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Abstract: In clinical practice, differentiating benign from malignant intraductal papillary mucinous 
neoplasm (IPMN) and mucinous cystic neoplasm (MCN) preoperatively is crucial for deciding future 
treating algorithm. However, it remains challenging as benign and malignant lesions usually show 
similarities in both imaging appearances and clinical indices. Therefore, a robust and accurate 
computer-aided diagnosis (CAD) system based on radiomics and clinical indices was proposed in this 
paper to solve this dilemma. In the proposed CAD system, 107 patients were enrolled, where 90 cases 
were randomly selected for the training set with 5-fold cross validation to build the diagnostic model, 
while 17 cases were remained for an independent testing set to validate the performance. 436 high-
throughput radiomics features while 9 clinical indices were designed and extracted. A novel feature 
selection algorithm named BLR (Bootstrapping repeated LASSO with Random selections) was 
proposed to select the most effective features. Then the selected features were sent to Support Vector 
Machine (SVM) to differentiate the benign or malignant. In the cross-validation cohort and 
independent testing cohort, the area under receiver operating characteristic curve (AUC) of CAD 
scheme were 0.83 and 0.92, respectively. The results fully prove the proposed CAD system achieves 
significant effect in tumors diagnosis. 
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1. Introduction  

In recent years, due to a higher morbidity and the malignant potential of intraductal papillary 
mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN), these two pancreatic cystic 
neoplasms (PCNs) have drawn great attention of clinical researchers [1–3]. As there is a tremendous 
difference in the prognosis between benign and malignant cases, recognizing malignant IPMN/MCN 
preoperatively is very important for tailoring an optimal strategy of treatment for a patient. Patients 
with benign tumors can receive a function-preserving surgery or even can escape surgery and stick to 
a close surveillance plan, while patients with malignant tumors may undergo a more radical surgery. 
However, even for experienced clinicians, it’s currently always challenging to distinguish benign 
lesions from malignant ones, because they show similar imaging appearance and clinical indices and 
the potential difference cannot be easily recognized by human in routine clinical practice. 

Multi-detector row computed tomography (MDCT) is recommended for the initial diagnosis and 
assessment of IPMN and MCN [4,5]. And the incidence of pancreatic cancer raised dramatically, 
owing to the wide application of MDCT examination [6]. In clinical practice, there are a lot of high-
risk imaging findings associated with cancerization. According to the international consensus 
guidelines published by Tanaka M et al. [7,8], the diffuse dilation of main pancreatic duct (MPD) > 5 
mm is an important signal of malignant IPMN and MCN, while the large cyst > 3 cm, the thickened 
cystic wall, and the papillary mural nodules are also prominent features of malignant tumors. In 
addition to radiologic approaches, studies also have shown that certain laboratory results and clinical 
symptoms can also indicate the malignant transformation of pancreatic neoplasms, e.g., the raising of 
serum carbohydrate antigen (CA) 19-9, CA12-5 or carcinoembryonic antigen (CEA), the increasing 
of fasting plasma glucose, and even abdominal pain [9]. However, due to the similar imaging 
appearances and the subjective clinical diagnosis, there is a solid need from clinicians for an assistant 
system to help them make a more accurate and objective diagnosis on benign or malignant IPMN/MCN. 
As a result, some studies have emerged on computer-aided diagnosis (CAD). 

Radiomics-based CAD method constructs an objective image evaluation system and the whole 
process is highly automated, time-saving and effective. At present, there are some CAD methods and 
radiomics researches related to pancreatic disease. Jayasree et al. [10] predicted cancer risk in branch 
duct (BD)-IPMN through the extraction of 135 features, then applied wilcoxon rank-sum test (WRST) 
based p-value feature selection and obtained the AUC of 0.77. Park et al. [11] extracted 431 3D CT 
radiomics features and used minimum-redundancy maximum-relevancy (mRMR) algorithm to reduce 
feature dimension, then realized the differential diagnosis of autoimmune pancreatitis and pancreatic 
ductal adenocarcinoma. Zhang et al. [12] extracted 251 radiomics features from 2D and 3D PET/CT 
images, and used support vector machine recursive feature elimination (SVM-RFE) to select effective 
features, while support vector machine (SVM) was choose as classifier to discriminate autoimmune 
pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). Wei et al. [13] extracted 409 MDCT 
radiomics features and used bootstrapping repeated least absolute shrinkage selection operator 
(LASSO) regression to select effective features. Finally, they distinguished between serous cystic 
neoplasm (SCN) and other subtypes of PCN, which obtained the AUC of 0.84. 

Throughout the abovementioned CAD methods, there are some urgent problems to be solved. 
First, the above feature extraction modules did not form a complete and comprehensive feature system 
optimized for PCN. Second, most of the feature selection methods only selecting once, which leads to 
the instability and contingency of the results. Third, the CAD methods have not made many attempts 
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focusing on the task of the differentiation between benign and malignant of both IPMN and MCN. 
Therefore, a robust and improved radiomics CAD system is highly needed to solve these problems. 

In this paper, an enhanced CAD system was proposed, which combines the radiomics features 
with the clinical indices and forms a complete, comprehensive and PCN-optimized feature system. In 
addition, a fashion and high-performance feature selection algorithm named Bootstrapping repeated 
LASSO with Random selections (BLR) was used in our CAD system. Finally, the features selected by 
BLR were sent to SVM to classify benign and malignant of IPMN and MCN. 

The workflow of the proposed CAD system is shown in Figure 1. Our major contributions can be 
summarized as follows: 
1) The feature extraction modules in the existing CAD system are not systematic, nor optimized for 
PCN. Besides, it lacks of some important clinical symptoms or laboratory indicators. Therefore, a 
comprehensively, completely, and PCN-optimized feature system has been built including 436 
radiomics feature and 9 clinical indices to describe the image characteristics of PCNs automatically 
and accurately. 
2) A novel algorithm named BLR was proposed, which increases the stability of feature selection 
through a large number of bootstrapping repetitions while reduces the bias and overfitting, and 
maximizes the diagnostic potential of features by means of random selections. 
3) A robust and precise preoperative CAD system was established aimed to classify the benign 
and malignant of IPMN/MCN, which forms a reliable and objective image evaluation and 
diagnostic method. 

Image Input and 
segmentation 

Single 2D image

Manual
annotation

2D Feature 
extraction

Structure features

Intensity features

Texture features

Wavelet features
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selection
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Figure 1. The workflow of the proposed CAD system. 

2. Materials and methods 

2.1. Dataset and segmentation 

This study is a retrospective study. The 107 patients were enrolled at Department of Pancreatic 
Surgery, Huashan Hospital of Fudan University, Shanghai, China, from December 2007 to August 2016. 
There are 73 IPMN and 34 MCN cases, including 71 benign and 36 malignant. All patients have signed 
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informed consent, and our study has been approved by the ethics committee of the Huashan Hospital. 
The characteristics of enrolled patients are shown in Table 1.  

All patients underwent preoperative abdominal enhance MDCT scans with the thickness of 1.5 mm 
and already received surgery, the postoperative pathological examination result was taken as the 
ground-truth and final diagnosis of the patient. Due to the higher image quality of portal venous 
phase, the single 2D image with the largest tumor cross section in portal venous phase of abdominal 
enhance MDCT sequence was chosen as the input. The portal venous phase is the images collected 
in 60–65 s after intravenous injection of nonionic-iodinated contrast agent with the reagents 
concentration of 370 mg I/mL and the injection rate of 4 mL/s. Preoperative data used in this study 
of these patients is complete and available. 

The size of all images was 512 × 512 and the tumors were outlined by experienced radiologists 
manually. The 90 cases were randomly selected as the training cohort with 5-fold cross-validation, 
while the remaining 17 cases formed the independent testing cohort. The data processing was 
implemented in Matlab R2018b (Mathworks, Inc, Natick, Massachusetts). 

Table 1. Patient characteristics. 

Category 
Training cohort Independent testing cohort 

malignant benign malignant benign 

IPMN 25 36 7 5 

MCN 2 27 2 3 

total 27 63 9 8 

2.2. High-throughput feature design and extraction 

A PCN-optimized feature system was designed according to the clinical guidelines published by 
Sahani et al. [14] in 2013, which practically covers all the features included in the clinical guidelines. 

Specifically, 436 radiomics features were designed and extracted, including 21 structure 
features, 16 intensity features, 67 texture features, and 332 wavelet features. Besides, 9 clinical indices 
were added to our feature system to promote the effects of radiomics-based CAD scheme and make it 
closer to the real clinical diagnosis model. The extracted features are summarized in Table 2, while the 
detailed features are shown in Appendix. The correspondences between the extracted features and the 
clinical guidelines features are shown in Table 3. 

Structure features are used for describe the shape, edge, size and internal structure of the 
tumor [13,15]. Shape features comprehensively reflect the shape information of tumors, such as tumor 
size, shape, edge roughness and so on. The internal structure features focus on PCN such as internal 
cyst, calcification, wall thickness and central scar. 

Intensity features reflect the intensity and histogram information of the tumors.  
Texture features calculate the texture information of tumor region, including Inner regional 

comparison features and Other texture features. 

2.2.1. Inner regional comparison features 

To better describe the gray level and texture distribution disparity between the different inner 
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regions of the tumor, 6 texture features were designed, named inner regional comparison features. The 
greatest advantage of inner regional comparison features is that it can calculate the inner-regional 
disparity of the tumor with any shape, in the meanwhile, without the serious interference of the other 
tissues outside of the mass or compared areas. Figure 2 reflects the process of obtaining the internal 
regions of tumor. Figure 2(a) is the original image with the size of R × C. The R and C are both 512 in 
this study; (b) is the mask of the tumor; (c) is the tumor region; (d) and (e) represent ܴܱ1ܫ௜௝ and 
 2௜௝, which are the upper left corner and the lower right corner of (c) respectively and with the sameܫܱܴ
size of ܴ െ ܥ ×  ݅ െ ݆ ; (f) shows the intersection of ܴܱ1ܫ௜௝  and ܴܱ2ܫ௜௝ ; (g) is the mask of 
intersection region; (h) and (i) are ܴ݁݃݅1݊݋௜௝ and ܴ݁݃݅2݊݋௜௝, which are the point multiplication of 
(g) and (d) or (e), respectively. In simple terms, ܴ݁݃݅1݊݋௜௝ and ܴ݁݃݅2݊݋௜௝ are the different inner 
regions of the tumor to be compared, all of the other subpictures are the intermediate processes to 
obtain ܴ݁݃݅1݊݋௜௝ and ܴ݁݃݅2݊݋௜௝. Notice that the size of ܴ݁݃݅1݊݋௜௝ and ܴ݁݃݅2݊݋௜௝ vary with the 
value of ݅ and ݆. 

Table 2. Summary of the extracted high-throughput radiomics features and clinical indices. 
The detailed features are shown in Appendix. 

Type Name Number 

Structure Shape features (13), Inner-structure features (8) 21 

Intensity 16 

Texture 

Inner regional 

comparison 

features (6) 

mean of inner-regional dissimilarity, SD of inner-regional dissimilarity, 

mean of inner-regional contrast, SD of inner-regional contrast, mean of 

inner-regional covariance, SD of inner-regional covariance 67 

ROI-based features (7), High-order matrices texture features (GLCM (23), GLRLM (13), 

GLSZM (13), NGTDM (5)) 

Wavelet LL HL LH HH decomposition 332 

Clinical 

indices 

Sex, age, preoperative fasting plasma glucose, CA199, CA125, CEA, tumor size, tumor 

location, clinical symptoms 
9 

Abbreviations: ROI is region of interest; IMC is informational measure of correlation; SD is standard deviation. 

Table 3. Correspondence between the extracted features and the clinical guidelines 
features. 

Clinical guidelines features Extracted features 

Age Clinical indices-Age 

Sex Clinical indices-Sex 

Location Clinical indices-Location 

Shape Shape features 

Size Clinical indices-tumor size, General shape features-diameter of equivalent circle 

Wall Average wall thickness 

Internal cysts number of cysts, cyst size, SD of cysts area 

Central scar central scar density 

Calcification number of calcifications, SD of calcification area, calcification area location 

Intensity Intensity features, Texture features, Wavelet features 
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Figure 2. The process of obtaining the internal regions of tumor. (a)–(g) are the 
intermediate processes to get (h) and (i); (h) and (i) are the two obtained tumor’s internal 
regions. 

So, the calculation method and formula of each feature are as follows: 
1) Mean of inner-regional dissimilarity (ݏݏ݅ܦ௠): 

௠ݏݏ݅ܦ  ൌ
∑ ∑

ೞೠ೘ቚೃ೐೒೔೚೙భ೔ೕషೃ೐೒೔೚೙మ೔ೕቚ

ಿ
಼షభ
ೕసబ

ಾషభ
೔సబ

ெൈ௄
 (1) 

where the ݉ݑݏ means to sum all pixels of an image; N is the number of pixels of foreground in (g); M 
and K are the positive integers, which can be regarded as the maximum offset when using Figure 2(c) to 
get (d) and (e). Their values should be appropriate, not too large or too small. In this study, M and K 
are both equal to 5. The dissimilarity of different inner regions of the tumor is proportional to the value 
of this feature. 
2) Standard deviation of inner-regional dissimilarity (ݏݏ݅ܦ௦௧ௗ): 

௠௜௝ݏݏ݅ܦ  ൌ
௦௨௠หோ௘௚௜௢௡ଵ೔ೕିோ௘௚௜௢௡ଶ೔ೕห

ே
 (2) 

௦௧ௗݏݏ݅ܦ  ൌ ඨ∑ ∑ ቀ஽௜௦௦೘೔ೕି஽௜௦௦೘ቁ
మ಼షభ

ೕసబ
ಾషభ
೔సబ

ெൈ௄
 (3) 

This feature reflects the stability of inner-regional dissimilarity. 
3) Mean of inner-regional contrast (݊݋ܥ௠): 
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௠݊݋ܥ  ൌ
∑ ∑

ೞೠ೘ቀೃೀ಺భ೙೔ೕ∗ೃೀ಺మ೙೔ೕቁ

ಿ
಼షభ
ೕసబ

ಾషభ
೔సబ

ெൈ௄
	  (4) 

௡ݎ݋݉ݑܶ  ൌ ቀ ்௨௠௢௥ି௠௜௡ሺ்௨௠௢௥ሻ

௠௔௫ሺ்௨௠௢௥ሻି௠௜௡ሺ்௨௠௢௥ሻ
ቁ ∗  (5) ܹܤ

௜௝݊_1ܫܱܴ  ൌ :௡ሺ1ݎ݋݉ݑܶ ܴ െ ݅, 1: ܥ െ ݆ሻ (6) 

௜௝݊_2ܫܱܴ  ൌ ௡ሺ1ݎ݋݉ݑܶ ൅ ݅: ܴ, 1 ൅ ݆:  ሻ (7)ܥ

where the ∗  represents point multiplication of two images; 	  represent the  ݎ݋݉ݑܶ and  ܹܤ
Figure 2(b),(c), respectively. ݉݅݊/݉ܽݔ are the minimum and maximum value of the tumor region in 
(c); ܶݎ݋݉ݑ௡ is the normalized image of the tumor region in (c). ܴܱ1ܫ_݊௜௝ and ܴܱ2ܫ_݊௜௝ are the 
upper left and the lower right corner of ܶݎ݋݉ݑ௡ respectively, and with the same size of ܴ െ ܥ × ݅ െ
݆. This feature reflects the contrast inside the tumor. 
4) Standard deviation of inner-regional contrast (݊݋ܥ௦௧ௗ): 

௠௜௝݊݋ܥ  ൌ
௦௨௠൫ோைூଵ_௡೔ೕ∗ோைூଶ_௡೔ೕ൯

ே
 (8) 

௦௧ௗ݊݋ܥ  ൌ ට∑ ∑ ሺ஼௢௡೘೔ೕି஼௢௡೘ሻ
మ಼షభ

ೕసబ
ಾషభ
೔సబ

ெൈ௄
 (9) 

This feature reflects the stability of inner-regional contrast. 
5) Mean of inner-regional covariance (ܽݒ݋ܥ௠): 

௠ܫ  ൌ ௦௨௠ሺ்௨௠௢௥೙ሻ

௉
 (10) 

௠௜௝ܽݒ݋ܥ  ൌ
௦௨௠ൣ൫ோைூଵ_௡೔ೕିூ೘൯∗ሺோைூଶ_௡೔ೕିூ೘൯∗ఈሿ

ே
 (11) 

௠ܽݒ݋ܥ  ൌ
∑ ∑ ஼௢௩௔೘೔ೕ

಼షభ
ೕసబ

ಾషభ
೔సబ

ெൈ௄
 (12) 

P is the number of pixels with the value of 1 in the Figure 2(b); ߙ represents the Figure 2(g), which 
is the mask of intersection region of ܴܱ1ܫ_݊௜௝ and ܴܱ2ܫ_݊௜௝. This feature calculates the covariance 
of the tumor’s different inner-regions. 
6) Standard deviation of inner-regional covariance (ܽݒ݋ܥ௦௧ௗ): 

௦௧ௗܽݒ݋ܥ  ൌ ට∑ ∑ ሺ஼௢௩௔೘೔ೕି஼௢௩௔೘ሻ
మ಼షభ

ೕసబ
ಾషభ
೔సబ

ெൈ௄
 (13) 

This feature reflects the stability of inner-regional covariance. 

2.2.2. Other texture features 

ROI-based features calculate the relevant texture characteristics in the bounding-box of the 
tumor [13,16]. Besides, gray-level co-occurrence matrix (GLCM) [17], gray-level run-length matrix 
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(GLRLM) [18], gray-level size zone matrix (GLSZM) [19], and neighborhood gray-tone difference 
matrix (NGTDM) [20] are common high-order matrices to describe image texture. 

In order to get the deeper intensity and texture information of the image, wavelet transform was 
applied to all two-dimensional images and four components were obtained, which are Low pass/Low 
pass (LL), Low pass/High pass (LH), High pass/Low pass (HL), and High pass/High pass (HH). The 83 
intensity and texture features were extracted from four component respectively, and obtained 332 
wavelet features in total. 

Clinical indices record the patients’ demographic information, preoperative laboratory indicators, 
and clinical symptoms comprehensively. The quantization methods of each feature are described below:  
1) Sex: 0 and 1 represent male and female, respectively.  
2) Age: 1–4 represent age range from 1 to 19, 20 to 39, 40 to 59 and above 60.  
3) Preoperative fasting plasma glucose (mmol/L): range from 4.1 to 11.3. 
4) Serum cancer antigen 199 (CA199, u/mL): range from 0.6 to 999. 
5) Serum cancer antigen 125 (CA125, u/mL): range from 2.0 to 116.9. 
6) Carcinoembryonic antigen (CEA, ug/mL): range from 0.2 to 6.1. 
7) tumor size (cm): range from 0.2 to 15. 
8) Location: 1, 1.5, 2, 2.5, 3, 3.5, 4, in which 1, 2, 3, 4 represent the head, neck, body, tail of pancreas, 
respectively. While 1.5 represents between the head and the neck of the pancreas, 2.5, 3.5 are similar.  
9) Clinical symptoms: 0–6 represent asymptomatic, abdominal pain, abdominal distension, weight 
loss, jaundice, mass, and pancreatitis, respectively.  

To sum up, a complete, comprehensive and PCN-optimized feature system with 445 high-
throughput features has been established in this study. 

2.3. BLR feature selection algorithm 

LASSO regression has been widely used in the feature extraction because of its efficiency and 
high performance [21,22]. It can shrink the coefficients of the redundant features to zero. But 
selecting features only once can be extremely occasional and cause overfitting. Therefore, in our 
previous works [13,16], LASSO regression was combined with a large number of bootstrapping 
repetitions to increase the reliability of feature selection meanwhile prevent overfitting. To be exact, 
all of the input features were ranked according to their occurrence number in the multiple 
bootstrapping repeated LASSO regression, and the features with top 10% reproducibility were 
selected as the final feature subset. 

However, it is far from sufficient if only combines features with top reproducibility mechanically, 
because it ignores the potential ability of features with non-top but high reproducibility and will 
reduces the classification accuracy. Therefore, in this study, to obtain better performances, an 
extremely huge number of random selections were implemented among the features with high 
reproducibility, then chose the best feature combination according to the comprehensive classification 
effect. This algorithm named BLR. 

The steps of proposed BLR algorithm are as follows: 
1) Use the LASSO regression model on the training cohort with 5-fold cross-validation to select the 
effective features, and bootstrapping 300 times. 
2) Sort the features according to the reproducibility in above LASSO selections, and the top M 
features were selected to form the feature subset1. 
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3) Select N (N < M) features from the feature subset1 randomly K times (K is extremely large) to 
obtain K feature combinations, feed them to SVM (use 5-fold cross-validation, besides, bootstrapping 
repeat 100 times and take the average) to get their classification ability. 
4) The threshold method was used for select L (L << K) feature combinations with excellent 
classification performance from K feature combinations obtained in step 3). 
5) Select the best one from L feature combinations obtained in step 4) manually according to the 
comprehensive classification performance, and get the corresponding final feature subset. 

BLR increases the reliability of LASSO regression through a lot of bootstrapping repetitions. 
Besides, it avoids simple feature combination, which picks up the features with the non-top 
reproducibility and maximizes their diagnostic potential through a large number of random extractions. 
Meanwhile, it explores various possibilities of feature combinations. Therefore, the BLR algorithm 
has a great probability to obtain better classification effect.  

2.4. Diagnosis of benign and malignant 

The final feature subset selected by BLR was sent to SVM with linear kernel to complete the 
differentiation between benign and malignant of IPMN and MCN. All selected features were 
normalized to [−1, +1]. 

Some important details of SVM were configured as follows: The maximal number of optimization 
iterations was 1,000,000. In order to solve the slight sample imbalance in the training cohort, we 
doubled the cost of the misjudged malignant tumors in the training stage. In the K-fold training set, the 
classification results were averaged as the final classification scores. 

3. Experiments 

In this section, a series of experiments were conducted to illustrate the performance of our method. 

3.1. Compared methods 

Our proposed method was compared with some state-of-the-art methods in four aspects: the 
comprehensive feature sets, the feature selection methods, the performance of various classifiers, and 
the overall pancreas related CAD methods.  

As for the feature sets, the effect of inclusion and exclusion of clinical indices on the proposed 
CAD system was contrasted.  

As for the feature selection methods, our BLR algorithm was compared with three most 
commonly feature selection algorithms, which were p-value, relief and logistic regression, respectively. 
In addition, the influences of two important factors of BLR were observed, which are bootstrapping 
repetitions and random selections. For a fair comparison, the feature sets fed into various selection 
methods were the same. The condition of each method is as follows: 
1) P-value algorithm: The WRST based p-value feature selection method with p < 0.01 was applied. 
2) Relief and logistic regression algorithm: The features with top 20 weights were selected. 
3) LASSO: The lasso fit was constructed by 10-fold cross-validation, and the features corresponding 
to the minimum cross-validated mean squared error (MSE) were combined as final feature subset.  
4) BL: The effect of bootstrapping repetitions on the LASSO model was verified and repeated this 
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step 300 times. Then the features with top 10% reproducibility were selected as final feature subset. 
5) BLR: N features were selected randomly from the top M features in BL. Repeated this step K 
times and obtained K feature combinations, fed them to SVM. Threshold method was used for selecting 
L combinations with excellent classification effect, then the best combination was selected manually 
as the final feature subset. The hyperparameters like N, M, K, and thresholds were optimized according 
to the experimental conditions. 

As for the classifiers, the effect of different classifiers was compared on the 5-fold cross-
validation cohort. The image preprocessing was exactly the same. The proposed feature extraction 
module without clinical indices was used. And the feature selection algorithm was the baseline 
LASSO regression. The selected features were sent to the compared classifiers, including Decision 
Tree (DT), K-Nearest Neighbor (KNN), Back Propagation Neural Network (BPNN), Naive Bayes 
(NB), and SVM.  

As for the overall pancreas related CAD methods, we compared our CAD system with other 
pancreas related radiomics-based method, including Park et al. [11], Zhang et al. [12], and Wei et al. [13]. 
For Park et al., the features of volume were replaced with those of area to adapt our data dimensions. 
And mRMR algorithm was used to feature selection, then the random forest was used to classification. 
For Zhang et al., we extracted the 2D CT radiomics features mentioned in their article and used 
SVM-RFE for feature selection, then the selected features were sent to SVM. For Wei et al., we 
extracted 409 features and used their LASSO-based feature selection algorithm, then the SVM was 
used to diagnosis. 

3.2. Evaluation metrics 

Four indices were used for evaluate the performance of established model, there are the area under 
the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), respectively. 

4. Results and discussion 

4.1. Efficiency of different classifiers 

The classification performances of 5 classifiers were compared. We extracted the proposed 
feature system without clinical indices and sent them to the baseline LASSO algorithm to select 
features. The selected features were fed to the compared classifiers, and the related experimental 
results are listed in Table 4. 

From Table 4, in the 5-fold cross-validation cohort, the SVM obtained AUC, ACC, SEN, SPE 
= 0.80, 0.74, 0.68, and 0.77, respectively, which achieves the best classification effects among the 
compared classifiers. So, we choose SVM as the final classifier of the following experiments. 

4.2. Efficiency of feature selection algorithms 

The classification efficiencies of 6 feature selection algorithms were compared in this part. The 
feature system without clinical indices was fed to the above 6 algorithms, and the selected feature 
subsets were sent to SVM to analyze their classification performance. 

In a cross-validation cohort, for p-value, 24 features with p < 0.01 were fed to SVM and obtained 
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AUC, ACC, SEN, SPE = 0.72, 0.72, 0.65, and 0.75, respectively. For relief and logistic regression, 20 
features with top weights were selected as final feature subsets and obtained AUC, ACC, SEN, SPE 
= 0.63 versus 0.66, 0.63 versus 0.65, 0.50 versus 0.54, and 0.69 versus 0.70, respectively. For 
LASSO, 11 features were selected and obtained AUC, ACC, SEN, SPE = 0.80, 0.74, 0.68, and 0.77, 
respectively. And for BL, 13 features with top 10% reproducibility were selected and obtained AUC, 
ACC, SEN, SPE = 0.80, 0.74, 0.67, and 0.77, respectively. For BLR, M, N, and K were set to 23, 13, 
and 20,000, the thresholds were set to AUC = 0.81, ACC = 0.75, SEN = 0.70, SPE = 0.76, and selected 
L = 100 feature combinations. Finally, the best feature subset with 13 features was fed to SVM, 
obtained AUC, ACC, SEN, SPE = 0.82, 0.76, 0.71, 0.79. The above results are summarized in Table 5. 

Table 4. The classification results of compared feature selection algorithms without 
clinical indices in cross-validation cohort. 

Classifier 
5-fold cross-validation cohort 

AUC ACC SEN SPE 

DT 0.63 0.66 0.51 0.72 

KNN 0.67 0.67 0.60 0.70 

BPNN 0.70 0.66 0.62 0.70 

NB 0.78 0.71 0.65 0.76 

SVM 0.80 0.74 0.68 0.77 

Table 5. The classification results of compared feature selection algorithms without 
clinical indices in cross-validation cohort. 

Algorithm num 
5-fold cross-validation cohort 

AUC ACC SEN SPE 

P-value 24 0.72 0.72 0.65 0.75 

relief 20 0.63 0.63 0.50 0.69 

logistic 20 0.66 0.65 0.54 0.70 

LASSO 11 0.80 0.74 0.68 0.77 

BL 13 0.80 0.74 0.67 0.77 

BLR 13 0.82 0.76 0.71 0.79 

Hence, the BLR algorithm has the best performance. By a large number of bootstrapping 
repetitions and random selections, the BLR algorithm avoids the bias and overfitting of single LASSO 
regression while maximizes the potential diagnosis abilities of the features with non-top reproducibility. 
It should be noted that the value of N is approximately equal to the number of features selected by BL 
algorithm, and M should not be too large, because the excessive value of M may lead to dramatic 
number of combinations while consider many useless features. At the same time, the value of K should 
be very large to make the experiment more general. 

4.3. Analysis of the selected features 

Some typical characteristics selected by BLR and their relevant information are shown in Table 6. 
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And Figure 3 shows the boxplots of some representative features. 
We found that the roundness, mean of inner-regional covariance, the run-length variance and so 

on are of outstanding significance for the classification of benign and malignant IPMN or MCN. Now, 
we will briefly observe the imaging differences between benign and malignant tumors from these 
important selected features. 

As we can see in Figure 4, the malignant tumors are more likely to have irregular shapes, while 
the benign tumors tend to be rounder. This finding is in accordance with the different growth pattern 
of benign and malignant tumors: benign tumors have an expansible growth pattern, while malignant 
ones have an infiltrative pattern and tend to invade adjacent structures. 

Figure 5 shows the tumors with different H-variance, this feature reflects the intensity and 
histogram distribution inside the tumor, indicating that the intensity of the malignant tumor is more 
uneven. This might be caused by the solid components inside the cyst of the tumor. These solid nodules 
or components grow irregularly and are long regarded as the origin of malignant formation in the tumor. 

Table 6. Representative features selected by BLR. The corresponding wavelet features are 
no longer listed separately. 

Category Feature Malignant (Mean [SD]) Benign (Mean [SD]) P Value 

Structure 
Roundness 

SD of normalized radius 

0.712 (0.027) 

0.109 (0.0024) 

0.786 (0.014) 

0.087 (0.0014) 

0.017 

0.021 

Intensity H-variance 2457 (1.3 × 106) 1653 (1.0 × 106) < 0.01 

Texture 

mean of inner-regional covariance 

SD of inner-regional contrast 

SD of inner-regional covariance 

grey-level variance 

run-length variance 

0.0105 (2.92 × 10−5) 

0.011 (4.23 × 10−5) 

0.008 (1.99 × 10−5) 

0.054 (0.0004) 

2.6 × 10−4 (3.3 × 10−9) 

0.0056 (2.53 × 10−5) 

0.008 (2.78 × 10−5) 

0.006 (1.48 × 10−5) 

0.063 (0.0004) 

3.1 × 10−4 (3.7 × 10−9) 

< 0.01 

0.011 

< 0.01 

0.044 

< 0.01 

Clinical 

indices 
Clinical symptoms − − 0.016 

Note: Did not calculate the mean and SD of clinical symptoms because there are meaningless. And the H-variance 

represents histogram variance. 

 

Figure 3. The boxplots of some representative features. 
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(a) (b)

 

Figure 4. The comparison of benign and malignant tumors from shape. (a) is the benign 
tumor with higher Roundness and SD of normalized radius, while (b) is the malignant 
tumor with lower values. 

(a) (b)

 

Figure 5. The comparison of benign and malignant tumors from intensity. (a) is the benign 
tumor with lower H-variance, while (b) is the malignant tumor with higher H-variance. 

(a)

(c) (d)

(a) (b)

(c)

 

Figure 6. The comparison of benign and malignant tumors from texture. (a),(b) are the 
benign/malignant tumor with lower/higher mean of inner-regional covariance. While (c),(d) 
are the benign/malignant tumor with higher/lower run-length variance.  
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Figure 6 reflects the image differences of the benign and malignant tumors from the perspective 
of texture. In the malignant tumors, the texture and density distributions are more complex and 
inhomogeneous, the gray level ranges are wider, and the disparities between the different inner regions 
of the tumor are quite distinct. This phenomenon identified reflects the fact that malignant tumors 
usually have a more complex composition than benign tumors. Beside cancerous cells, there are also 
small nourish vessels resulted from neovascularization, the characteristic fibrotic stroma of pancreatic 
malignancy, and so on. All of these components above have distinct difference on CT images, which 
make the texture of malignant tumors shows more complex on the image. 

A great difference between benign and malignant tumors in shape, density, and texture are 
illustrated. Compared with the benign tumors, the malignant tumors usually have more irregular shape, 
intensity, and texture distribution. However, the thickened cystic wall, the large cyst and papillary 
mural nodules may lead to the above problem. It also reflects that these imaging features are very 
important to the classification of benign/malignant IPMN or MCN. 

4.4. Diagnostic performances 

In this part, the feature system with clinical indices was fed to 6 feature selection algorithms to 
contrast the influence of clinical indices in the classification performance. 

The parameters of p-value, relief, and logistic regression, LASSO, BL algorithm were 
configured same as that in section 4.1. The only difference was the final feature subsets selected by 
LASSO and BL contain 12 and 10 features, respectively. For the BLR algorithm, the 
hyperparameters were as follows: M = 21, N = 10, K = 20,000, the thresholds of classifiers were 
AUC, ACC, SEN, SPE = 0.82, 0.75, 0.73, and 0.76, respectively. The output parameter was L = 108, 
and the best subset with 10 features were selected. 

Table 7. The comparison results of different feature selection algorithms with or without 
clinical indices. 

 Algorithm num 
5-fold cross-validation cohort independent validation cohort 

AUC ACC SEN SPE AUC ACC SEN SPE 

 

Without 

Clinical 

indices 

P-value 24 0.72 0.72 0.65 0.75 0.61 0.59 0.67 0.50 

relief 20 0.63 0.63 0.50 0.69 0.68 0.59 0.56 0.63 

logistic 20 0.66 0.65 0.54 0.70 0.75 0.65 0.67 0.63 

LASSO 11 0.80 0.74 0.68 0.77 0.69 0.53 0.56 0.50 

BL 13 0.80 0.74 0.67 0.77 0.82 0.76 0.67 0.88 

BLR 13 0.82 0.76 0.71 0.79 0.86 0.76 0.67 0.88 

 

With 

Clinical 

indices 

P-value 24 0.73 0.72 0.66 0.75 0.61 0.59 0.67 0.50 

relief 20 0.62 0.62 0.49 0.68 0.63 0.59 0.56 0.63 

logistic 20 0.67 0.65 0.55 0.70 0.60 0.65 0.67 0.63 

LASSO 12 0.80 0.74 0.68 0.77 0.71 0.53 0.44 0.63 

BL 10 0.80 0.74 0.67 0.77 0.88 0.82 0.78 0.88 

BLR 10 0.83 0.76 0.73 0.77 0.92 0.88 0.89 0.88 

The final feature subsets of the various algorithms were fed to SVM to realize the identification 
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of benign and malignant. Table 7 compares the classification results of proposed CAD scheme using 
different feature selection methods with or without clinical indices, and records the number of features 
selected by different algorithms. The ROC curves are shown in Figure 7. 

As can be seen, the BLR is the state-of-the-art method. Beyond that, the clinical indices are also 
very important, which improved diagnosis accuracy as well as made the CAD system closer to the real 
clinical diagnosis. This suggests that, from a statistical point of view, the patients with malignant 
tumors may have some abnormal symptoms such as abdominal pain, weight loss, and so on. However, 
different people may exhibit different characteristics. 

 

Figure 7. ROC curves of BLR feature selection algorithms with (right picture) or without 
(left picture) clinical indices. 

4.5. Overall comparison with other CAD methods 

The overall diagnosis performances of different pancreas related CAD methods were compared. 
The results are compared as follows: 

Table 8. The comparison with other CAD methods. 

Algorithm 
5-fold cross-validation cohort independent validation cohort 

AUC ACC SEN SPE AUC ACC SEN SPE 

Park et al. [11] 0.68 0.66 0.52 0.73 0.79 0.59 0.44 0.75 

Zhang et al. [12] 0.72 0.68 0.63 0.70 0.78 0.71 0.67 0.75 

Wei et al. [13] 0.79 0.74 0.64 0.77 0.71 0.71 0.56 0.88 

Our 0.83 0.76 0.73 0.77 0.92 0.88 0.89 0.88 

As can be seen from Table 8, our method achieves the state-of-the-art effects, proving our 
superiority. Especially for the sensitivity of diagnosis, which is usually low in clinical artificial 
diagnosis and other methods, our approach has made great progress. Compared to Park et al., the SEN 
of our method is increased from 0.52 to 0.73 in cross-validation cohort, and from 0.44 to 0.89 in 
independent validation cohort. The superiority of our method is due to the comprehensively, 
completely, and PCN-optimized feature system and the excellent feature selection algorithm. 
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5. Conclusions 

In conclusion, this study builds a CAD system based on radiomics, and realizes the differentiation 
malignant from benign of IPMN and MCN. A complete, comprehensive, and PCN-optimized feature 
system is formed in our research, meanwhile 9 clinical indices are added to improve the diagnostic 
accuracy. Besides, a novel and wonderful feature selection algorithm is proposed and achieved 
remarkable effects. Our CAD system forms an objective tumor evaluation method which can reduce 
the probability of misdiagnosis of malignant tumors, so as to provide crucial suggestions for the 
treatment planning and delivery for patients. In addition, the proposed CAD system provides a time- 
saving diagnosis scheme with low computation cost. The calculation part of our CAD system only 
takes less than 2 s per patient. 

However, we still have a lot of room for improvement. Firstly, a small dataset may underestimate 
the effect and practicability of proposed CAD system. In the future work, the data set can be expanded 
to make the results more universal. Secondly, manual segmentation can ensure the diagnosis accuracy 
of proposed CAD system, but it increases the time cost, an automatic segmentation method is 
considered in the next step. 
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Appendix 

Table A1. The details of omitted features. 

Type Name 

Shape features 

(13) 

compactness, extreme point number, roundness, area circumference ratio, diameter of equivalent 

circle, speculation, edge roughness, SD of normalized radius, convexity, solidity, moment 

difference, rectangle-fitting factor, entropy of normalized radius histogram 

Inner-structure 

features (8) 

number of cysts, cyst size, SD of cysts area, central scar density, average wall thickness, number of 

calcifications, SD of calcification area, calcification area location 

Intensity 

energy, entropy, kurtosis, mean absolute deviation, mean, median, range, root mean square, 

skewness, standard deviation, uniformity, variance, histogram kurtosis, histogram variance, 

histogram skewness, histogram mean 

ROI-based 

features (7) 

mean of ROI contrast, SD of ROI contrast, mean of ROI covariance, SD of ROI covariance, mean 

of ROI dissimilarity, SD of ROI dissimilarity, SD of tumor area 
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