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Abstract: Colon tumor endothelial cells (CTECs) plays substantial roles to induce immune invasion, 
angiogenesis and metastasis. Thus, identification of the CTECs-derived transcriptomes could be 
helpful for colon cancer diagnosis and potential therapy. Methods: By analysis of CTECs-derived 
gene expression profiling dataset, we identified differentially expressed genes (DEGs) between 
CTECs and colon normal endothelial cells (CNECs). In addition, we identified the significant 
pathways and protein-protein interaction (PPI) network that was significantly associated with the 
DEGs. Furthermore, we identified hub genes whose expression was significantly associated with 
prognosis and immune cell infiltrations in colon cancer. Finally, we identified the significant 
correlations between the prognostic hub genes and immune-inhibitory markers in colon cancer. 
Results: We identified 362 DEGs in CTECs relative to the CNECs, including117 up-regulated genes 
and 245 down-regulated genes in the CTECs. In addition, we identified significantly up-regulated 
pathways in CTECs that were mainly involved in cancer and immune regulation. Furthermore, we 
identified hub genes (such as SPARC, COL1A1, COL1A2 and IGFBP3) that are associated with 
prognosis and immune cells infiltrations in colon cancer. Interestingly, we found that prognosis-
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associated hub genes (SPARC, COL1A1, COL1A2 and IGFBP3) are positively correlated with 
immune-inhibitory markers of various immunosuppressive cells, including TAM, M2 macrophage, 
Tregs and T cell exhaustion. Finally, our findings revealed that prognosis-associated upregulated hub 
genes are positively correlated with immune checkpoint markers, including PD-L1 and PD-L2 and 
the immunosuppressive markers including TGFB1 and TGFBR1. Conclusions: The identification of 
CTECs-specific transcriptomes may provide crucial insights into the colon tumor microenvironment 
that mediates the development of colon cancer.  

Keywords: colon tumor endothelial cells; prognostic hub genes; immune-inhibitory markers; 
immunosuppressive cells; colon tumor microenvironment 

 

1. Introduction 

The tumor microenvironment (TME) is a complex ecosystem comprising numerous cells, 
including immune cells, stromal cells and immunosuppressive cells [1]. Tumour endothelial cells 
(TECs) are a prominent component of TME and TECs, which have critical functions on tumor 
growth, progression and metastasis [2]. As tumor angiogenesis is essential for tumor growth and 
metastasis, inducing tumor-associated angiogenesis is a promising tactic in cancer progression [3]. 
Angiogenesis is now accepted as an important hallmark of cancer [4] and endothelial cells (which 
form tight adhesions to ensure vessel integrity) are essentials in inducing angiogenesis in TME [3]. 
In TME, TECs interact with tumor cells via juxtacrine and paracrine signaling during tumor 
intravasation and metastasis [5]. 

Colorectal cancer (CRC) is the fourth most common cancer and a leading cause of cancer 
mortality worldwide [6]. Recently stated that distinct stromal transcriptional and interactions are 
altered in colon cancer development [7] and stromal cells contribute to the CRC transcriptome [8]. It 
was also stated that stromal gene expression defines poor prognosis in colorectal cancer [9] and 
induces poor-prognosis subtypes in colorectal cancer [10]. Altogether, stromal cells have substantial 
influence and regulatory roles in colon cancer and endothelial cells (ECs) may cause colon 
carcinogenesis as a part of the stromal component. 

So, analyzing the transcriptomes of colon TECs (CTECs) in TME reveals new targets and 
avenues and explores more uncontrolled factors in colon cancer research. We present a 
comprehensive analysis through bioinformatic tools and identified molecular and genetic alterations 
in TECs. We identified DEGs from microarray datasets of gene expression omnibus (GEO), hub 
genes from the interactions of deregulated genes and find out significant KEGG pathways. We also 
identified significant hub genes that are linked with poor survival of patients. Moreover, we found 
that hub genes are associated with immune cells infiltration and positively correlated with immune 
suppressive markers. This integrated analysis provides vital molecular insights into CTECs 
characterization, which may directly affect treatment recommendations for colon cancer patients. It 
provides opportunities for genome-guided clinical trials as well as drug development for the treating 
of colon cancer patients. 
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2. Materials and methods 

2.1. Datasets 

We searched the NCBI gene expression omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) using the keywords “colon cancer endothelial cells”, 
“endothelial cells” and “normal endothelial cells” and identified one CTECs gene expression dataset 
GSE89287 (n = 24) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89287) [11]. This 
dataset included different cell types (endothelial cells, macrophages and epithelial cells) which were 
isolated from non-paired primary normal colon tissues and colorectal carcinomas and subsequently, 
RNA was isolated. In this study, we included only endothelial cells and excluded the other cell types 
from our study. Endothelial cells were isolated using the facs-sorting method. The dataset included 
24 samples of endothelial cells, including 10 normal colon samples and 14 colon tumor samples. The 
platform of this data is GPL4133 (Agilent-014850 whole human genome microarray 4x44K G4112F) 
with a feature number version. Gene expression profiling interactive analysis (GEPIA) 
(http://gepia2.cancer-pku.cn/#index) dataset (n = 316) was used for the study of prognostic and 
expression levels of hub genes [12]. In addition, the correlation between the expression of hub genes 
and tumor-infiltrating immune cells was explored via gene modules in the TIMER dataset (n = 457) 
(https://cistrome.shinyapps.io/timer/) [13]. For identifying the gene-gene correlation, we used the 
TCGA-COAD dataset (n = 287) (https://gdc-portal.nci.nih.gov/) which was normalized into base 
log2. 

2.2. Identification of differentially expressed genes (DEGs) between CTECs and CNECs 

We used the web tool Network Analyst [14] to identify the significant DEGs between CTECs 
and CNECs. Dataset was normalized by quantile normalization and the R package “limma” was 
utilized to identify the DEGs between CTECs and CNECs. We utilized the Network Analyst tool to 
identify the average expression level of single gene having multiple probes in this gene expression 
study. We identified the DEGs with a threshold of |LogFC| > 0.585 and adjusted P value < 0.05. 

2.3. Gene-set enrichment analysis 

We performed gene-set enrichment analysis of the DEGs by GSEA [15]. We identified the 
KEGG [16] pathways that were significantly associated with the up-regulated and the down-
regulated DEGs, respectively.  We identified the significant pathways with a threshold of false 
discovery rate (FDR) < 0.05. 

2.4. Construction of protein-protein interaction (PPI) network and modular analysis of PPI 

To better know the relationship among these screened DEGs, the PPI network was established 
using the STRING database [17]. The hub genes in the PPI network were identified according to a 
degree using the node explorer module of Network Analyst software [14]. A hub gene was defined as 
a gene that was connected to no less than 10 other DEGs. A cytoscape plug-in molecular complex 
detection (MCODE) was employed to detect the modules from the PPI network [18]. We identified 
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the significant modules based on the MCODE score and node number. The threshold of the MCODE 
was Node Score Cut-off: 0.2, Haircut: true, K-Core: 2 and maximum depth from Seed: 100. 

2.5. Survival analysis of hub genes 

We compared the overall survival (OS) and the disease-free survival (DFS) of colon cancer 
patients classified based on gene expression levels (expression levels > median versus expression 
levels < median). Kaplan-Meier survival curves were used to show the survival differences and the 
log-rank test was utilized to evaluate the significance of survival differences. The prognostic roles of 
screened hub genes in COAD were analyzed using expression profiling interactive analysis (GEPIA) 
databases [12]. Cox P < 0.05 was considered as significant between two groups of patients. 

2.6. Validation of prognosis-associated hub gene expression levels in TCGA COAD dataset 

The expression levels of top hub genes were further validated using the gene expression 
profiling interactive analysis (GEPIA), a newly developed interactive web server for analyzing the 
RNA sequencing data [12]. We used TCGA COAD tumor data with matched normal. Hub genes 
with |log2FC| > 0.585 and P < 0.05 were considered statistically significant between the two groups. 

2.7. Evaluation of immune scores and stromal scores in colon cancer 

We utilized the “ESTIMATE” R package to quantify the immune scores (predict the immune 
cell quantity) and stromal scores (predict the stromal cells quantity) for each of the tumor samples [19]. 
Then we calculated Spearman’s correlations between the expression levels of prognostic hub genes 
and immune and stromal scores. The threshold value of correlation is R > 0.30 and P-value is less 
than 0.001 (Spearman's correlation test). 

2.8. Analysis of immune cell infiltration and correlation of top hub genes with immune-inhibitory 
markers 

We analyzed the significant correlations of hub genes with the abundance of immune infiltrates, 
including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells, via 
gene modules in TIMER [13]. In addition, Spearman’s correlations between the expression level of 
hub genes and the immune inhibitory marker genes of tumor-infiltrating immune cells were explored 
via correlation modules in TIMER [13]. Moreover, we identified pearson’s correlations between the 
expression level of hub genes and the marker genes of inhibitory immune cells in TCGA-COAD 
datasets using R software. The R package “ggplot2” was employed for drawing a correlation graph 
[20]. The gene markers of tumor-infiltrating immune cells included markers of monocytes, TAMs, 
M2 macrophages, T-helper 1 (Th1) cells, Tregs and exhausted T cells. These gene markers are 
illustrated in prior studies [12, 21–24]. 
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2.9. Statistical analysis  

We used R programming software for the statistical analysis of this study. For the differential 
expression analysis of gene expression data, only genes with |logFC| > 0.585 and adjusted P-value < 
0.05 were considered statistically significant between the two groups. In the survival analysis, Cox P 
< 0.05 was considered as statistically significant. Spearman’s correlation test between the ssGSEA 
scores and the expression level of specific prognostic genes was performed because these data were 
not normally distributed (P < 0.05) [25]. For analyzing the correlations between the expression levels 
of hub genes with the expression levels of other marker genes, we employed Pearson’s correlation 
test because these data were normally distributed [25]. 

3. Results 

3.1. Identification of Differentially Expressed Genes 

Table 1. List of top ten up-regulated genes. 

Entrez ID Symbols logFC P-Value Adjusted P-Value Name of gene 

6678 SPARC 2.21 0.0009 0.029 Secreted protein, acidic, cysteine-rich 
(osteonectin) 

3490 IGFBP7 2.19 0.0008 0.026 Insulin-like growth factor-binding protein 7 

1284 COL4A2 2.19 0.0002 0.016 Collagen, type IV, alpha 2 

6401 SELE 1.97 0.0017 0.038 Selectin E 

2919 CXCL1 1.85 0.0003 0.018 Chemokine (C-X-C motif) ligand 1 
(melanoma growth stimulating activity, alpha)

7450 VWF 1.85 0.0023 0.044 Von Willebrand factor 

83643 CCDC3 1.82 0.0004 0.019 Coiled-coil domain containing 3 

11167 FSTL1 1.68 0.0005 0.022 Follistatin-like 1 

64856 VWA1 1.62 0.0002 0.016 Von Willebrand factor A domain containing 1

10410 IFITM3 1.59 0.0003 0.018 Interferon-induced transmembrane protein 3 

Table 2. List of top ten down-regulated genes. 

Entrez ID Symbols logFC P-Value Adjusted P-Value Name of gene 

28299 IGKV1-5 −3.30 0.00058 0.024 Immunoglobulin kappa variable 1−5 

28823 IGLV1-44 −3.28 0.00004 0.009 Immunoglobulin lambda variable 1−44 

3514 IGKC −3.23 0.00020 0.016 Immunoglobulin kappa constant 

28439 IGHV3-30 −3.19 0.00002 0.008 Immunoglobulin heavy variable 330 

3887 KRT81 −3.19 0.00006 0.009 Keratin 81 

3500 IGHG1 −3.07 0.00004 0.009 Immunoglobulin heavy constant gamma 
1 (G1m marker) 

3507 IGHM −2.98 0.00017 0.016 Immunoglobulin heavy constant mu 

5450 POU2AF1 −2.91 0.00007 0.010 POU class 2 associating factor 1 

28923 IGKV2-24 −2.75 0.00094 0.029 Immunoglobulin kappa variable 2−24 

28831 IGLJ3 −2.74 0.00032 0.018 Immunoglobulin lambda joining 3 

Based on the log2FC and adjusted P-value, we identified 362 differentially expressed genes 
(DEGs) in CTECs relative to the CNECs, which included 117 up-regulated genes (Supplementary 
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Table S1) and 245 down-regulated (Supplementary Table S2) in the CTECs samples. Table 1 
demonstrates the top ten up-regulated genes (SPARC, IGFBP7, COL4A2, SELE, CXCL1, VWF, 
CCDC3, FSTL1, VWA1 and IFITM3) with significant statistical description. The most up-regulated 
gene SPARC is up-expressed in the stromal portion of CRC tissues [26]. The extracellular matrix-
associated gene, COL4A2, is linked with cancer stemness [27]. Another up-regulated gene, CXCL1, 
is associated with increasing the metastatic ability of colon cancer by enhancing cell migration, 
matrix metalloproteinase-7 expression and EMT [28]. VWF, another up-regulated gene, is a plasma 
marker for the early detection of adenoma and colon cancer [29]. Table 2 illustrated the top ten 
down-regulated genes (IGKV1-5, IGLV1-44, IGKC, IGHV3-30, KRT81, IGHG1, IGHM, POU2AF1, 
IGKV2-24 and IGLJ3) with all significant statistical descriptions. Interestingly, most of the top 
down-regulated genes are associated with immunological activities. Some other down-regulated 
genes of CTECs have been demonstrated to be under-expressed in CRC. For example, the expression 
of POU2AF1 is down-regulated in the rat colon and in turn, reveals proximal-distal differences in the 
process of histone modifications and proto-oncogene expression [30]. Altogether, abnormally 
expressed numerous genes in CTECs compared to NTECs identified by the bioinformatic analysis 
have been associated with CRC pathology and carcinogenesis. 

3.2. KEGG pathway enrichment analysis of significantly identified DEGs 

 

Figure 1. KEGG pathway enrichment analysis of significant DEGs. A. Significantly up-
regulated pathways in colon tumor endothelial cells. B. Significantly down-regulated 
pathways in colon tumor endothelial cells. FDR: false discovery rate. 

The functional enrichment analysis identifying the enriched up-regulated and down-regulated 
biological pathways that are associated with significant DEGs (Figure 1). GSEA pathway analysis 
revealed nine up-regulated pathways (focal adhesion, ECM-receptor interaction, pathways in cancer, 
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small cell lung cancer, adherens junction, arrhythmogenic right ventricular cardiomyopathy (ARVC), 
pathogenic escherichia coli infection, cytokine-cytokine receptor interaction and proximal tubule 
bicarbonate reclamation) (Figure 1A) in CTECs. In addition, we also identified ten down-regulated 
pathways (protein export, cell adhesion molecules (CAMs), arrhythmogenic right ventricular 
cardiomyopathy (ARVC), N-Glycan biosynthesis, the intestinal immune network for IgA production, 
primary immunodeficiency, hypertrophic cardiomyopathy (HCM), ECM-receptor interaction, dilated 
cardiomyopathy and vasopressin-regulated water reabsorption) in CTECs (Figure 1B). Recently, it 
was stated that focal adhesion, ECM-receptor interaction, pathways in cancer, small cell lung cancer, 
adherens junction and cytokine-cytokine receptor interaction pathways are dysregulated in colon 
tumors stroma [7]. 

3.3. Construction of PPI by using significant DEGs and identification of hub genes and functional 
clusters from the PPI 

Table 3. The top ten up-regulated and top ten down-regulated hub genes are associated with PPI. 

Regulatory status Symbols Degree logFC Adjusted P-Value Name of gene 

Up-regulated FN1 65 1.14 0.020 Fibronectin 1 

GAPDH 58 0.73 0.010 Glyceraldehyde-3-phosphate 
dehydrogenase 

COL1A1 39 1.06 0.041 Collagen, type I, alpha 1 

COL1A2 32 1.01 0.032 Collagen, type I, alpha 2 

CTNNB1 32 0.79 0.007 Catenin (cadherin-associated protein), 
beta 1, 88kda 

LAMB1 31 1.10 0.021 Laminin, beta 1 

LAMC1 29 0.76 0.031 Laminin, gamma 1 (formerly LAMB2)

SPARC 27 2.20 0.028 Secreted protein, acidic, cysteine-rich 
(osteonectin) 

IGFBP3 24 1.47 0.008 Insulin-like growth factor-binding 
protein 3 

COL4A1 24 1.10 0.017 Collagen, type IV, alpha 1 

Down-regulated HSP90B1 42 −0.83 0.008 Heat shock protein 90kda beta 
(Grp94), member 1 

PDIA6 32 −0.730 0.041 Protein disulfide isomerase family A, 
member 6 

ITGA4 25 −0.72 0.020 Integrin, alpha 4 (antigen CD49D, 
alpha 4 subunit of VLA-4 receptor) 

DDOST 22 −0.78 0.015 Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase 

SDC1 21 −1.09 0.009 Syndecan 1 

CKAP4 20 −0.74 0.020 Cytoskeleton-associated protein 4 

CD38 20 −1.48 0.012 CD38 molecule 

MANF 18 −0.67 0.018 Mesencephalic astrocyte-derived 
neurotrophic factor 

ITGB7 18 −1.89 0.017 Integrin, beta 7 

CCR2 17 −0.73112 0.022 Chemokine (C-C motif) receptor 2 

Using all 362 DEGs, PPI networks were constructed using STRING software and hub genes 
were identified using the node explorer of network analyst software. Many significant DEGs are 
involved in the networks (Supplementary Table S3). The identification of hub genes explored that 
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FN1, GAPDH, COL1A1, COL1A2, CTNNB1, LAMB1, LAMC1, SPARC, IGFBP3 and COL4A1 are 
top up-regulated hub genes and HSP90B1, PDIA6, ITGA4, DDOST, SDC1, CKAP4, CD38, MANF, 
ITGB7 and CCR2 are top down-regulated hub genes in CTECs respectively (Figure 2 and Table 3). 
Interestingly, we found that top-up-regulated (Table 1) SPARC also acts as a hub gene in the PPI 
network. FN1 suppressed apoptosis and promoted viability, invasion and migration of tumor cells in 
CRC [31]. It was showed that COL1A1 and COL1A2 are associated with colon cancer [32,33]. The 
high expression levels of CTNNB1 positively correlated with metastasis of colon cancer [34]. 
Deregulation of SDC1 contributes to cancer progression by promoting cell proliferation, metastasis, 
invasion and angiogenesis [35]. Altogether, it may be stated that CTECs-derived these hub genes 
may contribute to colon cancer pathogenesis. 

Table 4. MCODE identified 15 clusters from the PPI networks. 

Cluster Score  Nodes Edges Node Ids 

1 15 15 105 FSTL1, IGFBP5, IGFBP3, APLP2, HSP90B1, PDIA6, FN1, 
PRSS23, TMEM132A, VWA1, CKAP4, LAMB1, IGFBP7, LAMC1, 
CYR61 

2 9.556 10 43 DDOST, SSR3, SEC61B, SSR4, SPCS2, SPCS1, SPCS3, TRAM1, 
OSTC, SEC11C 

3 9.2 11 46 ITGA8, ITGA5, COL4A2, LAMA4, COL12A1, COL4A1, SPARC, 
ITGB7, COL1A1, ITGA4, COL1A2 

4 5.364 23 59 CCR10, SERP1, OS9, DNAJB11, ABCG2, SDF2L1, HERPUD1, 
SEL1L, ACTG1, MET, GNG7, CCR2, CTNNB1, SDC1, XBP1, 
MMP1, DNAJB9, APLN, PNOC, CXCL1, TIMP2, CXCL2, SNAI1 

5 4.857 8 17 CD27, CD79A, UCHL1, IGLL5, SLAMF1, SLAMF7, CD81, CD38

6 4.5 5 9 TUBA1B, CCT2, CCT3, DNAJA4, CCT4 

7 4.5 5 9 CLCA4, ZG16, SLC26A3, GUCA2A, GUCA2B 

8 4 5 8 DERL2, DERL3, ERLEC1, CRELD2, UBE2J1 

9 4 4 6 SPN, CD48, GZMB, CD4 

10 3 3 3 MZB1, TNFRSF17, POU2AF1 

11 3 3 3 FCGBP, CLCA1, RETNLB 

12 3 3 3 PLAC8, RNASET2, CECR1 

13 3 3 3 HMGCS2, ACSL1, ACADVL 

14 3 3 3 IFITM3, IFITM2, ISG20 

15 2.667 4 4 B4GALT3, ST3GAL6, MGAT1, MANEA 

Moreover, MCODE identified 15 clusters from the original PPI networks. The description of 
MCODE derived clusters is illustrated in Table 4. The top significant cluster 1 contained 15 nodes 
and 105 edges (Figure 2 and Table 4). We identified the functional enrichment of KEGG pathways 
for all clusters by using the GSEA. Interestingly, we found that eight of the clusters out of 15 are 
associated with the enrichment of KEGG pathways. Gene set of Cluster 1 is related to the enrichment 
of 4 pathways: ECM-receptor interaction, small cell lung cancer, pathways in cancer and focal 
adhesion (Figure 2A,B). Cluster 3 (Figure 2C,D), Cluster 4 (Figure 2E,F) and Cluster 9 (Cell 
adhesion molecules and natural killer cell-mediated cytotoxicity) are associated with the enrichment 
of immune, stromal and cancer-associated pathways. Some of the enriched pathways in Cluster 3 
included ECM-receptor interaction, focal adhesion, small cell lung cancer, cell adhesion molecules, 
the intestinal immune network for IgA production, pathways in cancer and hematopoietic cell lineage. 
In addition, some of the pathways enriched in Cluster 4 are the chemokine signaling pathway, 
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adherens junction, cytokine-cytokine receptor interaction, focal adhesion, NOD-like receptor 
signaling pathway, pathways in cancer, leukocyte trans-endothelial migration and tight junction. 
Protein export is enriched in Cluster 2 and the B cell receptor signaling pathway is enriched in 
Cluster 5. Cluster 13 (Fatty acid metabolism and PPAR signaling pathway) and cluster 15 
(Glycosphingolipid biosynthesis-Lacto and neolacto series and N-Glycan biosynthesis) are mainly 
associated with the enrichment of metabolic pathways. Uddin et al. also identified some of these 
pathways, including pathways in cancer, small cell lung cancer, ECM-receptor interaction, focal 
adhesion, natural killer cell-mediated cytotoxicity and cell adhesion molecules, are enriched in colon 
tumor stroma [7,9]. Altogether, it can be stated that this hub PPI from CTECs may contribute to 
colon carcinogenesis. 

 

Figure 2. The functional enrichment analysis of MCODE derived clusters. A. PPI interaction of 

Cluster 1. B. Enrichment of the KEGG pathways in Cluster 1. C. PPI interaction of Cluster 3. D. 

Enrichment of the 11 KEGG pathways in Cluster 3. E. Interaction of 23 nodes in Cluster 4. F. 
The enrichment of 11 KEGG pathways in Cluster 4. 
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3.4. Hub genes are negatively associated with prognosis 

We considered the top ten up-regulated and top ten down-regulated genes from the original PPI 
network for survival analysis. We selected the TCGA-COAD database for screening OS and DFS. 
We got COL1A1, COL1A2, IGFBP3, SPARC and DDOST hub genes are significantly involved with 
patient survival time (Figure 3). We found that the higher expression level of up-regulated COL1A1, 
COL1A2, IGFBP3 and SPARC are worse for patient's DFS and COL1A2 is also associated with poor 
OS. In addition, the low expression level of down-regulated DDOST is more inferior for patient's OS 
and DFS. It showed that higher expressions of COL1A1 were related to poor survival in colon cancer 
patients [33]. COL1A2 gene is also associated with the prognosis of IIA stage colon cancer [32]. 
Stromal SPARC had a pro-metastatic impact in vitro and was a characteristic of aggressive tumors 
with a poor prognosis in CRC patients [26]. Collectively, hub genes of CTECs are prognostic 
markers in COAD and may be contributed to colon carcinogenesis. 

 

Figure 3. Survival analysis of individual hub genes. Up-regulated COL1A1, COL1A2, 
IGFBP3 and SPARC and down-regulated DDOST have been associated with the poor 
prognosis in COAD. 

3.5. Comparisons of the expression levels of prognostic hub genes between colon cancer and normal 
tissue 

Interestingly, we found that all four up-regulated hub genes (COL1A1, COL1A2, IGFBP3 and 
SPARC) were consistently up-regulated in TCGA COAD samples versus normal samples (P < 0.05) 
(Figure 4). It indicates that CTECs may have a contribution to the COAD-derived transcriptomes in 
colon cancer. However, one of the down-regulated hub genes, DDOST, showed no significant 
expression differences between TCGA-COAD samples versus normal samples (P < 0.05), suggesting 
that this hub gene is expressed explicitly in CTECs. 
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Figure 4. Validation of the expression levels of prognostic hub genes between colon 
cancer and normal tissue (P < 0.05, |Log FC| > 0.585). 

3.6. Prognostic hub genes are correlated with immune infiltrations and associated with immune-
inhibitory markers in colon TME 

Tumor-infiltrating lymphocytes are independent prognostic factors for better survival and 
sentinel lymph node status in cancers [36]. Genes highly expressed in the microenvironment are 
expected to negatively associate with tumor purity, while the opposite is expected for genes highly 
expressed in the tumor cells [13]. So, we assessed whether the expression of hub genes was 
correlated with immune infiltration levels in COAD. We investigated the correlations of prognostic 
hub genes (COL1A1, COL1A2, IGFBP3, SPARC and DDOST) with immune scores and stromal 
scores in COAD. Interestingly, we found that the expression levels of COL1A1, COL1A2, IGFBP3 
and SPARC positively correlated with the immune scores (Figure 5A) and stromal scores (Figure 5B) 
(Spearman's correlation test, R > 0.30, P < 2.2e−16). This result indicated that the prognostic hub 
genes are associated with the regulation of the tumor microenvironment. 
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Figure 5. Up-regulated prognostic hub genes are associated with the regulation of the 
tumor microenvironment in COAD. The expression level of COL1A1, COL1A2, IGFBP3 
and SPARC positively correlated with the immune scores (A) and stromal scores (B). 

In addition, we identified the correlations between the expression of hub genes and the immune 
infiltration levels in COAD by using the TIMER tool. The results discovered that up-regulated 
COL1A1, COL1A2, IGFBP3 and SPARC expression have significant (P ≤ 0.05) correlations with 
tumor purity in COAD but down-regulated DDOST not correlated with tumor purity (Figure 6). In 
addition, COL1A1 expression has significant correlations with infiltrating levels of CD4+ T cells, 
macrophage, neutrophil and dendritic cells. We also found that a significant positive correlation 
between COL1A2, IGFBP3 and SPARC expression and infiltration of all five immune cells (CD4+ T 
cells, CD8+ T cells, Neutrophils, Macrophages and Dendritic cells) in COAD. Besides, we found 
significant negative correlations between DDOST expression and infiltration of all five immune cells 
(CD4+ T cells, CD8+ T cells, Neutrophils, Macrophages and Dendritic cells) (Figure 6). Recently it 
was stated that macrophages and neutrophils are associated with immunosuppressive inflammation to 
modulate anti-tumor immunity [37]. DCs can promote tumor metastasis by increasing Treg cells and 
reducing CD8+ T cell cytotoxicity [38]. These results suggest that the expression of COL1A1, 
COL1A2, IGFBP3, SPARC and DDOST has potential roles in tumor purity and immune cell 
infiltrations in colon cancer. 
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Figure 6. Hub genes are correlated with immune infiltration level and tumor purity. 
Expression of COL1A1, COL1A2, SPARC, IGFBP3 and DDOST are significantly 
negatively correlated to tumor purity and have significant positive correlations with 
infiltrating levels of CD4+ T cells, macrophages, neutrophils and dendritic cells in 
COAD. The correlation analyses were performed using TIMER [13]. RSEM: RNA-Seq 
by Expectation Maximization [39]. 

To elucidate the relationship between up-regulated hub genes COL1A1, COL1A2, IGFBP3 
and SPARC and the diverse immune infiltrating cells, we find out the correlations between these 
genes and immune marker sets of various immune cells including monocytes, TAMs, M2 
macrophages, Th1, Tregs and T cell exhaustion (Table 5). Surprisingly, we got that the hub genes 
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COL1A1, COL1A2, IGFBP3 and SPARC are positively correlated (Pearson correlation test, P ≤ 
0.001) with the immune markers of monocytes, TAMs, M2 macrophages, Th1, Tregs and T cell 
exhaustion. These findings suggest that the high expression level of hub genes plays an essential 
role in the infiltration of monocytes, TAMs, M2 macrophages, Th1, Tregs and T cell exhaustion 
in COAD. It was recently reported that LAYN acts as a prognostic biomarker for determining 
prognosis and immune infiltration in gastric and colon cancers [21]. Potent immunosuppressive T-
regulatory cells (Tregs) are found in a vast array of tumor types and tumor-infiltrating Tregs are 
often associated with poor clinical outcomes. Tregs also promote cancer progression through their 
ability to limit anti-tumor immunity and promote angiogenesis [40]. Another marker, FOXP3, 
plays an important role in Treg cells which leads to the suppression of cytotoxic T cells attacking 
tumor cells [40]. TIM-3 is a crucial surface protein on exhausted T cells, a critical gene that 
regulating T cell exhaustion [41]. 

Table 5. Correlation analysis between survival-associated hub genes and markers of 
immune-inhibitory cells in TCGA-COAD data. 

Immune cell Gene markers SPARC COL1A1 COL1A2 IGFBP3 

R P R P R P R P 

Monocyte CD86 0.69 1.49E−42 0.65 2.71E−35 0.67 3.02E−39 0.55 2.39E−24 

CSF1R 0.71 1.22E−44 0.68 5.80E−41 0.72 1.60E−46 0.59 9.29E−28 

TAM CCL2 0.76 3.55E−56 0.69 1.00E−41 0.72 2.51E−47 0.58 2.49E−27 

CD68 0.49 8.62E−19 0.48 5.34E−18 0.49 1.16E−18 0.46 1.25E−16 

IL10 0.57 1.86E−26 0.52 4.70E−21 0.54 2.65E−23 0.42 1.87E−13 

M2 

macrophage 

CD163 0.71 4.72E−46 0.71 4.11E−46 0.73 7.07E−49 0.52 1.88E−21 

VSIG4 0.73 8.85E−50 0.70 2.16E−43 0.71 6.58E−46 0.56 7.05E−25 

MS4A4A 0.70 2.77E−44 0.65 1.77E−35 0.67 7.62E−39 0.54 6.22E−23 

Th1 T-bet (TBX21) 0.36 3.16E−10 0.38 1.66E−11 0.38 3.46E−11 0.37 8.76E−11 

IFN-γ (IFNG) 0.18 0.001 0.21 0.00040 0.20 0.000834 0.16 0.00589 

TNF-α (TNF) 0.40 3.37E−12 0.38 1.65E−11 0.40 3.16E−12 0.21 0.00030 

Treg FOXP3 0.56 6.11E−25 0.55 3.52E−24 0.58 1.49E−27 0.50 1.01E−19 

CCR8 0.56 1.13E−24 0.54 4.14E−23 0.58 2.02E−27 0.48 1.23E−17 

TGFβ (TGFB1) 0.74 1.08E−50 0.73 1.99E−49 0.75 1.61E−52 0.62 6.64E−32 

T cell 

exhaustion 

PD-1 (PDCD1) 0.32 3.27E−08 0.32 2.35E−08 0.33 9.61E−09 0.35 8.10E−10 

CTLA4 0.42 1.40E−13 0.42 1.10E−13 0.44 7.38E−15 0.40 3.58E−12 

LAG3 0.25 1.56E−05 0.29 6.10E−07 0.28 1.94E−06 0.27 3.07E−06 

TIM-3(HAVCR2) 0.70 1.48E−43 0.67 2.34E−38 0.69 3.05E−41 0.54 1.58E−23 

TIGIT 0.39 4.84E−12 0.41 7.99E−13 0.42 5.46E−14 0.40 2.49E−12 

CXCL13 0.35 1.82E−09 0.36 5.46E−10 0.35 8.72E−10 0.31 1.34E−07 

LAYN 0.89 2.42E−97 0.79 1.39E−63 0.83 4.05E−75 0.67 2.35E−38 

*Note: R is Pearson correlation and P is p-value in Pearson's correlation test. 
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Figure 7. Prognostic hub genes are significantly positively correlated with immune 
suppressive PD-L1, PD-L2 and TGFBR1. Up-regulated four hub genes (SPARC, 
COL1A2, COL1A2 and IGFBP3) are significantly correlated with three prominent 
immune-inhibitory markers (PD-L1, PD-L2 and TGFBR1). The correlation analyses 
were performed using R software. The Pearson's correlation test p-values (P) and 
correlation coefficients (R) are shown in the figure. 

Since the elevated expression of prognostic hub genes were positively associated with the 
immune inhibitory markers PD-1 and TGFB1 (Table 5), we expect the expression levels of PD-L1 
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(CD274), PD-L2 (PDCD1LG2) and TGFBR1 could be positively associated with the prognosis-
associated hub genes. Interestingly, we found that PDL1 (CD274), PDL2 (PDCD1LG2) and 
TGFBR1 are moderate to highly correlated with all four-prognosis related highly expressed hub 
genes: COL1A1, COL1A2, SPARC and IGFBP3 (Figure 7). T cell immunity recovered by PD-1/PD-
L1 immune checkpoint blockade has been demonstrated to be a promising cancer therapeutic 
strategy [42]. The expression of PD-L2 was observed in tumors, stroma and endothelial cells and 
PD-L2 expression is relevant to anti-PD-1 therapy in cancer [43]. TGFBR1 is one of the receptors for 
TGF-β ligands. The TGF-β signaling pathway is crucially associated with stimulation, induction and 
maintenance of EMT in cancers [44]. TGFBR1 is up-regulated in multiple malignancies and 
dysregulation of TGFBR1 leads to tumorigenesis by controlling cellular signaling, which in turn is 
associated with colorectal cancer risk [45]. Altogether, it suggests that the prognostic associated hub 
genes may regulate the immune-suppressive activities of TME through the interactions with the 
immune marker in colon cancer. 

4. Discussion 

TECs are the substantial component of tumor stroma in TME and these cells are associated with 
tumor malignancies, progression and metastasis [5]. This present study conducted a differential 
expression analysis using gene expression profiling data from the GEO database. We identified 362 
DEGs in CTECs, including 117 up-regulated genes (SPARC, COL4A2, CXCL1 and VWF) and 245 
down-regulated genes. Interestingly, we found that many immunological genes are down-regulated 
in CTECs (Table 2). Subsequent pathway enrichment analysis revealed that up-regulated DEGs were 
significantly enriched with cancer, cellular development and immune regulation. Down-regulated 
DEGs were enriched considerably with mostly immunodeficiency and metabolism-related pathways 
(Figure 1). These results revealed the abnormal cellular growth, immune regulatory, cancerous and 
metabolism-associated pathways in CTECs. 

Next, we employed DEGs to construct a PPI network and extracted significant clusters from the 
original PPI network (Figure 2). Finally, we identified hub genes (degree > 10) that are dysregulated 
in CTECs. We identified CTECs-derived five hub genes (COL1A1, COL1A2, SPARC, IGFBP3 and 
DDOST) whose expression was significantly associated with the poor prognosis in TCGA-COAD 
data (Figure 3). These hub genes are mainly involved in protein digestion and absorption (COL1A1 
and COL1A2), cellular signaling (SPARC and IGFBP3) and enzymatic action of metabolism 
(DDOST), suggesting that the deregulation of these cellular functions in CTECs may contribute to 
the altered prognosis in colon cancer. In addition, the expression analysis of these prognostic hub 
genes in colon cancer was further evaluated using the GEPIA database [12]. We found that four hub 
genes (COL1A1, COL1A2, SPARC and IGFBP3) are also significantly up-regulated in TCGA-
COAD samples. Still, another down-regulated hub gene (DDOST) is not considerably down-
regulated in TCGA-COAD samples (Figure 4). It indicates that CTECs-associated gene signature 
substantially contributed to colon carcinogenesis. 

Furthermore, our study showed that the immune infiltration levels and diverse immune marker 
sets are correlated with the expression levels of COL1A1, COL1A2, SPARC and IGFBP3 hub genes. 
Our analysis demonstrated that a significant positive correlation between the COL1A1, COL1A2, 
SPARC and IGFBP3 expression levels and infiltration level of CD4+ T cells, macrophages, 
neutrophils and DCs in COAD (Figure 6). These results are suggesting that the potential 
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immunological roles of hub genes in colon TME. In addition, our study indicated that COL1A1, 
COL1A2, SPARC and IGFBP3 could activate Tregs and induce T cell exhaustion. The increase in 
up-regulated four hub genes expression positively correlates with Treg and T cell exhaustion markers 
(Table 5). Other markers of monocytes, TAM, M2 macrophage, Th1, are also positively correlated 
with the expression of these hub genes (Table 5). Some other crucial immune inhibitory markers, 
PD-L1, PD-L2 and TGFBR1, are significantly correlated with the expression level of COL1A1, 
COL1A2, SPARC and IGFBP3 (Figure 7). Altogether, the prognostic hub genes are associated with 
immunosuppressive colon TME.  

Since our analysis identified numerous CTECs-derived transcriptomes that are critically 
associated with colon cancer, we speculated that the endothelial cells might contribute to the other 
vascular pathologies, including the central nervous system (CNS) and other diseases.  It was stated 
that cerebral endothelial cells play an active role in the pathogenesis of CNS inflammatory diseases 
[46]. Endothelial cells are associated with the leukocyte migration in CNS and regulating the 
leukocyte-endothelial cell interactions and the crosstalk between endothelial cells and glial cells or 
platelets in CNS [46]. The major vascular anomalies of the nervous system included cerebral 
cavernous malformations (CCMs) and arteriovenous malformations (AVMs) [47,48]. These CNS-
associated vascular diseases are characterized by genetic alterations, such as gene polymorphisms 
and mutations [47–51]. For example, germline mutation enrichment in pathways controlling the 
endothelial cell homeostasis in patients with brain arteriovenous malformation [48]. Altogether, our 
findings may provide insights to find the roles of endothelial cells in diseases, including cancer, 
CNS-associated disease and other vascular pathologies. 

This study identified numerous deregulated transcriptomes in the CTECs that could be used as 
biomarkers for the diagnosis and prognosis of colon cancer and may provide therapeutic targets for 
colon cancer. However, to translate these findings into clinical application, further experimental and 
clinical validation would be necessary. 

5. Conclusions 

In summary, we identified potential CTECs-derived significantly deregulated transcriptomes 
that are involving with the pathogenesis, prognosis and immune inhibition within the tumor 
microenvironment of colon cancer. This study reveals a potential regulatory mechanism of CTECs in 
the tumor microenvironment of colon cancer and may contribute to revealing CTECs-colon cancer 
cellular cross-talk. 
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