (2.1), here is an ex-
planation to the basic infection number for model (3.1). µ+r2

µ+k+r2
is the fraction of exposed population

that does not naturally progress to active TB. This is the target population for exogenous reinfections.
Only this portion of exposed population can be reinfected. It was observed that 1

µ+d+r1+k tends to be the
average reinfection period, which is shorter than the average primary infection period 1

µ+d+r1
.

A perfect match of basic reproduction number and the basic reinfection number can be identified
in an extreme case where k = 0. In this case, R0 = 0 and there is no primary progression and all new
cases are the results of the exogenous reinfections. It is amazing that Rr =

β2
µ+d+r1

has the exactly same
formula as the basic reproduction number. If this number is greater than one, then there is possibility
that the disease becomes endemic. If the number is less than one, the disease dies out. This study
has observed an incredible result: a disease can become endemic even though the basic reproduction
number is equal to zero provided that there are reinfections and basic reinfection number is bigger
then one.

3.2. TB Model with Two Strains

Though regular mycobacterium tuberculosis is curable, it takes eight months to clear the bacterium
with a complete treatment regime of antibiotics. Incomplete treatment puts the patient at higher risk of
developing antibiotic resistance. Now we extend our model in previous subsection to consider multiple
strains of tuberculosis infections. An antibiotic sensitive strain of TB and an antibiotic resistant strain
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Figure 4. A backward bifurcation of system (3.1). This figure is generated by letting β1

change from 0.2 to 0.45, and β2 = 5, µ = 0.15, k = 0.1, r1 = r2 = 0.01, d = 0. The
corresponding basic reinfection number Rr = 11.83 > 1.

Figure 5. Diagram of TB model (3.3) of two strains.

are considered. Our goal is to naturally extend our basic reinfection number from one strain to multiple
strains.

Notations are the same as model (3.1). Here, we simply add subscripts to distinguish the differ-
ent strains. The first strain is drug-sensitive and the second is drug-resistant. Let L1 and L2 denote
individuals exposed to regular tuberculosis (antibiotic sensitive) and antibiotic resistant tuberculosis,
respectively. Likewise, I1 and I2 stand for infectious individuals of antibiotic sensitive and antibiotic
resistant, respectively. Treatments are applied to both the exposed and the infectious of the sensitive
strain. p is the proportion of exposed individuals of antibiotic sensitive who did not complete their
treatment and develop into antibiotic resistance. 1− p is the proportion of successfully treated exposed
individuals. Hence, the treatment rate r2L1 for the exposed class is broken into successful treatment
rate (1 − p)r2L1 and unsuccessful treatment rate pr2L1. The former becomes member of S class, the
latter goes to L2 class. Let q be the proportion of infectious individuals of antibiotic sensitive who did
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not complete their treatment and develop into antibiotic resistant; 1− q be the proportion of successful
treatment for infectious individuals. Among total treatment rate of r1I1, qr1I1 gives the rate at which
individuals develop resistant tuberculosis; and (1 − q)r1I1 goes to S class as the result of successful
treatment. The model takes the following form of ordinary differential equations:

dS
dt = Λ −

β1(I1+I2)
N S − µS + (1 − p)r2L1 + (1 − q)r1I1,

dL1
dt =

β1I1
N S − β2I1

N L1 − (µ + k1 + r2)L1,

dL2
dt =

β1I2
N S + pr2L1 + qr1I1 −

β2I2
N L2 − (µ + k2)L2,

dI1
dt =

β2I1
N L1 + k1L1 − (µ + d1 + r1)I1,

dI2
dt =

β2I2
N L2 + k2L2 − (µ + d2)I2.

(3.3)

Computations in Appendix D show that R1
0 =

(
β1

µ+d1+r1

) (
k1

µ+k1+r2

)
is the basic reproduction number for

drug-sensitive strain and R2
0 =

(
β1
µ+d2

) (
k2
µ+k2

)
is the basic reproduction number for drug-resistant strain.

Then the basic reproduction number for whole system is

R0 = max
{(

β1

µ + d1 + r1

) (
k1

µ + k1 + r2

)
,

(
β1

µ + d2

) (
k2

µ + k2

)}
. (3.4)

In Appendix D, a detailed computation for formula (3.4) is presented.
The situation is similar to that of the basic reproduction number (3.4). For each strain of TB, there

is a corresponding basic reinfection number. The basic reinfection number for sensitive strain is

R1
r =

(
β2

µ + d1 + r1 + k1

) (
µ + r2

µ + r2 + k1

)
,

which is derived from Theorem 1 by assuming R1
0 > R

2
0. On the other hand, if R1

0 < R
2
0, the basic

reinfection number for resistant strain of TB is

R2
r =

(
β2

µ + d2 + k2

) (
µ

µ + k2

)
.

Hence, the basic reinfection number for the entire system is

Rr =


(

β2
µ+d1+r1+k1

) (
µ+r2

µ+r2+k1

)
, if R1

0 > R
2
0(

β2
µ+d2+k2

) (
µ

µ+k2

)
, if R1

0 < R
2
0

(3.5)

Theorem 4. Consider model (3.3). The basic reinfection number is given by (3.5). When Rr < 1, a
forward bifurcation occurs at R0 = 1; Conversely, when Rr > 1, a backward bifurcation occurs at
R0 = 1.

We conclude again that the basic reinfection number controls the occurrence of backward bifurca-
tion. Biological interpretation for the basic infection number is exactly the same as (3.2) of TB model
(3.1) for a single strain. Both resistant strain and sensitive strain include the exogenous reinfection
which causes the occurrence of backward bifurcations. What if both strains generate bi-stability? Nu-
merically, tri-stability dynamics were found in [28]. That is, a collision of two backward bifurcations
is able to generate tri-stability dynamics. We refer the interested readers to the examples in [28].
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3.3. A Mathematical Model for Sleeper Effects

Children who smoked once before age 11 are twice as likely to become a regular smoker by age
14 [37]. This is so called the sleeper effects. In this subsection, we present a mathematical model to
study the dynamics of smoking in the United States among children ages 11 to 18 [38].

Figure 6. Diagram of model for cigarettes smoking among young adults. Two-strain model
is adopted to take consideration of sleeper effects.

All children enter the system as susceptible non-smokers with either little or no smoking history.
Consequently, a two-string SIRT model is constructed, where string 1 is composed of individuals who
smoked once before age 11, and string 2 is composed of those who did not. Using this model, the
“sleeper effect” can be investigated.

Each string is composed of four classes; Ni, S i, Qi (where i = 1, 2 denotes the respective string), and
P. The susceptible non-smoker classes (Ni) are composed of individuals who have never been regular
smokers. The regular smoker classes (S i) are composed of smokers. The recovered classes (Qi) are
composed of individuals who have quit smoking but are susceptible to relapse. The class of permanent
non-smokers (P) is composed of individuals who have decided to permanently quit (from Qi).

Table 1. Parameter Definitions.

Parameter Definition
µ The rate of leaving a class as a result of aging or death

It is also the recruitment rate
r Fraction of adolescents who smoked before age 11
βi Conversion rate of new smokers
φi Rate at which individuals quit smoking
ψi Relapse rate
αi Rate at which individuals permanently quit smoking

Individuals who turn 11 years old enter either N1 or N2 with rates µrT and µ (1 − r) T , respectively,
where T is the total population of adolescents. Non-smokers (Ni) are susceptible to becoming regular
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smokers as a result of interactions with regular smokers (S i). Smokers (S i) can quit smoking due to
personal choice or education. Individuals who have quit (Qi) can relapse due to social interactions
with smokers. All individuals who are not currently regular smokers (Ni, Qi) can move to class P
by choosing to permanently abstain from cigarettes. We assume the total population, T , is constant.
Definitions of all model parameters are shown in Table 1. The following mathematical model was
proposed in [38]. 

dN1
dt = rµT − β1N1

S 1+S 2
T − µN1,

dN2
dt = (1 − r) µT − β2N2

S 1+S 2
T − µN2,

dS 1
dt = β1N1

S 1+S 2
T + ψ1Q1

S 1+S 2
T − (φ1 + µ) S 1,

dS 2
dt = β2N2

S 1+S 2
T + ψ2Q2

S 1+S 2
T − (φ2 + µ) S 2,

dQ1
dt = φ1S 1 − ψ1Q1

S 1+S 2
T − (α1 + µ) Q1,

dQ2
dt = φ2S 2 − ψ2Q2

S 1+S 2
T − (α2 + µ) Q2,

dP
dt = α1Q1 + α2Q2 − µP,

T = N1 + N2 + Q1 + Q2 + S 1 + S 2 + P.

(3.6)

The equations of N1, S 1 and Q1 in model (3.6) describe the dynamics of the population that smoked
at least once before age 11. Likewise, the equations of N2, S 2 and Q2 describe the dynamics of the
population that did not smoke before age 11.

The basic reproduction number for model (3.6) is

R0 = r
β1

φ1 + µ
+ (1 − r)

β2

φ2 + µ
. (3.7)

β1
φ1+µ

is the basic reproduction number of subpopulation with a smoking history and β2
φ2+µ

is the basic
reproduction numbers of subpopulation without a smoking history. The overall basic reproduction
number is the weighted average of the basic reproduction numbers for these two populations using r
and (1 − r) as the weights.

The general structure of model (3.6) is almost the same as model (2.1). Since each string of (3.6) has
the same structure as (2.1), we then expect to observe the same structure of basic reinfection number.
To highlight the role of the basic reinfection number in this research, we here consider a simpler case
where that β1 = β2.

The basic reinfection number for model (3.6) is

Rr = r
ψ1

φ1 + µ

φ1

φ1 + µ

µ

α1 + µ
+ (1 − r)

ψ2

φ2 + µ

φ2

α2 + µ

µ

α2 + µ
, (3.8)

where
(

ψ1
φ1+µ

) (
φ1
φ1+µ

) (
µ

α1+µ

)
is the basic reinfection number of subpopulation with a smoking history

before age 11. Likewise,
(

ψ2
φ2+µ

) (
φ2
α2+µ

) (
µ

α2+µ

)
is the basic reinfection number of subpopulation without

a smoking history before age 11.
To interpret the meaning of ψ1

φ1+µ

φ1
φ1+µ

µ

α1+µ
, we break it into two components. ψ1

φ1+µ
is the average of

relapse due to a typical smoker with smoking history before age 11 since ψ1 is the relapse rate and 1
φ1+µ
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is the average smoking period in S 1. The second part φ1
φ1+µ

µ

α1+µ
finds the proportion of potential relapse

population, because φ

φ1+µ
is the proportion of quitting in S 1, and µ

α1+µ
is the proportion of not permanent

abstaining from cigarettes smoking of Q1 class.
The overall basic reinfection number (3.8) is the weighted average of the basic reinfection numbers

of two subpopulations using r and (1−r) as the weights. It has the same format as the basic reproduction
number (3.7).

We have already achieved the same conclusion that if Rr > 1, the model (3.6) undergoes a backward
bifurcation at R0 = 1. Such a statement is justified rigorously in Appendix C.

If relapse does not come into play, i.e., ψi = 0, then Rr = 0 < 1 and consequently backward
bifurcation cannot happen. Namely, Rr > 1 happens uniquely because of the relapse. To handle with
cigarette smoking in adolescence, relapse must be avoided by all means.

4. Conclusions

The reinfection forces (or capability of relapse) is successfully measured by the basic reinfection
numbers, the identical role that basic reproduction number plays for the primary infection forces. A
primary infection invades a population if the basic reproduction number is greater than one. If reinfec-
tion or relapse exist, the basic reinfection indicates a successful invasion of a disease into a population
even when the basic reproduction number is less than one. Not only does the basic reinfection number
Rr quantify the reinfection forces, but also specifies the type of bifurcation at the basic reproduction
number R0 = 1.

In reconsidering the remarkable observation from model (3.1) for tuberculosis, where the disease
is still able to spread when the basic reproduction number is equal to zero, we may want to combine
R0 and Rr together for a complete elimination of the disease. For instance, max{R0,Rr} would be a
more proper control number, since the disease dies out when max{R0,Rr} < 1 regardless the initial
epidemiological status. On one hand, max{R0,Rr} can be applied to epidemic models without re-
infections because, when there is no reinfection, the basic reinfection number Rr = 0, subsequently
max{R0,Rr} = R0. On the other hand, more important observation is that max{R0,Rr} is able to explain
why an infectious disease can spread when R0 = 0. Therefore, as an indicator whether the disease can
take off or not, max{R0,Rr} is better than R0 alone.

Using a few of deterministic epidemic models, we intend to introduce a new concept in theoretic epi-
demiology. The basic reinfection numberRr has successfully characterized the occurrence of backward
bifurcations for a large number of epidemic models. But we found that it is unsuccessful for the ap-
pearance of backward bifurcations caused by vaccination factor or nonlinear treatment rate [17,31,33].
Further research would find a corresponding counterpart for the epidemiological model where vacci-
nation matters or nonlinear treatments are applied.

Unlike R0, which has been well formulated by using the next generation operator [13, 18, 36], in
this paper we do not have a universal formula for Rr. Our approach to formulate it is to compute a and
b from Theorem 1. Then manage the inequality a > 0 in order to find the basic reinfection number.
Future work may be devoted to formulate Rr in general scenarios.

In the range of R0 < 1, if reinfection force is strong enough to make Rr > 1, the disease may be
persistent even when the primary infection cannot support an endemic. This does not work for the
full range of R0 < 1, because when the basic reproduction number is too small, there are not enough
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recovered individuals to be reinfected. That is why any backward bifurcation curve eventually has to
turn around, as can be seen in Figure 4.
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Appendix

A. Proof of Theorem 3

Here we show how to get the reinfection number for model (3.1). The Jacobian of the system (3.1)
around the TB-free equilibrium is

J =


−µ r2 r1 − β1

0 −(µ + k + r2) β1

0 k −(µ + d + r1)

 .
When R0 = (β1/(µ + d + r1)) (k/(µ + k + r2)) = 1, a left eigenvector of J is V =

[
v1 v2 v3

]
=[

0 v2 v2(µ + k + r2)/k
]

and a right eigenvector is W′ = [w1,w2,w3]
=

[
w2(r2 + (µ + k + r2)(r1 − β1)/β1)/µ,w2,w2(µ + k + r2)/β1

]
. Choosing v2 = w2 + 1 with any w2 > 0,

we obtain that

b = v2w2 > 0, and

a = v2

3∑
i, j=1

wiw j
∂2 f2

∂xi∂x j
+ v3

3∑
i, j=1

wiw j
∂2 f3

∂xi∂x j

= −2v2w2w3(β1 + β2)µ/Λ − 2v2w3w3β1µ/Λ + 2v3w2w3β2µ/Λ.

To single out the sign of a, we rewrite the last equation as

a (kΛ/(2v3w2w3µ)) = β2(µ + r2) − (µ + k + r2)(µ + d + r1 + k)

Obviously, a > 0 if and only if
(

β2
µ+d+r1+k

) (
µ+r2
µ+k+r2

)
> 1. Then

Rr =

(
β2

µ + d + r1 + k

) (
µ + r2

µ + k + r2

)
is the basic reinfection number. Applying theorem 1, we conclude our proof.
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Table 2. non-zero second derivatives.
∂2 f2
∂x2∂x4

= −
β1+β2

K
∂2 f2
∂x3∂x4

= −
β1
K

∂2 f2
∂x2

4
= −

2β1
K

∂2 f2
∂x4∂x5

= −
β1
K

∂2 f4
∂x2∂x4

=
β2
K

∂2 f3
∂x2∂x5

= −
β1
K

∂2 f3
∂x3∂x5

= −
β1+β2

K
∂2 f3
∂x4∂x5

= −
β1
K

∂2 f3
∂x2

5
= −2β1

K
∂2 f5
∂x3∂x5

=
β2
K

B. Computation of Rr for Model (3.3)

We choose β1 as the bifurcation parameter. Denote the right-hand functions of (3.3) by f1, f2, f3, f4,
f5; and the state variables (S , L1, L2, I1, I2) are denoted by (x1, x2, x3, x4, x5). Set K = Λ

µ
for a shortcut.

Applying theorem 1, we directly compute a and b. The Jacobian of the system evaluated at the
TB-free equilibrium (Λ/µ, 0, 0, 0, 0) is

J =


−µ (1 − p)r2 0 (1 − q)r1 − β1 −β1

0 −(µ + k1 + r2) 0 β1 0
0 pr2 −(µ + k2) qr1 β1

0 k1 0 −(µ + d1 + r1) 0
0 0 k2 0 −(µ + d2)


. (B.1)

Comparing with one-strain TB model (3.1), we here have to additionally deal with whether R0 =

R1
0 =

(
β1

µ+d1+r1

) (
k1

µ+k1+r2

)
or R0 = R2

0 =
(

β1
µ+d2

) (
k2
µ+k2

)
because the overall basic reproduction number

is R0 = max
{
R1

0,R
2
0

}
. For convenience, we tabulate the non-zero second derivatives (∂2 fk/∂xi∂x j,

i, j, k = 1 · · · 5) evaluated at the TB-free equilibrium (Λ/µ, 0, 0, 0, 0) and R0 = 1 in Table 2.
If R1

0 > R2
0, then R0 = 1 means R1

0 = 1. A left eigenvector of (B.1) at R1
0 = 1 is

V = [v1, v2, v3, v4, v5] = [0, k1
µ+r2+k1

v4, 0, v4, 0], where v4 is free. A right eigenvector is W =

[w1,w2,w3,w4,w5]′, where

w1 = w1 (no impact),

w2 =
µ + d1 + r1

k1
w4,

w3 =
k2(pr2(µ + d1 + r1) + qr1k1)

k1(µ + k2)(µ + d2) − k2(µ + d1 + r1)(µ + k1 + r2)
,

w4 = free,

w5 =
(µ + d2)(pr2(µ + d1 + r1) + qr1k1)

k1(µ + k2)(µ + d2) − k2(µ + d1 + r1)(µ + k1 + r2)
.

It can be checked b = k1
µ+r2+k1

v4w4 > 0. To compute a, we need to pay attention to f2 and f4 only
because v1 = v3 = v5 = 0.

a = v2

5∑
i, j=1

wiw j
∂2 f2

∂xi∂x j
+ v4

n∑
i, j=1

wiw j
∂2 f4

∂xi∂x j

Looking up Table 2, we obtain that

a = 2v2

(
w2w4

∂2 f2

∂x2∂x4
+ w2

4
∂2 f2

∂x2
4

+ w3w4
∂2 f2

∂x3∂x4
+ w5w4

∂2 f2

∂x5∂x4

)
+ 2v4w2w4

∂2 f4

∂x2∂x4
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a
(

K
2v2w2w4

)
= −(β1 + β2) − β1

w4

w2
+ β2

v4

v2

= −(β1 + β2) − β1
k1

µ + d1 + r1
+ β2

µ + k1 + r2

k1

= β2
µ + r2

k1
−

(µ + d1 + r1 + k1)(µ + k1 + r2)
k1

Therefore, a > 0 iff β2(µ+ r2) > (µ+ d1 + r1 + k1)(µ+ k1 + r2), i.e. β2
µ+r1+d1+k1

µ+r2
µ+k1+r2

> 1. Then the basic
reinfection number for sensitive strain is

R1
r =

(
β2

µ + d1 + r1 + k1

) (
µ + r2

µ + k1 + r2

)
.

Now assume R1
0 < R2

0. Then R0 = 1 means R2
0 = 1. A left eigenvector of (B.1) at R2

0 = 1

is V = [v1, v2, v3, v4, v5], where v1 = 0, v2 =
pr2(µ+d1+r1)+k1qr1

k2(µ+d1+r1)(µ+k1+r2)−k1(µ+d2)(µ+k2)
k2

2
µ+d2

v5, v3 = k2
µ+d2

v5, v4 =
k2qr1(µ+k1+r2)+pr2(µ+d2)(µ+k2)

k2(µ+d1+r1)(µ+k1+r2)−k1(µ+d2)(µ+k2)
k2
µ+d2

v5, and v5 is free. A right eigenvector is W′ = [w1,w2,w3,w4,w5] =[
(µ+k2)(µ+d2)

µk2
w5, 0, µ+d2

k2
w5, 0, w5

]
. w5 is free. w2 = w4 = 0 makes the computation of a a lot

easier.

a = v2

5∑
i, j=1

wiw j
∂2 f2

∂xi∂x j
+ v3

n∑
i, j=1

wiw j
∂2 f4

∂xi∂x j
v4

5∑
i, j=1

wiw j
∂2 f2

∂xi∂x j
+ v5

n∑
i, j=1

wiw j
∂2 f4

∂xi∂x j

= v3

(
2w2w5

∂2 f3

∂x2∂x5
+ 2w3w5

∂2 f3

∂x3∂x5
+ 2w4w5

∂2 f3

∂x4∂x5
+ w2

5
∂2 f3

∂x2
5

)
+ 2v5w3w5

∂2 f5

∂x3∂x5

= v3

(
2w3w5

∂2 f3

∂x3∂x5
+ w2

5
∂2 f3

∂x2
5

)
+ 2v5w3w5

∂2 f5

∂x3∂x5

a
v3w3w5

=

(
2
∂2 f3

∂x3∂x5
+

w5

w3

∂2 f3

∂x2
5

)
+ 2

v5

v3

∂2 f5

∂x3∂x5
= −2

β1 + β2

K
− 2

k2

µ + d2

β1

K
+
µ + k2

k2

β2

K

a
K

2v3w3w5
= −β1 − β2 −

k2

µ + d2
β1 +

µ + k2

k2
β2

= −β1
µ + d2 + k2

µ + d2
+
µβ2

k2

= −
(µ + k2)(µ + d2 + k2)

k2
+
µβ2

k2

Therefore, a > 0 iff µβ2 > (µ + k2)(µ + d2 + k2), i.e. β2
µ+d2+k2

µ

µ+k2
> 1. Then the basic reinfection number

for resistant strain is

R2
r =

(
β2

µ + d2 + k2

) (
µ

µ + k2

)
.

The basic reinfection number for entire system is

Rr =


(

β2
µ+d2+k2

) (
µ

µ+k2

)
, if R1

0 > R
2
0(

β2
µ+d1+r1+k1

) (
µ+r2

µ+r2+k1

)
, if R1

0 < R
2
0
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C. Computation of Rr for Model (3.6)

The basic reinfection number for model (3.6) is derived in a simple case β1 = β2 = β. We look at
the Jacobian of the system evaluated at the smoker-free equilibrium (rT, (1 − r)T, 0, 0, 0, 0, 0)

J =



−µ 0 −βr −βr 0 0 0
0 −µ −β(1 − r) −β(1 − r) 0 0 0
0 0 βr − (φ1 + µ) βr 0 0 0
0 0 β(1 − r) β(1 − r) − (φ2 + µ) 0 0 0
0 0 φ1 0 −(α1 + µ) 0 0
0 0 0 φ2 0 −(α2 + µ) 0
0 0 0 0 α1 α2 −µ


.

Choose β as the bifurcation parameter. Apparently R0 = 1 corresponds to β = β∗ =
(φ1+µ)(φ2+µ)

r(φ2+µ)+(1−r)(φ1+µ) . A
right eigenvector associated with the eigenvalue λ = 0 of J is W′ = [w1,w2,w3,w4,w5,w6,w7], where

w1 = −
r(φ2 + µ)
(1 − r)µ

w4,

w2 = −
φ2 + µ

µ
w4,

w3 =
r(φ2 + µ)

(1 − r)(φ1 + µ)
w4 > 0,

w4 =

(
1 +

r(φ2 + µ)
(1 − r)(φ1 + µ)

(φ2 + µ)
(φ1 + µ)

)−1

> 0,

w5 =
φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

w4,

w6 =
φ2

α2 + µ
w4,

w7 =
α1

µ

φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

w4 +
α2

µ

φ2

α2 + µ
w4.

A left eigenvector associated with the eigenvalue λ = 0 of J is V = [v1, v2, v3, v4, v5, v6, v7] =[
0, 0, φ2+µ

φ1+µ
, 1, 0, 0, 0

]
. Without confusion, we set fi to be the right-hand side functions of system (3.6)

and denote [N1,N2, S 1, S 2,Q1,Q2, P] by [x1, x2, x3, x4, x5, x6, x7]. Because of v1 = v2 = v5 = v6 = v7 =

0, only f3 and f4 matter when calculating a and b.
Applying Theorem 1 to model (3.6), we obtain that

b = v3

7∑
i, j=1

wiw j
∂2 f3

∂xi∂β
+ v4

7∑
i, j=1

wiw j
∂2 f4

∂xi∂β

= rv3(w3 + w4) + (1 − r)v4(w3 + w4) =
(r(φ2 + µ) + (1 − r)(φ1 + µ))2

r(φ2 + µ)2 + (1 − r)(φ1 + µ)2 > 0.

a = v3

7∑
i, j=1

wiw j
∂2 f3

∂xi∂x j
+ v4

7∑
i, j=1

wiw j
∂2 f4

∂xi∂x j

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8064–8083.



8082

= v3

[
2w1w3

∂2 f3

∂x1∂x3
+ 2w1w4

∂2 f3

∂x1∂x4
+ 2w3w5

∂2 f3

∂x3∂x5
+ 2w4w5

∂2 f3

∂x4∂x5

]
+ v4

[
2w2w3

∂2 f4

∂x2∂x3
+ 2w2w4

∂2 f4

∂x2∂x4
+ 2w3w6

∂2 f4

∂x3∂x6
+ 2w4w6

∂2 f4

∂x4∂x6

]
=

2(w3 + w4)
T

(v3β
∗w1 + v3ψ1w5 + β∗w2 + ψ2w6)

Organize the above expression to check the sign of a. Noticing w3 > 0 and w4 > 0.

aT
2(w3 + w4)w4

= β∗
[
−

r(φ2 + µ)
(1 − r)µ

φ2 + µ

φ1 + µ
−
φ2 + µ

µ

]
+ ψ1

φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

+ ψ2
φ2

α2 + µ

= −β∗
φ2 + µ

µ

[
r

(1 − r)
φ2 + µ

φ1 + µ
+ 1

]
+ ψ1

φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

+ ψ2
φ2

α2 + µ

= −
(φ2 + µ)2

µ(1 − r)
+ ψ1

φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

+ ψ2
φ2

α2 + µ

It can be seen that a > 0 if and only if

ψ1
φ1

α1 + µ

r(φ2 + µ)
(1 − r)(φ1 + µ)

+ ψ2
φ2

α2 + µ
>

(φ2 + µ)2

µ(1 − r)
,

which is equivalent to

r
ψ1

φ1 + µ

φ1

φ1 + µ

µ

α1 + µ
+ (1 − r)

ψ2

φ2 + µ

φ2

α2 + µ

µ

α2 + µ
> 1.

Consequently, the basic reinfection number for model (3.6) is

Rr = r
(

ψ1

φ1 + µ

) (
φ1

φ1 + µ

) (
µ

α1 + µ

)
+ (1 − r)

(
ψ2

φ2 + µ

) (
φ2

α2 + µ

) (
µ

α2 + µ

)
.

D. Computation of R0 for Model (3.3)

The approach of next-generation operator [18] is used to calculate the basic reproduction number
R0 for model (3.3).

X = [L1, L2, I1, I2], dX
dt = F(X) − V(X), where

F(X) =


β1I1K

N
β2I2K

N
0
0

 and V(X) =


β2I1

N L1 + (µ + k1 + r2)L1

−pr2L1 − qr1I1 +
β2I2

N L2 + (µ + k2)L2

−
β2I1

N L1 − k1L1 + (µ + d1 + r1)I1

−
β2I2

N L2 − k2L2 + (µ + d2)I2

 .
F = ∂F

∂X

∣∣∣
X=0

=

[
0 β

0 0

]
with β =

[
β1 0
0 β1

]
, and V = ∂V

∂X

∣∣∣
X=0

=

[
v11 v12

v21 v22

]
, where v11 =[

µ + k1 + r2 0
−pr2 µ + k2

]
, v12 =

[
0 0
−qr1 0

]
, v21 =

[
−k1 0
0 k2

]
, and v22 =

[
µ + d1 + r1 0

0 µ + d2

]
. A block

format ofV−1 =

[
γ11 γ12

γ21 γ22

]
. Since FV−1 =

[
βγ21 βγ22

0 0

]
, the spectrum radius of FV−1 is determined
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by βγ21. Using block operations of matrices, one can find

γ21 =


k1

(µ+d1+r1)(µ+k1+r2) 0
k1

(
pr2+

k1qr1
µ+d1+r1

)
(µ+d1+r1)(µ+k1+r2)(µ+k2)

k2
(µ+d2)(µ+k2)

. βγ21 =


β1k1

(µ+d1+r1)(µ+k1+r2) 0
β1k1

(
pr2+

k1qr1
µ+d1+r1

)
(µ+d1+r1)(µ+k1+r2)(µ+k2)

β1k2
(µ+d2)(µ+k2)

. Therefore

R0 = ρ(FV−1) = max
{(

β1

µ + d1 + r1

) (
k1

µ + k1 + r2

)
,

(
β1

µ + d2

) (
k2

µ + k2

)}
,

and formula (3.4) is proved.

c© 2021 BJS, licensee AIMS Press. This is an
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