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Abstract: Gene transcription in single cells is inherently a probabilistic process. The relationship
between variance (σ2) and mean expression (µ) is of paramount importance for investigations into
the evolutionary origins and consequences of noise in gene expression. It is often formulated as
log

(
σ2/µ2

)
= β log µ + logα, where β is a key parameter since its sign determines the qualitative

dependence of noise on mean. We reveal that the sign of β is controlled completely by external
regulation, but independent of promoter structure. Specifically, it is negative if regulators as stochastic
variables are independent but positive if they are correlated. The essential mechanism revealed here
can well interpret diverse experimental phenomena underlying expression noise. Our results imply that
external regulation rather than promoter sequence governs the mean-noise relationship.
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1. Introduction

Gene expression is a complex stochastic process where transcription as a key step occurs often
in a bursty manner, creating cell-to-cell variation in mRNA and further protein abundance [1–3], In
unicellular organisms, this variation improves fitness by generating phenotypic differences within a
population of genetically identical cells, thus enabling a rapid response to fluctuating environments
[4,5]. In multi-cellular organisms, the variation plays an important role in development since it allows
identical progenitor cells to acquire very different fates [6, 7]. Owing to this functional importance of
variation, an important task in the post-genome era is to identify and dissect the molecular mechanisms
that generate and control variation.

Recent studies [8–18] have focused on the relationship between the cell-to-cell variance (σ2) of
mRNAs or proteins and its mean expression level (µ). This relationship is of particular importance
for probing the evolutionary origins and consequences of noise in gene expression since it allows
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biologists to correctly normalize mRNA or protein variations to identify which mRNAs or proteins
display unexpectedly high single-cell variances around their mean levels. Experimental data have
indicated that the variance is linearly related to the mean when plotted on a log-log scale, suggesting a
power-law like relationship (σ2 ∝ µk).The dissection and interpretation of this relationship have been
aided by analyzing theoretical or experimental models of gene expression [19–36], but conflicting
views or evidence have also appeared: (1) The existence of a mean-noise trend line, which is followed
by a large number of genes, seems to be in conflict with the idea that gene-specific mechanisms of
transcriptional regulation (for which there is an abundance of in vitro biochemical evidence [24]) can
lead to a characteristic noise signature, quantified by the dependence of variance on mean; (2) Several
experimental studies [8, 9] implies that the slope of the log-log line for the relationship between noise
(σ2/µ2) and mean (µ) is always negative whereas another experimental study [10] indicates that this
slope may be positive or negative (referring to Figure 1A).

Given these conflicting views or evidences, two important questions then arise: what molecular
mechanisms underlying expression noise govern the mean-noise relationship? To what degree is this
relationship universal? In this article, we address these issues and reveal that the sign of the slope is
controlled completely by the correlation coefficient between external regulators, but independent of
promoter structure.

2. Materials and methods

Since the size of relative fluctuations (i.e., the noise intensity) defined as the ratio of variance to
mean can quantify the noise level more reasonably than variance [25], we mathematically formulate
and dissect the mean-noise relationship as(

σ2/µ2
)

= αµβ + C, (2.1)

where α and β are two parameters that represent the level of internal noise, constant C represents the
level of extrinsic noise such as cell cycle and DNA replication. It was noted that when the average
expression level of molecular was low, the uncertainty of molecular fluctuation caused the internal
noise of cell expression to be much higher than the external noise. Therefore, we ignore the extrinsic
noise C and rewrite (2.1) as follow

log
(
σ2/µ2

)
= β log µ + logα. (2.2)

In principle, these parameters can be easily estimated from experimental data (Figure 1A), as done in
the literature [8–16], but molecular mechanisms influencing them are unclear. Note that in contrast to
α, β is a more important parameter since its sign determines the qualitative dependence of the noise
level on the mean whereas its size determines the degree of the dependence of the former on the latter.
We use gene expression model to study mean-noise relationship. In fact, the degradation of mRNA
is much faster than that of protein [37]. The two stage process (transcription and translation) can be
integrated into one single step process with translational bursting [38]. Meanwhile, all the models
used in this paper assume proteins are produced one molecule at a time (i.e., without translational
bursting), although it is a common mode in eukaryotes and prokaryotes [21, 22]. These conditions
are sufficient to ensure that protein production can be done in one step [39], which has been applied
in some theoretical models [40]. Furthermore, stationary mRNA levels also can well explain protein
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levels in many conditions [39]. Therefore, it is reasonable to directly regard the expression of mRNA
as protein abundance in the gene expression model.

2.1. Exploratory analysis of the mean-noise relationship with arbitrary promoter structure

First, we want to explore whether the architecture of promoters affects the mean-noise relationship.
We introduce the multi-state promoter gene expression model without regulation [24], which is an
extension of the common ON-OFF model [26–29]. The advantage of this model is that it can have any
number of ON and OFF states instead of the original two limited states, and the states can be switched
arbitrarily between each other, which is more in line with the actual complex promoter in biology.

We assume that the promoter of a gene contains a total of N states, including L active states and K =

N − L inactive states. Figure 1B shows a five-state gene expression model containing 3 inactive states
and 2 active states. In order to simplify the model, we further assume that the promoter will translate
only in the active state, regardless of the leakage of mRNA in the inactive state and their transition rate
among states accords with the Markov process, which is a constant. Then for the degradation rate of
protein, we assume it obeys the linear hypothesis. To sum up, the biochemical reaction of the promoter
multi-state model can be written as

Gi
ki j
−→ G j,

G j
k ji
−→ Gi,

Gi
λi
−→ Gi + X,

X
δi
−→ ∅,

(2.3)

where Gi and G j represent two different states of the promoter, respectively. X represents the protein.
Let Pk (m; t) denote the probability distribution of the number of protein m molecules in the kth promoter
state at t time, then P = (P1, · · · , PN)T is a column vector composed of N probability distributions.
The transition rate between promoters of each state is described by a N × N transition matrix A =(
ki j

)
, where ki j represents the transition rate from state i to state j. We use two diagonal matrices

Λ = diag (λ1, · · · , λN) and δ = diag (δ1, · · · , δN) to describe the rate of translation and degradation of
protein, where λi is the translation rate of promoter state i (when it is in inactive state, λi = 0), δi is the
degradation rate of protein produced by promoter state i. Therefore, under this multi-state promoter
model, the chemical master equation can be described in the following form:

∂

∂t
P (m; t) = AP (m; t) + Λ

(
E−1 − I

)
[P (m; t)] + δ (E − I) [mP (m; t)] , (2.4)

where E is the step operators and E−1 is its inverse, and I is the identity operator. For this chemical
master equation, we can use the convergent moment approach to reconstruct the stationary distribution
[42]. Denoted by b1 and b2 the first- and second-order binomial moments, the mean expression level
µp and the intensity of the noise η2

p in protein can be computed as follow:

µp = b1

η2
p =

1
b1

+
2b2 − b2

1

b2
1

.
(2.5)
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Next, we present numerical results. We computationally find that promoter sequence influences α
more remarkably than β. In particular, the sign of β is always negative and independent of promoter
structure (Figure 1C). This indicates that promoter structure primarily affects the intercept rather than
the slope in the log-log line described by (2.2).

λ=[0 0 20 20 20]

λ=[0 0 0 10 20]

λ=[0 0 10 30 20]

A B

C

Figure 1. The dependence of the noise level on the mean in the log space. (A) Reproduced
Figure 1E from [10]. Relationship between noise and mean expression of transcription factor
Zap1 binding to different target promoters. The log-log line (log η2 = β log µ + logα) may
have distinct signs and sizes, depending on external regulation and promoter structure. (B)
Five-states gene expression model [24]. The inactive state is denoted by orange whereas
active states by green. Solid line arrow represents large transitions among two states.
Dashed line arrow represents translation processes. (C) Numerical results show that promoter
structure can impact the sizes of α and β but never change the sign of β. The parameters
are set as degradation rate δi = 1, transition rates are generated randomly in the interval
(0.01, 10). The insert is the same plot with log x-axis.

2.2. External regulators control mean-noise relationship

The expression of a gene is inevitably regulated by intracellular or/and extracellular factors. These
factors would be so complex that any existing theoretical models of gene expression are flawed. Here
we particularly assume that for gene regulation, except for their own product proteins to regulate
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themselves, all other regulations belong to external regulation. So the transcription factor is also one
of the external regulators (ERs). In order to reveal the essential molecular mechanism of how ERs
regulate the relationship between mean and noise, here we introduce a simple yet representative gene
model (Figure 2A), which captures main molecular events occurring in gene expression. This model
assumes that the gene has one active (ON) and one inactive (OFF) states with bidirectional transitions
between them. This model is a special case of (2.3) mentioned above. Thus, the gene model used is
described by

GOFF
kON
−−→ GON ,

GON
kOFF
−−−→ GOFF ,

GON
λ
−→ GON + X,

X
δ
−→ ∅,

(2.6)

where GON and GOFF represent the active and inactive states of the promoter, respectively. X represents
the protein. kOFF and kON are transition rates from inactive and active states and vice versa. λ is the
rate of translation when the gene is in the active state and δ is the rate of protein decay. Note that if
kOFF and kON are constants, the corresponding gene expression model is just the common ON-OFF
model. If any transition rate between ON and OFF is not a constant, this actually corresponds to the
translational regulation in biology. Therefore, we consider two ERs regulate the gene expression by
adjusting two transition rates between ON and OFF states. This setting is used to model either the
effect of regulation from the other genes inside the cell or uncertainty of extracellular environments or
both. In this situation, kOFF and kON are functions of concentration of ERs.

For clear demonstration, let us first consider two extreme cases: (1) Two distinct ERs
independently regulate two transition rates between promoter activity states (Figure 2A) with the
settings kON = f1 (ER1) = 1/

(
1 + ERn1

1

)
and kOFF = f2 (ER2) = 1/

(
1 + ERn2

2

)
; (2) A common ER

simultaneously regulates the transition rates (Figure 2B) with the settings
kON = f1 (ER) = 1/(1 + ERn1) and kOFF = f2 (ER) = 1/(1 + ERn2). In each case, ERs take values
randomly in a finite range. In Figure 2, ER1 and ER2 are generated in the interval (0.001, 1000). We
find that the mean-noise relationship is characterized by a negative slope in case (1) (Figure 2E), and
by a negative or positive slope in case (2) (Figure 2G). These numerical results are in accord with
experimental observations [8, 10]. In both cases, the dependence of the proteins mean levels on the
inducers concentration exhibits different characteristics (comparing Figure 2D with Figure 2F).

Then, consider a more general case: two ERs regulate two transition rates between the promoter
activity states in a correlated manner with a correlation coefficient r (Figure 2H). In this case, two
regulated parameters are set as kON = 4 + 2ERn1

1 and kOFF = 1 + ERn2
2 , where ER1 and ER2 are

generated randomly and with a correlation coefficient r in the interval (0.001, 1000). We can see that
small r’s can correspond to the model in Figure 2A whereas large r’s to the model in Figure 2B. To
reveal how regulation affects the mean-noise relationships, we study the dependence of the slope on the
correlation coefficient. Figure 2I shows that the sign of β is controlled completely by correlation: small
or moderate r’s correspond to negative slopes whereas r’s close to 1 correspond to positive slopes. We
choose four representative points on the β vs r curve, three of which are located at the shadowed part
with negative or zero slopes and the one is located at the outside of the shadowed part with a positive
slope, to demonstrate different characteristics of the ER-regulated mean-noise relationship (Figure 2J).
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Interestingly, this relationship is randomly distributed if the slope is zero (Figure 2J).

Figure 2. Mean-noise relationship is controlled by correlation between ERs. (A) Two
distinct ERs independently regulate two transition rates between promoter activity states.
(B) A common ER simultaneously regulates these transition rates. (C) A phase diagram for
mean expression, where two axes represent the concentrations of two ERs, and the inclination
line consisting of circles corresponds to the gene model described by (B). (D, E) correspond
to the gene model in (A), where (D) shows the random relationship between mean expression
and the concentration, and (E) shows the linear relationship between mean expression and
expression noise. (F, G) correspond to the gene model (B), where (F) shows the nonlinear
relationship between mean expression and the ER concentration, and (F) shows the nonlinear
relationship between mean expression and expression noise. (H–J) correspond to a gene
model with general (correlated or uncorrelated) regulation from two ERs, where (H) is a
schematic diagram for this gene model. (I) shows dependence of slope (see definition in
the text) on the correlation coefficient between the two ERs. Here 4 representative circles
are indicated by different colors. (J) shows the relationships between mean expression and
expression noise corresponding to the 3 circles in (I). In (D–J), some parameter values are
set as n1 = 1, n2 = 2, δ = 1, λ = 5000.
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2.3. Theoretical analysis of the mean-noise relationship

Next, we perform theoretical analysis, focusing on the essential mechanism governing the mean-
noise relationship. In general, the protein noise can be divided into two parts

η2
m = η2

int + η2
prom, (2.7)

where η2
int represents noise generated in the process of synthesis and degradation of protein, whereas

η2
prom represents the noise comes from the promoter architecture.

To reveal a general mechanism underlying the mean-noise relationship, we consider a gene model
as which is different from the model shown in Figure 1B:

OFF
fo f f (t)
−−−−→ ON,

ON
fon(t)
−−−→ OFF,

ON
µ
−→ ON + X,

X
δ
−→ ∅,

(2.8)

where OFF-state and ON-state lifetimes follow general distributions with probability density functions
denoted by fo f f (t) and fon (t) [30, 35]. Assume that translation and protein degradation are described
as first-order processes with rate constants µ and δ respectively [29, 33–36]. We point out that the
corresponding gene model can be taken as a GIX/M/∞ system known in the queueing literature (see
[43] for details). To determine the protein mean and noise and further the mean-noise relationship in
this model, the key is to derive analytical expressions for the first two moments of the protein number
distribution.

Suppose that there are N proteins at initial time t = 0. At time t, every protein with the molecule
number denoted by Xi (1 ≤ i ≤ N) has a survival probability P = e−δt, and the total number of protein
molecules is given by S = X1 + . . . + XN . Denote by W (z; t) the moment-generating function (MGF)
of the protein distribution at time t. In particular, denote Winit (z) =W (z; 0). Assume that these random
variables are independent of one another, with each following a Bernoulli distribution with MGF given
by 1 + p (ez − 1). Applying the theorem of total expectation in probability theory, we find that W (z; t)
can be expressed by W (z; 0) [29,30]. That is,

W (z; t) = Winit

(
log

(
1 + e−δt (ez − 1)

))
, (2.9)

With (2.9) combined with a boundary condition for one cycle of OFF and ON states, we can further
arrive at the following integral equation of Winit (z)

Winit (z) =

∫ ∞

s=0

∫ ∞

u=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
eρ(u)(ez−1) fo f f (s) fon (u) dsdu, (2.10)

where ρ (u) = λ
(
1 − e−δu

)
/δ represents the transient average for a birth-death process associated with

creation and degradation of protein. This equation is a pivot for calculating the first two moments of
the steady-state protein distribution.
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Let
〈
mk

〉
s

and
〈
mk

〉
u

be the kth moment of the protein copy number distribution at time t = s during
the OFF-state and at time t = τo f f + u during the ON-state, respectively. Then, moments of the steady-
state distribution of the total protein number are calculated according to〈

mk
〉

=
1

〈τon〉 +
〈
τo f f

〉 [∫ ∞

s=0

[〈
mk

〉
s

∫ ∞

s
fo f f (t) dt

]
ds +

∫ ∞

u=0

[〈
mk

〉
u

∫ ∞

u
fon (t) dt

]
du

]
, (2.11)

where
〈
τo f f

〉
=

∫ ∞
0

t fo f f (t) dt and 〈τon〉 =
∫ ∞

0
t fon (t) dt are the mean times that the gene dwells at

OFF and ON states respectively, whereas
∫ ∞

s
fo f f (t) dt and

∫ ∞
u

fon (t) dt represent survival probabilities
(which are actually the cumulative distribution functions of the distributions of off-state and on-state
lifetimes, respectively). By (2.11), we find that the exact mean and noise intensity for protein can be
expressed separately as (see Appendix)

〈m〉 =
λ

δ

〈τon〉

〈τon〉 +
〈
τo f f

〉 (2.12)

and

η2
m =

1
〈m〉︸︷︷︸

intrinsic noise

+

〈
τo f f

〉
〈τon〉

−

〈
τo f f

〉
+ 〈τon〉

δ〈τon〉
2

(1 − Lon (δ))
(
1 − Lo f f (δ)

)
1 − Lon (δ) Lo f f (δ)︸                                                            ︷︷                                                            ︸

promoter noise

, (2.13)

where Lo f f (s) and Lon (s) are Laplace transforms of fo f f (t) and fon (t), respectively. The (2.13)
highlights how ON and OFF lifetime distributions contribute to the promoter noise and further the
protein noise.

While (2.13) is valid for general waiting-time distributions, it is of interest to consider specific
examples. Consider the common ON-OFF model of gene expression at the translation level, where
transition rates between promoter activity states are assumed as two constants. In this case,
fo f f (t) =

(
1/

〈
τo f f

〉 )
e−(1/〈τo f f 〉 )t and fon (t) = (1/〈τon〉 ) e−(1/〈τon〉 )t. Therefore, the protein mean is

given by 〈m〉 = (λ 〈τon〉)/
(〈
τo f f

〉
+ 〈τon〉

)
, which is a known result [24], whereas the promoter noise is

given by η2
promoter =

〈
τo f f

〉2
/
(
〈τon〉 +

〈
τo f f

〉
+ 〈τon〉

〈
τo f f

〉)
, which is also a known result [24].

After having derived the analytical expressions for protein mean and noise, we next determine two
parameters α and β in the mean-noise relationship described by (2.2). For this, if denote x = log (〈m〉)
and y = log

(
η2

int + η2
prom

)
= log

(
η2

m

)
, then we set

β =
cov (x, y)

σ2
x

, log (α) = 〈y〉 − β 〈x〉 , (2.14)

where cov (x, y) represents the covariance between x and y, and σ2
x represents the variance of x

(similarly, we let σ2
y represent the variance of y). For a gene model with general waiting-time

distributions, it is difficult to determine the sign of β. For the preceding ON-OFF model, however, it is
possible. In fact, we first observe that the protein noise is necessarily correlated to the protein
expression level through two random variables τon and τo f f . Then, we note that stochastic variable y is
inversely correlated to stochastic variable x because of y = −x + log

(
1 + η2

ext/η
2
int

)
. Thus, from the

expression β =
σy

σx

cov(x,y)
σxσy

= r σy

σx
, we know β < 0, where r represents the correlation coefficient between
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x and y. Such analysis indicates that in the unregulated case, β is always negative, in accordance with
the results obtained by analysis of experimental data as well as with the above numerical results.
Moreover, promoter structure has little effect on the size of β, as shown in the above numerical
simulation. Note that we demonstrate theoretically that β is always negative in the unregulated case,
but cannot give a theoretical result in correlation regulated case because of mathematical difficulty.
Nevertheless, we have numerically show that mean-noise relationship is controlled by correlation
between transcription factors.

3. Conclusions and discussion

In summary, we have revealed the essential molecular mechanism that controls two parameters
α and β including the sign of β in the empirical mean-noise relationship formulated by log

(
η2

)
=

β log µ+logα. This mechanism revealed not only can well interpret diverse experimental phenomena in
the existing literature but also can be used in analysis of sources of phenotypic heterogeneity in isogenic
populations. The settings of α and β can provide insight into how detailed biochemical processes of
gene expression impact the dependence of expression noise on mean. In addition, these settings can
be used in the analysis of inverse problems, e.g., using experimental measurements of expression
noise to determine parameters of the underlying kinetic models. Such efforts, in turn, can lead to
further insights into cellular factors that impact gene regulation, based on experimental observations of
expression noise [44–47].

However, there are still some limitations in our model. First, we use a model without translation
bursts, though they are common in prokaryotic and eukaryotic cells [21, 22]. Hence we ignore the
translational bursting noise. Second, in our article, we do not consider the external noise. External
noise plays an important role in biological functions, such as cell cycle and DNA replication [31,48,49].
The defects of these models can be explored as a clue in future work.

This study would have a number of potential applications. For example, from a pharmaceutical
science and drug screening perspective, simply checking the mean-noise dependence line in the log
space (i.e., so-called noise screening) presents an orthogonal axis to detect synergistic drug
combinations [14, 50]. Compared with random synergy screening, noise screening requires
substantially fewer tests. In fact, blind synergy searches for pairwise combinations of M compounds
require ∼ M2 tests whereas noise screening needs only ∼ M tests. In addition, noise screening might
help identify compounds for manipulating other fate-switching phenotypes such as cellular
reprogramming, metastasis, and bacterial persistence.
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Appendix

As is well known, transcription and translation occur often in a burst fashion, leading to variation in
protein. Translational bursting kinetics can be characterized by burst frequency and burst size. Suppose
the time intervals between bursts are independent of the burst size. These intervals are described by
the distribution of the off-state life times. This description corresponds to a G/M/∞ queue with batch
arrival in queuing theory [1].

Consider a gene model [2,3], where the promoter is assumed to have one on-state and one off-
state (i.e., the so-called on-off model) but off and on state life lengths are assumed to follow general
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distributions, denoted respectively by f
(
τo f f

)
and g (τon) . For simplicity, we consider only zero-order

translation and first-order protein degradation kinetics, with constant translation and degradation rates
denoted respectively by λ and δ.

Denote the moment-generating function of the protein distribution at time t as W (z; t). In addition,
denote Winit (z) = W (z; 0). Since each protein molecule has a survival probability of e−δt, the moment-
generating function at time t can be expressed as a function of Winit (z) [3–5], i.e.,

W (z; t) = Winit

(
log

(
1 + e−δt (ez − 1)

))
. (3.1)

In particular, at the end of an off-state, W (z; t) can be expressed as

W
(
z; τo f f

)
=

∫ ∞

t=0
Winit

(
log

(
1 + e−δt (ez − 1)

))
f (t) dt. (3.2)

Except that an on-period degradation of the protein molecules that have been present at the
beginning of the burst continues as described through the function 1 + e−δt (ez − 1) with
Wdeg

(
z; τo f f + u

)
= Winit

(
log

(
1 + e−δ(u+τo f f ) (ez − 1)

))
, proteins are also created and degraded

according to a birth-death process with exponential waiting times. Moreover, the transient distribution
for this birth-death process is a Poisson distribution with average λu = λ

(
1 − e−δu

)
/δ and

moment-generating function We f f ect

(
z; τo f f + u

)
= eλu(ez−1) [6]. The combination of them produces an

effective burst size. During an on-state, the probability distribution of the protein number is given by
the convolution of the distribution of the number of those molecules that are still present from
previous bursts and the effective burst-size distribution. Thus, we have

W
(
z; τo f f + u

)
=

∫ ∞

s=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
e(µ/δ )(1−e−δu)(ez−1) f (s) ds. (3.3)

Note that complete of one cycle (off- and on-state) defines a boundary condition:

W
(
z; τon + τo f f

)
=

∫ ∞

s=0

∫ ∞

t=s
Winit (z; t) g (t − s) f (t) dtds. (3.4)

With (5.4), we obtain the following integral equation with respect to Winit (z)

W
(
z; τon + τo f f

)
= W (z; 0) = Winit (z)

=

∫ ∞

s=0

∫ ∞

u=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
e(λ/δ )(1−e−δu)(ez−1) f (s) g (u) dsdu.

(3.5)

In general, solving (5.5) is very difficult for general waiting time distributions f (t) and g (t).
However, we can derive the formal expressions for first two moments of the protein distribution at
time t = 0. In fact, differentiating both sides of (5.5) at z = 0 yields

W ′
init (0) =

dWinit (z)
dz

∣∣∣∣∣
z=0

=
Wini (0)

∫ ∞
u=0

ρug (u) du

1 −
∫ ∞

u=0

∫ ∞
s=0

e−δ(u+s)g (u) f (s) duds
, (3.6)

where ρu = λ
(
1 − e−δu

)
/δ. According to the definition of moment-generating function, we know that

Winit (0) = 1 but W ′
init (0) is equal to the protein mean at time t = 0, denoted by 〈m〉init. Thus, we obtain

〈m〉init = W ′
init (0) =

∫ ∞
u=0

ρug (u) du

1 −
∫ ∞

u=0

∫ ∞
s=0

e−δ(u+s)g (u) f (s) duds
. (3.7)
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Similarly, we have the expression for the second-order moment at time t = 0

〈
m2

〉
init

= W ′′
init (0)

=

∫ ∞
s=0

∫ ∞
u=0

[
ρu (1 + ρu) + 〈m〉init

(
e−δ(s+u) − e−2δ(s+u) + 2ρue−δ(s+u)

)]
f (s) g (u) dsdu

1 −
∫ ∞

s=0

∫ ∞
u=0

e−2δ(s+u) f (s) g (u) dsdu
.

(3.8)

Finally, using these expressions for moments at the initial moment, we can calculate first two steady-
state moments of protein. First, note that the moments of the full protein distribution can be obtained
by averaging over the moments at times weighted according to the probability that the next burst has
not yet occurred at time t, i.e., the survival probability Ps (t) = 1−F (t) with F (t) being the cumulative
distribution function of the distribution of off-state life times defined as F (t) =

∫ t

0
f (s) ds. Similarly,

we define G (t) =
∫ t

0
g (s) ds. Then, to obtain the moments of the total protein number distribution, we

need to average over all times according to their probabilities. This can be expressed as

〈
mk

〉
=

1

〈τon〉 +
〈
τo f f

〉 [∫ ∞

s=0

〈
mk

〉
s
(1 − F (s)) ds +

∫ ∞

u=0

〈
mk

〉
u

(1 −G (u)) du
]
, (3.9)

with k = 1, 2, where F (s) and G (s) are the cumulative distribution functions of the duration
distributions of OFF- and ON-states, respectively. In (5.9),

〈
mk

〉
s

is the kth moment of the protein
copy number distribution at time S during the off-state, which is given by the k order derivative of
(5.1) at z = 0,

〈
mk

〉
u

is the kth moment of the protein copy number distribution at time t =
〈
τo f f

〉
+ u

during the on-state, which is given by the k order derivative of (5.3) at z = 0. By calculation, we find
these quantities are

〈m〉s =
d
dz

Winit

(
log

[
1 + e−δs (ez − 1)

])∣∣∣∣∣
z=0

= W ′
init (0) e−δs,〈

m2
〉

s
=

d2

dz2 Winit

(
log

[
1 + e−δs (ez − 1)

])∣∣∣∣∣∣
z=0

= W ′′
init (0) e−2δs + W ′

init (0)
(
e−δs − e−2δs

)
,

(3.10)

〈m〉u =
d
dz

∫ ∞

s=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
eρu(ez−1) f (s) ds

∣∣∣∣∣
z=0

= W ′
init (0) e−δu

∫ ∞

0
e−δs f (s) ds + ρuWinit (0) ,〈

m2
〉

u
=

d2

dz2

∫ ∞

s=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
eρu(ez−1) f (s) ds

∣∣∣∣∣∣
z=0

= ρu (1 + ρu) + W ′′
init (0)

∫ ∞

s=0
e−2δ(s+u) f (s) ds

+ W ′
init (0)

∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds.

(3.11)
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First, we derive the analytical expression for the protein mean. Note that

(
〈τon〉 +

〈
τo f f

〉)
〈m〉 =

∫ ∞

s=0
〈m〉s (1 − F (s)) ds +

∫ ∞

u=0
〈m〉u (1 −G (u)) du

=

∫ ∞

s=0
W ′

init (0) e−δs

(
1 −

∫ ∞

0
f (t) dt

)
ds

+

∫ ∞

u=0

[
W ′

init (0) e−δu
∫ ∞

0
e−δs f (s) ds + ρu

] (
1 −

∫ ∞

0
g (t) dt

)
du

= W ′
init (0)

∫ ∞

s=0
e−δs

∫ ∞

s
f (t) dtds

+ W ′
init (0)

∫ ∞

0
e−δs f (s) ds

∫ ∞

u=0
e−δu

∫ ∞

u
g (t) dtdu +

∫ ∞

u=0
ρu

∫ ∞

u
g (t) dtdu.

Because of ∫ ∞

s=0
e−δs

∫ ∞

s
f (t) dtds =

1
δ
−

1
δ

∫ ∞

s=0
e−δs f (s) ds,∫ ∞

u=0
e−δu

∫ ∞

u
g (t) dtds =

1
δ
−

1
δ

∫ ∞

u=0
e−δug (u) du,∫ ∞

u=0
ρu

∫ ∞

u
g (t) dtdu =

λ

δ

∫ ∞

u=0

∫ ∞

u
g (t) dtd

(
u +

1
δ

e−δu
)

=
λ

δ

∫ ∞

u=0

(
u +

1
δ

e−δu
)

g (u) du −
λ

δ2

=
λ

δ
〈τon〉 −

λ

δ2 +
λ

δ2

∫ ∞

u=0
e−δug (u) du,

we have(
〈τon〉 +

〈
τo f f

〉)
〈m〉

= W ′
init (0)

(
1
δ
−

1
δ

∫ ∞

s=0
e−δs f (s) ds

)
+ W ′

init (0)
∫ ∞

0
e−δs f (s) ds

(
1
δ
−

1
δ

∫ ∞

u=0
e−δug (u) du

)
+
λ

δ
〈τon〉 −

λ

δ2 +
λ

δ2

∫ ∞

u=0
e−δug (u) du

=
λ

δ
〈τon〉 −

λ

δ2 +
λ

δ2

∫ ∞

u=0
e−δug (u) du +

W ′
init (0)
δ

(
1 −

∫ ∞

s=0

∫ ∞

u=0
e−δ(s+u) f (s) g (u)dsdu

)
=
λ

δ
〈τon〉 −

λ

δ2 +
1
δ

∫ ∞

u=0

(
ρu +

λ

δ
e−δu

)
g (u)du =

λ

δ
〈τon〉 −

λ

δ2 +
λ

δ2

∫ ∞

u=0
g (u)du =

λ

δ
〈τon〉 .

Therefore,

〈m〉 =
λ

δ

〈τon〉

〈τon〉 +
〈
τo f f

〉 , (3.12)

which is the same as in the case of no regulation.
Then, we derive the analytical expression for the mRNA noise intensity. The key is to give the
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second-order moment
〈
m2

〉
. Note that

(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
=

∫ ∞

s=0

〈
m2

〉
s
(1 − F (s)) ds +

∫ ∞

u=0

〈
m2

〉
u

(1 −G (u)) du

=

∫ ∞

s=0

(〈
m2

〉
s

∫ ∞

s
f (t) dt

)
ds +

∫ ∞

u=0

(〈
m2

〉
u

∫ ∞

u
g (t) dt

)
du

=

∫ ∞

s=0

[
W ′′

init (0) e−2δs + W ′
init (0)

(
e−δs − e−2δs

)] ∫ ∞

s
f (t) dtds

+

∫ ∞

u=0

{
ρu (1 + ρu) + W ′′

init (0)
∫ ∞

s=0
e−2δ(s+u) f (s) ds

}∫ ∞

u
g (t) dtdu

+

∫ ∞

u=0

{
W ′

init (0)
∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds
}∫ ∞

u
g (t) dtdu

= W ′′
init (0)

(∫ ∞

s=0
e−2δs

∫ ∞

s
f (t) dt +

∫ ∞

u=0

∫ ∞

s=0
e−2δ(s+u) f (s) ds

∫ ∞

u
g (t) dtdu

)
+ W ′

init (0)
∫ ∞

s=0

(
e−δs − e−2δs

) ∫ ∞

s
f (t) dtds

+ W ′
init (0)

∫ ∞

u=0

∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds
∫ ∞

u
g (t) dtdu

+

∫ ∞

u=0
ρu (1 + ρu)

∫ ∞

u
g (t) dtdu.

Therefore(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
=

∫ ∞

u=0
ρu (1 + ρu)

∫ ∞

u
g (t) dtdu

+
1
2δ

W ′′
init (0)

[
1 −

∫ ∞

s=0

∫ ∞

u=0
e−2(s+u) f (s) g (u)duds

]
+ W ′

init (0)
∫ ∞

s=0

(
e−δs − e−2δs

) ∫ ∞

s
f (t) dtds

+ W ′
init (0)

∫ ∞

u=0

∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds
∫ ∞

u
g (t) dtdu.

Using (5.8), we obtain(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
=

∫ ∞

u=0
ρu (1 + ρu)

(∫ ∞

u
g (t) dt +

1
2δ

g (u)
)

du + W ′
init (0)

∫ ∞

s=0

(
e−δs − e−2δs

) ∫ ∞

s
f (t) dtds

+ W ′
init (0)

∫ ∞

u=0

∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds
(∫ ∞

u
g (t) dt +

1
2δ

g (u)
)

du.

(3.13)

By calculation, we know∫ ∞

s=0

(
e−δs − e−2δs

) ∫ ∞

s
f (t) dtds =

1
2δ
−

1
δ

∫ ∞

0
e−δs f (s) ds +

1
2δ

∫ ∞

0
e−2δs f (s) ds,
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and ∫ ∞

u=0

∫ ∞

s=0

[
e−δ(s+u) + 2ρue−δ(s+u)

− e−2δ(s+u)
]

f (s) ds
∫ ∞

u
g (t) dtdu

=

(
1
δ

+
λ

δ2

) ∫ ∞

s=0
e−δs f (s) ds −

1
δ

(
1 +

2λ
δ

) ∫ ∞

s=0

∫ ∞

u=0
e−δ(s+u) f (s) g (u) dsdu

+
λ

δ2

∫ ∞

s=0

∫ ∞

u=0
e−δ(s+2u) f (s) g (u) dsdu −

1
2δ

∫ ∞

s=0
e−2δs f (s) ds

+
1
2δ

∫ ∞

s=0

∫ ∞

u=0
e−2δ(s+u) f (s) g (u) dsdu.

Substituting them into (5.13) yields(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
= −W ′

init (0)
1
δ

∫ ∞

s=0
ρs f (s) ds +

∫ ∞

u=0
ρu (1 + ρu)

∫ ∞

u
g (t) dtdu

+

∫ ∞

u=0

[
ρu (1 + ρu)

2δ
+

1
δ

(
1
2

+
λ

δ

)
ρu

]
g (u) du.

(3.14)

Note that∫ ∞

u=0
ρu (1 + ρu)

∫ ∞

u
g (t) dtdu =

λ

δ

(
1 +

µ

δ

)
〈τon〉 −

λ

δ2

(
1 +

3µ
2δ

)
+
λ

δ2

(
1 +

2λ
δ

) ∫ ∞

0
e−δug (u) du −

λ2

2δ3

∫ ∞

0
e−2δug (u) du,

and∫ ∞

u=0

[
ρu (1 + ρu)

2δ
+

1
δ

(
1
2

+
λ

δ

)
ρu

]
g (u) du =

λ

δ2

(
1 +

3λ
2δ

)
−
λ

δ2

(
1 +

2λ
δ

) ∫ ∞

u=0
e−δug (u) du +

λ2

2δ2

∫ ∞

u=0
e−2δug (u) du.

Thus, we have 〈
m2

〉
=

(
1 +

µ

δ

)
〈m〉 −

W ′
init (0)

〈τon〉 +
〈
τo f f

〉 1
δ

∫ ∞

s=0
ρs f (s) ds. (3.15)

Using (5.7), we thus obtain the analytical expression for the protein noise intensity

η2
m =

1
〈m〉

+

〈
τo f f

〉
〈τon〉

−
δ
(〈
τo f f

〉
+ 〈τon〉

)
λ2〈τon〉

2

∫ ∞
s=0

∫ ∞
u=0

ρsρu f (s) g (u) dsdu

1 −
∫ ∞

s=0

∫ ∞
u=0

e−δ(s+u) f (s) g (u) dsdu
. (3.16)

If f (s) and g (u) follow exponential distribution, i.e., f (s) =
(
1/

〈
τo f f

〉 )
e−s/〈τo f f 〉 and

g (u) = (1/〈τon〉 ) e−s/〈τon〉 , then we have

∫ ∞

s=0

∫ ∞

u=0
ρsρu f (s) g (u) dsdu =

λ2
〈
τo f f

〉
〈τon〉(

δ
〈
τo f f

〉
+ 1

)
(δ 〈τon〉 + 1)

,
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and

1 −
∫ ∞

s=0

∫ ∞

u=0
e−δ(s+u) f (s) g (u) dsdu =

δ2
〈
τo f f

〉
〈τon〉 + δ

(〈
τo f f

〉
+ 〈τon〉

)(
δ
〈
τo f f

〉
+ 1

)
(δ 〈τon〉 + 1)

.

Therefore, we finally obtain

η2
m =

1
〈m〉

+

〈
τo f f

〉
〈τon〉

−
δ
(〈
τo f f

〉
+ 〈τon〉

)
λ2〈τon〉

2

∫ ∞
s=0

∫ ∞
u=0

ρsρu f (s) g (u) dsdu

1 −
∫ ∞

s=0

∫ ∞
u=0

e−δ(s+u) f (s) g (u) dsdu
, (3.17)

which is a know result [7].
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