
http://www.aimspress.com/journal/MBE

MBE, 18(6): 7269–7279.
DOI: 10.3934/mbe.2021359
Received: 23 July 2021
Accepted: 10 August 2021
Published: 27 August 2021

Research article

Analysis of some Katugampola fractional differential equations with
fractional boundary conditions
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1. Introduction

The Lyapunov inequality, proved in 1907 by Russian mathematician Aleksandr Mikhailovich
Lyapunov [1], is very useful in various problems related with oscillation theory, differential and
difference equations and eigenvalue problems (see [2–7] and the references therein). The Lyapunov
result states that, if a nontrivial solution to the following boundary value problemu′′(t) + g(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0

exists, where g is a continuous function, then the following inequality∫ b

a
|g(s)|ds >

4
b − a

(1.1)

holds. This theorem formulates a necessary condition for the existence of solutions and allows to
deduce sufficient conditions for non-existence of solutions to the considered boundary problem.
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Recently, the research of Lyapunov-type inequality has gained more and more popularity, because
by replacing the classical derivative with some fractional operators allows to model processes
exhibiting memory effect. The first work in this direction is due to Ferreira [8] in 2013 by using the
Riemann-Liouville derivative of order α ∈ (1, 2]. In [9] was investigated the Lyapunov-type inequality
for the boundary value problem with the Katugampola fractional derivative. In [10] was used the
Caputo fractional derivative and in [11] the Hadamard fractional derivative.

Moreover, together with raising popularity of fractional operators, many modifications of the
Lyapunov inequality appeared by changing the boundary conditions, for example u(a) = u′(b) = 0 or
u′(a) = u(b) = 0 (see [12–14]).

Motivated by the above works, we consider in this paper the Katugampola fractional differential
equation under boundary condition involving the Katugampola fractional derivative. We choose this
special fractional derivative because it generalizes two other fractional operators, that is the
Riemann-Liouville and the Hadamard fractional derivatives and classical derivative of integer order.
More precisely, we consider the boundary value problemDα,ρ

a+ u(t) + g(t)u(t) = 0
u(a) = Dβ,ρ

a+ u(b) = 0
(1.2)

where 1 < α ≤ 2, 0 < β ≤ 1 and g : [a, b] → R is a continuous function. Thanks to the detailed
analysis of the integral equation equivalent to (1.2) we are able to obtain a corresponding
Lyapunov-type inequality. After that, we show some applications to present the effectiveness of the
new Lyapunov-type inequality. We deduce some existence and non-existence results for the
considered problem (1.2) which are very helpful for other researchers in this field. Furthermore, at the
end of the article there will be graphs illustrating the applications of the proven theorems.

2. Preliminaries

In this section, we introduce the definitions and properties of the Katugampola fractional operators
which are needed to prove the main results. For more details, we refer to [15–17].

Definition 2.1. Let α > 0, ρ > 0, −∞ < a < b < ∞. The operators

Iα,ρa+ f (t) =
ρ1−α

Γ(α)

∫ t

a

τρ−1

(tρ − τρ)1−α f (τ)dτ,

Iα,ρb− f (t) =
ρ1−α

Γ(α)

∫ b

t

τρ−1

(τρ − tρ)1−α f (τ)dτ,

for t ∈ (a, b) are called the left-sided and right-sided Katugampola integrals of fractional order α,
respectively. The operators Iα,ρa+ f and Iα,ρb− f are defined for f ∈ Lp(a, b), p ≥ 1.

Definition 2.2. Let α > 0, ρ > 0, n = [α] + 1, 0 < a < t < b ≤ ∞. The operators

Dα,ρ
a+ f (t) =

(
t1−ρ d

dt

)n

In−α,ρ
a+ f (t)

Dα,ρ
b+

f (t) =

(
−t1−ρ d

dt

)n

In−α,ρ
b− f (t)
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for t ∈ (a, b) are called the left-sided and right-sided Katugampola derivatives of fractional order α,
respectively.

The Katugampola derivative generalizes two other fractional operators, by introducing a new
parameter ρ > 0 in the definition. Indeed, if we take ρ→ 1, we have the Riemann-Liouville fractional
derivative, i.e.,

lim
ρ→1

Dα,ρ
a+ f (t) =

(
d
dt

)n 1
Γ(n − α)

∫ t

a

f (τ)
(t − τ)α−n+1 dτ.

Moreover, if we take ρ→ 0+, we get the Hadamard fractional derivative, i.e.,

lim
ρ→0+

Dα,ρ
a+ f (t) =

1
Γ(n − α)

(
t

d
dt

)n ∫ t

a

(
log

t
τ

)n−α−1
f (τ)

dτ
τ
.

Example 2.3. ( [9]) For ρ > 0, α > 0, λ > α − 1, we have

Dα,ρ
a+

(
tρ − aρ

ρ

)λ
=

Γ(λ + 1)
Γ(λ + 1 − α)

(
tρ − aρ

ρ

)λ−α
,

The higher order Katugampola fractional operators satisfy the following properties, which were
precisely discussed and proven in [9, 16, 17].

Lemma 2.4. ( [16]) Let α > 0, ρ > 0 and f ∈ L[a, b] then

Dα,ρ
a+ Iα,ρa+ f (t) = f (t).

Lemma 2.5. ( [16]) Let α > β > 0, ρ > 0 and f ∈ L[a, b] then

Dβ,ρ
a+ Iα,ρa+ f (t) = Iα−β,ρa+ f (t), a < t < b.

Lemma 2.6. ( [17]) Let n − 1 < α < n, n ∈ N, ρ > 0 and f ∈ L[a, b] then

Iα,ρa+ Dα,ρ
a+ f (t) = f (t) +

n−1∑
i=0

c̃i

(
tρ − aρ

ρ

)i−n+α

where c̃i are real constants.

It is worth to mention that the complex formula for the Katugampola operator is established in [18].

3. Main result

We start with writing problem (1.2) in its equivalent integral form.

Theorem 3.1. Function u ∈ C[a, b] is a solution to the boundary value problem (1.2) if and only if u
is a solution to the integral equation

u(t) =

b∫
a

G(t, s)g(s)u(s)ds, (3.1)

where the Green function G is given by

G(t, s) =
ρ1−αsρ−1

Γ(α)

 (tρ − aρ)α−1
(

bρ−aρ
bρ−sρ

)β−α+1
, a ≤ t ≤ s ≤ b

(tρ − aρ)α−1
(

bρ−aρ
bρ−sρ

)β−α+1
− (tρ − sρ)α−1, a ≤ s < t ≤ b.

(3.2)
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Proof. Integrating equation from (1.2) and using Lemma 2.6 we obtain that general solution is of the
form

u(t) = c1

(
tρ − aρ

ρ

)α−1

+ c2

(
tρ − aρ

ρ

)α−2

− Iα,ρa+ [g(t)u(t)], (3.3)

where c1 and c2 are some real constants. Since u(a) = 0, we get c2 = 0. Moreover, differentiating (3.3)
in Katugampola sense with c2 = 0, we have

Dβ,ρ
a+ u(t) = c1Dβ,ρ

a+

(
tρ − aρ

ρ

)α−1

− Dβ,ρ
a+ Iα,ρa+ [g(t)u(t)].

By Example 2.3 and Lemma 2.5 we obtain

Dβ,ρ
a+ u(t) =

c1Γ(α)
Γ(α − β)

(
tρ − aρ

ρ

)α−β−1

−
ρβ−α+1

Γ(α − β)

t∫
a

τρ−1

(tρ − τρ)β−α+1 g(τ)u(τ)dτ.

Since Dβ,ρ
a+ u(b) = 0, we get

c1 =
(bρ − aρ)β−α+1

Γ(α)

b∫
a

τρ−1

(bρ − τρ)β−α+1 g(τ)u(τ)dτ.

Therefore,

u(t) =
ρ1−α

Γ(α)

[ t∫
a

(
(tρ − aρ)α−1

(
bρ − aρ

bρ − τρ

)β−α+1

− (tρ − τρ)α−1
)
τρ−1g(τ)u(τ)dτ

+

b∫
t

(tρ − aρ)α−1
(
bρ − aρ

bρ − τρ

)β−α+1

τρ−1g(τ)u(τ)dτ
]

which ends the proof. �

The below theorem present the properties of the Green function G obtained in (3.2)

Theorem 3.2. Let 0 < a < b < ∞, α ∈ (1, 2], β ∈ (0, 1] , α > β + 1 and ρ > 0. The function G given
by (3.2) satisfies the following estimates

(i) G(t, s) ≥ 0, t, s ∈ [a, b],

(ii) max
t∈[a,b]

G(t, s) = G(s, s) ≤
4β max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

, s ∈ [a, b].

Proof. First we prove the positivity of function G. For t ≤ s it is obvious, but for s < t we can rewrite
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function G in the form

G(t, s) =
ρ1−αsρ−1

Γ(α)
(tρ − aρ)α−1

(bρ − aρ)α−β−1(bρ − sρ)β

×

[
(bρ − sρ)α−1 −

(
bρ − sρ

bρ − aρ

)β ( (bρ − aρ)(tρ − sρ)
tρ − aρ

)α−1 ]
≥
ρ1−αsρ−1

Γ(α)
(tρ − aρ)α−1

(bρ − aρ)α−β−1(bρ − sρ)β

×

(bρ − sρ)α−1 −

(
(bρ − aρ)(tρ − sρ)

tρ − aρ

)α−1
=
ρ1−αsρ−1

Γ(α)
(tρ − aρ)α−1

(bρ − aρ)α−β−1(bρ − sρ)β

×

(bρ − sρ)α−1 −

(
bρ −

(
aρ +

(sρ − aρ)(bρ − aρ)
tρ − aρ

))α−1 .
Let us see that there is the following estimation

sρ ≤ aρ +
(sρ − aρ)(bρ − aρ)

tρ − aρ
≤ bρ,

because

(sρ − aρ)(bρ − tρ)
tρ − aρ

≥ 0 and
(bρ − aρ)(sρ − tρ)

tρ − aρ
≤ 0.

Thus the function G is positive also for s < t.

(ii) Now, we prove that G(t, s) ≤ G(s, s). Firstly, we consider the interval a ≤ t ≤ s ≤ b.
Differentiating G with respect to t we have

∂G
∂t

=
ρ2−α(α − 1)

Γ(α)
sρ−1tρ−1

(
bρ − aρ

bρ − sρ

)β−α+1

(tρ − aρ)α−2 ≥ 0.

Therefore,

G(t, s) ≤ G(s, s), for t ≤ s, s ∈ [a, b], (3.4)

because the function G with respect to t is increasing on the considered interval.

Now, let we take the interval a ≤ s < t ≤ b. Taking the derivative of function G with respect to t,
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we obtain

∂G
∂t

=

=
ρ2−α(α − 1)sρ−1tρ−1

Γ(α)

(
tρ − aρ

bρ − aρ

)α−2  (bρ − sρ)α−β−1

(bρ − aρ)1−β −

(
bρ − aρ

tρ − aρ

)α−2

(tρ − sρ)α−2


≤
ρ2−α(α − 1)

Γ(α)
sρ−1tρ−1

(
tρ − aρ

bρ − aρ

)α−2

×

(bρ − aρ)α−2 −

(
(bρ − aρ)(tρ − sρ)

tρ − aρ

)α−2
=
ρ2−α(α − 1)

Γ(α)
sρ−1tρ−1

(
tρ − aρ

bρ − aρ

)α−2

×

(bρ − aρ)α−2 −

(
bρ −

(
aρ +

(sρ − aρ)(bρ − aρ)
tρ − aρ

))α−2 .
Note that

∂G
∂t
≤ 0 because

aρ ≤ aρ +
(sρ − aρ)(bρ − aρ)

tρ − aρ
≤ bρ.

Therefore,
G(t, s) ≤ G(s, s), for t > s, s ∈ [a, b], (3.5)

because the function G is decreasing with respect to t on the considered interval. From (3.4) and (3.5)
we get

G(t, s) ≤ G(s, s) =
ρ1−αsρ−1

Γ(α)(bρ − aρ)α−β−1

(sρ − aρ)α−1

(bρ − sρ)β−α+1

≤
ρ1−α max{aρ−1, bρ−1}

Γ(α)(bρ − aρ)α−β−1 [(sρ − aρ)(bρ − sρ)]α−β−1 (sρ − aρ)β

≤
ρ1−α max{aρ−1, bρ−1}

Γ(α)(bρ − aρ)α−2β−1 [(sρ − aρ)(bρ − sρ)]α−β−1

for s ∈ [a, b], t ∈ [a, b]. Now let us define a function f

f (s) = [(sρ − aρ)(bρ − sρ)]α−β−1 , s ∈ [a, b].

In order to find the maximum value of this function, we check the sign of the derivative on the interior
(a, b). We have

f ′(s) = ρ(α − β − 1)sρ−1 [(sρ − aρ)(bρ − sρ)]α−β−2 [bρ − 2sρ + aρ].

It follows that f ′(ŝ) = 0 if and only if

ŝ =

(
aρ + bρ

2

) 1
ρ

.

It is easily seen that f ′(s) < 0 for ŝ < s and f ′(s) > 0 for ŝ > s.
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Therefore

max
s∈[a,b]

f (s) = f (ŝ) =

(bρ − aρ

2

)2α−β−1

.

It ends the proof. �

We are ready to state and prove our main results in the Banach space C[a, b] with the maximum
norm ||u|| = max

t∈[a,b]
|u(t)|.

Theorem 3.3. If a nontrivial continuous solution of the fractional boundary value problem (1.2) exists,
where g is a real and continuous function and α > β + 1, then

b∫
a

|g(s)|ds ≥
Γ(α)

4β max{aρ−1, bρ−1}

(
4ρ

bρ − aρ

)α−1

.

Proof. It follows from Theorem 3.1 that solution of the fractional boundary value problem (1.2)
satisfies the integral equation (3.1). Thus

|u(t)| ≤

b∫
a

|G(t, s)||g(s)||u(s)|ds, t ∈ [a, b].

Using the estimation of the function G which was obtained in Theorem 3.2 we get

‖u‖ ≤
4β max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

‖u‖

b∫
a

|g(s)|ds.

Thus, we have
b∫

a

|g(s)|ds ≥
Γ(α)

4β max{aρ−1, bρ−1}

(
4ρ

bρ − aρ

)α−1

.

The proof is completed. �

In particular, if we chose β = 0 in Theorem 3.3, we obtain the main theorem of the work [9].
Moreover, taking α = 2, β = 0, and ρ = 1 we recover the classical Lyapunov’s inequality (1.1).

Due to the fact, that the Katugampola derivative has an additional parameter ρ (which by taking
ρ → 0+ reduces to the Hadamard fractional derivative and for parameter ρ = 1 become the Riemann-
Liouville fractional derivative) we get the Lyapunov-type inequality for both the Riemann-Liouville
derivative Dα

a+ and the Hadamard derivative HDα
a+.

Corollary 3.4. If a nontrivial continuous solution of the fractional boundary value problem

Dα
a+u(t) + g(t)u(t) = 0, a < t < b, 1 < α ≤ 2

u(a) = Dβ
a+u(b) = 0, β < α − 1
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exists, where g is a real and continuous function, then

b∫
a

|g(s)|ds ≥
Γ(α)
4β

(
4

b − a

)α−1

.

In particular, if we take, in Corollary 3.4, β = 0 we obtain the main result of the work [10] proved
by Ferreiro.

Corollary 3.5. If a nontrivial continuous solution of the fractional boundary value problem

HDα
a+u(t) + g(t)u(t) = 0, a < t < b, 1 < α ≤ 2

u(a) = HDβ
a+u(b) = 0, β < α − 1

exists, where g is a real and continuous function, then

b∫
a

|g(s)|ds ≥
Γ(α)

4β max{a, b}

 ln b
a

4

1−α

.

4. Applications and examples

In this section, we apply the results on the Lyapunov-type inequalities obtained previously to study
the nonexistence of solutions for certain fractional boundary value problems.

Theorem 4.1. If
b∫

a

|g(s)|ds <
Γ(α)

4β max{aρ−1, bρ−1}

(
4ρ

bρ − aρ

)α−1

,

then (1.2) has no nontrivial solution.

The proof of this theorem is trivial and it is left for the reader.

Example 4.2. Let us consider the following boundary value problemD
3
2 ,ρ

1+
u(t) + λtρ−1u(t) = 0, 1 < t < 2

u(1) = D
1
4 ,ρ

1+
u(2) = 0.

(4.1)

By Theorem 3.3, if the continuous solution to the problem (4.1) exists, then necessarily

|λ|
2ρ − 1
ρ

> min{1, 21−ρ}

√
πρ

2ρ+1 − 2
.

Note, that inequality depends on two parameters λ and ρ. Taking ρ = 1 we obtain λ > 1.2534, but for
ρ → 0+ we have λ > 2.1719 . In particular, for λ = 1, ρ = 1 and ρ → 0+ the solution to problem (4.1)
does not exist. For λ = 2, the solution does not exist for ρ → 0+, but for ρ = 1 the solution to (4.1)
may exist. Moreover, for λ = 3 the solution may exist for ρ = 1 and ρ→ 0+.
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Let us consider problem (1.2) with g(t) = λDα,ρ
a+ u(t) + λu(t) = 0, a < t < b, 1 < α ≤ 2

u(a) = Dβ,ρ
a+ u(b) = 0.

(4.2)

If problem (4.2) admits a nontrivial solution uλ, we say that λ is an eigenvalue of problem (4.2). We
have the following result which provides a lower bound of the eigenvalues of problem (4.2).

Corollary 4.3. If λ is an eigenvalue of problem (4.2), then

|λ| ≥
Γ(α)

4β(b − a) max{aρ−1, bρ−1}

(
4ρ

bρ − aρ

)α−1

.

The proof follows immediately from Theorem 3.3.
Furthermore, if

|λ| <
Γ(α)

4β(b − a) max{aρ−1, bρ−1}

(
4ρ

bρ − aρ

)α−1

,

then λ is not an eigenvalue of problem (4.2).

Example 4.4. Let us consider problem (4.2) with β = 1
4 , ρ = 1. If

|λ| < Cα(b − a) :=
Γ(α)4α−2

√
2(b − a)α

,

then the solution of the eigenvalue of problem (4.2) does not exist. The plot below shows the upper
estimation of λ depending on order of considered equation, for which (4.2) does not have a solution.
The red line is for cases b − a = 0.5, and the blue line is for b − a = 1.

Figure 1. The function Cα(1) and Cα(0.5) for α ∈ (5
4 , 2].
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