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Abstract: Threshlod image segmentation is a classic method of color image segmentation. In this 

paper, we propose a hybrid equilibrium optimizer algorithm for multi-level image segmentation. When 

multi-level threshold method calculates the neighborhood mean and median of color image, it takes 

huge challenge to find the optimal threshold. We use the proposed method to optimize the multi-level 

threshold method and get the optimal threshold from the color image. In order to test the performance 

of the proposed method, we select the CEC2015 dataset as the benchmark function. The result shows 

that the proposed method improves the optimization ability of the original algorithm. And then, the 

classic images and wood fiber images are taken as experimental objects to analyze the segmentation 

result. The experimental results show that the proposed method has a good performance in Uniformity 

measure, Peak Signal‑to‑Noise Ratio and Feature Similarity Index and CPU time. 

Keywords: wood fiber image segmentation; 3DOtsu; equilibrium optimizer algorithm; grasshopper 

optimization algorithm; hybrid optimization algorithm 

 

1. Introduction  

Image segmentation is the basic work of image processing research. There are primarily four 

types of segmentation methods: thresholding [1–3], boundary-based [4,5], region-based [6–8], and 

hybrid techniques [9–12]. Several algorithmic techniques such as Artificial Neural Network [13], 

Convolutional neural Network [14], and K-nearest Neighbors [15] can also be applied in image 

segmentation.  

Among all the methods of image segmentation, Otsu [16] method is the most popular one. 

Computational complexity of Otsu methods increases exponentially with the increasing number of 
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thresholds due to exhaustive search. It is a difficult task to study how to improve the segmentation 

accuracy of Otsu with multi-thresholds method. The expansion of the actual Otsu’s thresholding to 

multilevel thresholding is known as multi-Otsu thresholding [17]. Nevertheless, these methods are 

unable to obtain effective results for noisy images. To solve this problem, J. Zhuang [18] proposed a 

2-D Otsu method that selects the optimal threshold on a 2-D histogram. Jing [19] proposed the 

maximum between-cluster variance by using a 3-D histogram approach and was named the 3-D Otsu 

method. In this method, the 3D histogram takes the median value of neighborhood pixels as the third 

feature of the existing features of the 2D OTSU method, that is, gray information and neighborhood 

mean value. L. Wang [20] derived a group of recurrence formula for 3-D Otsu’s method and eliminated 

redundancy in the formula by introducing a look-up table. The method reduced the computation of the 

3DOtsu. Therefore, in order to optimize the search process, a faster and automatic optimal threshold 

selection method is needed. 

The traditional exhaustive methods take the large amount of computation. In this case, meta-

heuristic methods have attracted much attention in recent years. L. Bian proposed a new multi-

threshold MRI image segmentation algorithm based on mixed entropy using Curvelet transformation 

and Multi-Objective Particle Swarm Optimization [21]. This method could deal with the difficulties 

caused by noise disturbance, intensity inhomogeneity and edge blurring in Magnetic Resonance 

Imaging image segmentation. N. Muangkote proposed the nature-inspired meta-heuristic named 

multilevel thresholding moth-flame optimization algorithm (MTMFO) for multilevel thresholding [22]. 

This algorithm effectively solved the problem of satellite image segmentation. B. Surina proposed a 

multi-level thresholding model based on gray-level & local-average histogram (GLLA) and Tsallis–

Havrda–Charvát entropy for RGB color image [23]. This method had the effectiveness and 

reasonability. A. Wunnava proposed an adaptive Harris Hawks optimization (AHHO) technique to 

solve the multi-level image segmentation [24]. The experimental results were beneficial to the 

segmentation field of image processing. The optimization algorithm is adopted to solve the threshold 

selection of the multi-threshold image segmentation method, which effectively improves the 

segmentation precision of the image segmentation method [25,26].  

The optimization algorithm can solve practical engineering problems in recent years [27]. 

Different optimization algorithms adapt to different engineering problems and have different 

optimization capabilities [28,29]. These nature-inspired optimization algorithms were mainly 

classified into two classes recently which are evolutionary algorithm (EA) and biology-inspired or bio-

inspired algorithms. EA imitated the Darwinian theory of evolution [30]. There were many good 

algorithms in this class. In 1975, GA was invented by John Holland [31], it used the binary 

representation of individuals. In 1997, Differential evolution was proposed Rainer stone, the essence 

was a multi - objective optimization algorithm [32]. The most popular class was the biology-inspired 

or bio-inspired algorithms right now. One of the most famous algorithms was the Particle Swarm 

Optimizer (PSO) which was developed based on the swarming behavior of fish and birds [33]. In 2015, 

the ant lion optimizer was proposed by Mirjalili [34]. In 2016, Askarzadeh proposed the crow search 

algorithm [35]. In 2017, the killer whale algorithm was proposed by Biyanto [36]. These algorithms 

were inspired from the predation behavior animal, so as to obtain better searching ability. There also 

some algorithms inspired from the physics and chemistry, these algorithms usually had simple 

mathematical models, but had good optimization effect. In 2001, the harmony search algorithm was 

proposed by Geem [37]. In 2015, Zheng Yu-Jun proposed water wave optimization algorithm [38]. In 

2019, A. Faramarzi proposed a novel optimization algorithm, called Equilibrium optimizer (EO), 
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which controlled volume mass balance models used to estimate both dynamic and equilibrium 

states [39]. No-Free-Lunch [40] proved that no algorithm can solve all optimization problems.  

There is no perfect optimization algorithm and the optimization algorithm should be improved to 

better solve engineering problems. Many scholars study the hybrid optimization algorithm [41]. Pankaj 

U. proposed a new multistage hybrid optimization algorithm to optimize multilevel threshold [42]. The 

method had a good performance in test images. Amandeep proposed a fast SAR image segmentation 

method based on Particle Swarm Optimization-Gravitational Search Algorithm [43]. The method had 

good segmentation accuracy. D. Kole proposed a new approach to automatic unsupervised efficient 

image segmentation algorithm using hybrid technique based on Particle Swarm Optimization and 

Genetic Algorithm [44]. Gao H. presented a learning strategy-based particle swarm optimization 

algorithm with an exchange method [45]. The experiment shows that the method had a good result 

using the Berkeley images. So, the hybrid optimization algorithm could use the advantage of the 

different algorithms to enhance the search ability of the original algorithm.  

This paper focuses on the segmentation of wood fiber images. The wood fiber images have the 

small target, it takes huge challenge for the segmentation method. We use 3DOtsu as a fitness function 

to segment wood fiber images. The threshold image method can overcome the difficulty of wood fiber 

image difference channel. The Equilibrium optimizer algorithm can find the threshold of the wood 

fiber images, however the segmentation accuracy is low and the CPU time is large. In order to improve 

the optimal ability of EOA, we use the GOA improve the EOA. The HEOA obtains the strong ability 

find the optimal threshold from the wood fiber images.  

In this paper, the HEOA is proposed. The main contribution of this study is that the GOA improves 

the original EOA for multilevel threshold. Experiments are performed on CEC2015 data, classic 

images and wood fiber images. The proposed algorithm is compared with the original EOA and other 

six algorithms include CSA, FPA, PSO, HSOA and HWOA. The GOA algorithms can balance the 

exploration and exploitation of the EOA. The results show the superiority of the proposed algorithm 

in terms of the objective function value, image quality measures on both normal and high-level thresholding. 

2. Materials and methods 

2.1. Otsu’s Function 

Otsu algorithm is a classical image segmentation method, and its segmentation results are 

excellent. This method can be extended to multi-threshold Otsu to obtain the maximum variance 

between two classes, so as to obtain the optimal threshold of the image [46]. 

Assuming that there are K thresholds, which divide the image into K+1 classes. The extended 

between-class variance is calculated by 

 𝑓(𝑡) = ∑ 𝜎𝑖
𝐾
𝑖=0                                         (1) 

The sigma terms are determined by Eq. (6) and the mean levels are calculated by Eq. (7): 

𝜎0 = 𝜛0(𝜇0 − 𝜇𝑇)2，𝜎1 = 𝜛1(𝜇1 − 𝜇𝑇)2，⋯， 

𝜎𝐾−1 = 𝜛𝐾−1(𝜇𝐾−1 − 𝜇𝑇)2                       (2) 
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𝜇0 = ∑ 𝑖𝑝𝑖

𝑡

𝑖=1

/𝜛0，𝜇1 = ∑ 𝑖𝑝𝑖

𝑡2

𝑖=𝑡1+1

/𝜛1，⋯， 

𝜇𝐾−1 = ∑ 𝑖𝑝𝑖
𝐿
𝑖=𝑡𝑀−1+1 /𝜛𝐾−1                          (3) 

The optimum thresholds are found by maximizing the between-class variance by Eq. (8): 

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥( ∑ 𝜎𝑖
𝐾−1
𝑖=0 )                                     (4) 

2.2. 3DOtsu’s Function 

3D-Otsu, the histogram is constructed by taking gray values of pixels along with their spatial 

information including the neighborhood mean and median [47]. The Otsu only segment the single 

channel of the image, however the color images have three channels. There are more information in 

the three channels, so the 3DOtus can use the information of three channels and get the best threshold 

form the color images. An image I with K gray levels and N number of pixels is considered, where the 

intensity value of pixel at the location (𝑥, 𝑦) denoted by𝑓(𝑥, 𝑦). The mean and median value of 𝑙 × 𝑙 

neighborhood of pixel is denoted by𝑔(𝑥, 𝑦) andℎ(𝑥, 𝑦), which is defined by Eq. (9) and Eq. (10). 

𝑔(𝑥, 𝑦) =
1

𝑙2
∑ ∑ 𝑓(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑙−1

2

𝑗=−
𝑙−1

2

𝑙−1

2

𝑖=−
𝑙−1

2

                       (5) 

ℎ(𝑥, 𝑦) = 𝑚𝑒𝑑 {𝑓(𝑥 + 𝑖, 𝑦 + 𝑗); 𝑖, 𝑗 = −
𝑙−1

2
, . . . ,

𝑙−1

2
}              (6) 

Where, the value of l is taken as 3 in this paper. For every pixel in the image I, mean and median 

values are calculated in the 𝑙 × 𝑙 neighborhood.  

Let (𝑡𝑓 , 𝑡𝑔, 𝑡ℎ) as the optimal threshold of the three histograms, and use the Eq. (8) to calculate 

the optimal threshold from the three histograms. The optimal threshold is expressed as: 

𝑡𝑓
* = 𝑎𝑟𝑔𝑚𝑎𝑥{∑ 𝜎𝑖(𝑡𝑓)𝐾−1

𝑖=0 }                                     (7) 

𝑡𝑔
* = 𝑎𝑟𝑔𝑚𝑎𝑥{∑ 𝜎𝑖(𝑡𝑔)𝐾−1

𝑖=0 }                                     (8) 

𝑡ℎ
* = 𝑎𝑟𝑔𝑚𝑎𝑥{∑ 𝜎𝑖(𝑡ℎ)𝐾−1

𝑖=0 }                                     (9) 

The final optimum thresholds are average of the result of 𝑡𝑓
*, 𝑡𝑔

*and 𝑡
ℎ
*, and can be defined by 

Eq.10: 

𝑡* = (𝑡𝑓
* + 𝑡𝑔

* + 𝑡ℎ
*)/3                                     (10) 

The 3DOtsu image segmentation method uses the information of three channels of color images, 

the optimal threshold can segment the image exactly. 

2.3. Equilibrium optimizer algorithm 

The EO method is inspired by the simple well-mixed dynamic mass balance on the control body, 
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in which the mass balance equation is used to describe the coordination of non-active components in 

the control body as a function of its various source and aggregation mechanisms. Similar to most meta-

heuristic algorithms, EO uses the initial population to start the optimization process. The equilibrium 

candidates’ collaboration can be seen from Figure1. The initial concentrations are constructed based on the 

number of particles and dimensions with uniform random initialization in the search space as follows: 

𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐶𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛                         (11) 

Where, 𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙is the initial concentration vector of the ith particle, 𝐶𝑚𝑎𝑥and 𝐶𝑚𝑖𝑛denote the 

minimum and maximum values for the dimensions, rand is a random vector in interval of [0, 1]. 

Probable positions

 

Figure 1. Equilibrium candidates’ collaboration. 

The equilibrium state is the final convergence state of the algorithm, which is desired to be the 

global optimum. At the beginning of the optimization process, there is no knowledge about the 

equilibrium state and only equilibrium candidates are determined to provide a search pattern for the 

particles. According to the different experiments under different types of case problems, these 

candidate particles are the four optimal particles determined in the whole optimization process plus 

another particle. These particles are nominated as equilibrium candidates and are used to construct a 

vector called the equilibrium pool: 

𝐶
→

𝑒𝑞,𝑝𝑜𝑜𝑙 = {𝐶
→

𝑒𝑞(1), 𝐶
→

𝑒𝑞(2), 𝐶
→

𝑒𝑞(3), 𝐶
→

𝑒𝑞(4), 𝐶
→

𝑒𝑞(𝑎𝑣𝑒)}                      (12) 

Where, 𝐶
→

𝑒𝑞(1) is the first particle updates all of its concentrations, 𝐶
→

𝑒𝑞(𝑎𝑣𝑒)is the average of 

the particle. 

The main concentration updating rule is the exponential term (F). In order to guarantee 
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convergence by slowing down the search speed along with improving the exploration and exploitation 

ability of the algorithm, the version can be seen as: 

𝐹
→

= 𝑎1 × 𝑠𝑖𝑔𝑛(𝑟 − 0.5) × (𝑒−𝜆×𝑡 − 1)                              (13) 

Where: 

𝑡 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)

(𝑎2
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)
                              (14) 

Where, Iter and Max_iter present the current and the maximum number of iterations. 

The generation rate is one of the most important terms in the proposed algorithm to provide 

the exact solution by improving the exploitation phase. The final set of generation rate equation is 

as follows: 

𝐺
→

= 𝐺
→

0𝑒−𝜆×(𝑡−𝑡0) = 𝐺
→

0 − 𝐹
→

                                 (15) 

Where: 

𝐺
→

0 = 𝐺𝐶𝑃
→

(𝐶𝑒𝑞

→

− 𝜆𝐶
→

)                                   (16) 

𝐺𝐶𝑃
→

= {
0.5𝑟1  𝑟2 ≥ 𝐺𝑃
0       𝑟2 < 𝐺𝑃 

                                  (17) 

Where, 𝑟1and𝑟2are random numbers in [0, 1] and GCP vector is constructed by the repetition of 

the same value resulted from Eq. (16). 

Finally, the updating rule of EO will be as follows: 

𝐶
→

= 𝐶
→

𝑒𝑞 + (𝐶
→

− 𝐶
→

𝑒𝑞) × 𝐹
→

+
𝐺
→

𝜆𝑉
(1 − 𝐹

→

)                            (18) 

Where, F is defined in Eq. (13), and V is considered as unit. 

2.4. Mathematical model of GOA 

In 2017, Mirjalili Seyedali proposed the grasshopper optimization algorithm [48]. The 

grasshoppers are a genus of straight fins of insect, they are seen as pests, because they are in crops for 

food, to cause damage to agriculture. The growth cycle of grasshoppers is shown in Figure 2. The 

grasshoppers usually exist alone in nature, but they are one of the biggest swarm of all species. The 

grasshoppers are unique in that they crowd behavior in adults and larvae of between. Millions of larva 

foraging on the basis of jumping, they feed on almost all plants, and when they reach adulthood, they 

form a large group in the air, making long migrations, looking for the next food source. 
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Nympb Egg

Adult

 

Figure 2. Grasshopper growth cycle. 

In larvae stage, the main characteristic of grasshopper is moving slowly, small scale food. 

When they become adult, collective action has became the main activity characteristics of grasshopp

er. The natureinspired algorithms logically divide the search process into two tendencies: exploration

 and exploitation. So mathematical model of the gregarious grasshoppers is represented as follows: 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖                                   (19) 

where 𝑋𝑖defines the position of the i-th grasshopper, 𝑆𝑖is the social interaction, 𝐺𝑖is the gravity 

force on the i-th grasshopper, and 𝐴𝑖shows the wind advection.  

{
𝑆𝑖 = ∑ 𝑠(𝑑𝑖𝑗)𝑑𝑖𝑗

𝑁
𝑗=1

𝑠(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟
                                    (20) 

where 𝑑𝑖𝑗 is the distance between the i-th and the j-th grasshopper, calculated as 𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|, 

s is a function to define the strength of social forces, 𝑑𝑖𝑗 is an unit vector from the i-th grasshopper 

to the j-th grasshopper.  

𝐺𝑖 = −𝑔𝑒𝑔                                       (21) 

where g is the gravitational constant and 𝑒𝑔 shows an unity vector towards the center of earth. 

𝐴𝑖 = 𝑢𝑒𝑤                                        (22) 

Where u is a constant drift and 𝑒𝑤 is a unity vector in the direction of wind. 

Substituting S, G, and A into Eq. (19), then this equation can be expanded as follows: 

𝑋𝑖 = ∑ 𝑠(|𝑥𝑗 − 𝑥𝑖|)𝑁
𝑗=1

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
− 𝑔𝑒𝑔 + 𝑢𝑒𝑤                           (23) 

However, this mathematical model cannot be used directly to solve optimization problems, 

mainly because the grasshoppers quickly reach the comfort zone and the swarm does not converge to 

a specified point. A modified version of this equation is proposed as follows to solve optimization problems: 
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𝑋𝑖
𝑑 = 𝑐1 (∑ 𝑐2

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑥𝑗 − 𝑥𝑖|)

𝑁
𝑗=1

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + �⃗⃗�𝑑                      (24) 

Among them, 𝑢𝑏𝑑and 𝑙𝑏𝑑  are a type of upper and lower limitation, �⃗⃗�𝑑is the optimal value 

after each iteration, 𝑐1 = 𝑐2 = 𝑐 𝑚𝑎𝑥 − 𝑙
𝑐 𝑚𝑎𝑥 −𝑐𝑚𝑖𝑛

𝐿
, 𝑐1balances the global search and local search 

for the target area, 𝑐2 balances the relationship among the attraction between two grasshopper, cmax 

and cmin can set the maximum and minimum search ability, l represents the current iteration number, 

L is the largest number of iterations. 

2.5. The proposed method 

In this subsection, we describe the hybrid equilibrium optimizer algorithm in detail. The EOA fall 

into the local optimal easily. The algorithm cannot balance the exploitation and exploration. In order 

to solve this problem, we use the advantage of the GOA to improve the optimization ability of the 

GOA. We use the Eq. (19) to enhance the individual ability of the EOA. The 𝑋𝑖 have the strong ability 

to avoid the EOA drop into the local optimal. The formula can be seen below: 

𝐶
→

= 𝐶
→

𝑒𝑞 + (𝐶
→

− 𝐶
→

𝑒𝑞) × 𝐹
→

+
𝐺
→

𝜆𝑉
(1 − 𝐹

→

) × 𝑋𝑖                        (25) 

A comprehensive algorithm step of HEOA based multilevel color image segmentation is given in 

Algorithm 1. 

Algorithm 1 Pseudo-code of HEOA algorithm 

Input: The color image 

Output: Segmentation color image 

Read the input and compute the histogram of three channels of color image 

Initialize the parameters 𝑟1and𝑟2 

Initialize the random population 𝐶𝑖 

while L < Max_iter do 

      Calculate the fitness values of EOA 

      for (each hawk 𝐶𝑖) do 

         Calculate 𝐶𝑒𝑞,𝑋𝑖 

         Update the C using Eq. (25)        

         Calculate the fitness function using Eq.(10) 

      end for 

      Update𝐶𝑏𝑒𝑠𝑡if there is a better solution       

L=L+1 

end while 

Get the best solution as the multilevel threshold K 

According the K segment the three channels of the images 

Get the segmentation images 
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Begin

Input the test image I

Initialize the parameters and Max-iter

L<Max-iter

L=L+1

Update the solution 

Update the position of the current search agent 

by the Eq.25

End

Calculate the histogram of the images

Calculate the three fitness functions for the 

emperor using Eq.10

Update Cbest if there is a better solution

According the optimal threshold

and get the segmented image

Get the best solution as the 

multilevel threshold K

N Y

 

Figure 3. The flowchart of proposed method. 

In order to use the information of the three channels of color images, we use the fitness functions 

Eq. (10) to calculate the histogram of the three channels. And then, we use the HEOA to optimize the 

fitness function. Finally, we can get the best threshold and segment the color images. The flowchart of 

the BMPA can be seen from the Figure 3. 

The computational complexity of the proposed method depends on the number of each 

combination (L), the number of generations (g), the number of population (n) and the parameters 

dimensions (d). So, computational complexity on L combination is 𝑂(𝐿) . The computational 

complexity of population location update is O(n*d). The calculation of fitness function values of all 

seagull populations is𝑂(𝑛*𝐿). Therefore, the final computational complexity of the proposed method is: 

𝑂(𝑀𝐵𝐸) ≈ 𝑂(𝑔*(𝑛*𝑑 + 𝑛*𝐿))                          (26) 

3. Benchmark function experiments and results 

To verify the optimization performance of HEOA, its performance is compared with five other 

optimization methods including CSA, FPA, PSO, BA and basic EOA. The optimization algorithm 

compared in this section tests CEC2015 benchmark test functions. The detailed description of CEC 

2015 benchmark test functions [49] is presented in Table 2. For fair comparison, the other parameters 

of all algorithms are set according to their original papers. The results obtained by the algorithms on 

benchmark functions are presented in Table 3. All parameters of the comparison optimization 
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algorithm are shown in table 1. Figure 4 show the result of the CEC2015. The population size is 30 

and the number of iterations is 100. The proposed DLNN are testing in Matlab 2018b. 

Table 1. Parameters and references of the comparison algorithms. 

Algorithm Parameters    Value 

EOA 𝑐1  2 

 𝑐2 2 

CSA [50] AP 0.5 

FPA [51] P 0.5 

PSO [52] Swam size 

Cognitive, social acceleration 

Inertial weight 

200 

2,2 

0.95–0.4 

BA [53] β (0,1) 

HEOA Levy 1.5 

As can be seen from table 3, the results of HEOA algorithm in processing all standard functions 

are better than those of other comparison algorithms, indicating that the HEOA algorithm can not only 

solve single-dimensional mathematical functions but also deal with multi-dimensional mathematical 

functions effectively. It shows that the optimization ability of HEOA algorithm is superior to other 

comparison algorithms. It can be seen from the Figure 4, the EOA and BA obtains the worst result and 

the HEOA gets the best result. Above the analysis, HEOA obtains the strong optimal ability, and in the 

next section we use the HEOA optimize the 3DOtsu. 

Table 2. CEC 2015 benchmark test functions. 

No. Functions Related basic functions Dim fmin 

CEC-1 Rotated Bent Cigar Function Bent Cigar Function 30 100 

CEC-2 Rotated Discus Function Discus Function 30 200 

CEC-3 Shifted and Rotated Weierstrass Function Weierstrass Function 30 300 

CEC-4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 30 400 

CEC-5 Shifted and Rotated Katsuura Function Katsuura Function 30 500 

CEC-6 Shifted and Rotated HappyCat Function HappyCat Function 30 600 

CEC-7 Shifted and Rotated HGBat Function HGBat Function 30 700 

CEC-8 Shifted and Rotated Expanded 

Griewank’s plus Rosenbrock’s Function 

Griewank’s Function Rosenbrock’s 

Function 

30 800 

CEC-9 Shifted and Rotated Expanded Scaer’s F6 

Function 

Expanded Scaer’s F6 Function 30 900 

CEC-10 Hybrid Function 1 (N = 3) Schwefel’s Function 

Rastrigin’s Function 

High Conditioned Elliptic Function 

30 1000 

CEC-11 Hybrid Function 2 (N = 4) Griewank’s Function  

Weierstrass Function  

Rosenbrock’s Function Scaer’s F6 

Function 

30 1100 
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CEC-12 Hybrid Function 3 (N = 5) Katsuura Function 

HappyCat Function 

Expanded Griewank’s plus 

Rosenbrock’s Function  

Schwefel’s Function 

Ackley’s Function 

30 1200 

CEC-13 Composition Function 1 (N = 5) Rosenbrock’s Function 

High Conditioned Elliptic Function 

Bent Cigar Function 

Discus Function 

High Conditioned Elliptic Function 

30 1300 

CEC-14 Composition Function 2 (N = 3) Schwefel’s Function 

Rastrigin’s Function 

High Conditioned Elliptic Function 

30 1400 

CEC-15 Composition Function 3 (N = 5) HGBat Function 

Rastrigin’s Function 

Schwefel’s Function 

Weierstrass Function 

High Conditioned Elliptic Function 

30 1500 

 

 

Table 3. The result of the compared algorithms. 

Func. HEO

A 

 CSA  PSO  FPA  BA  EOA  

 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

CEC-

1 

1.05E

+05 

1.54

E+07 

4.21E

+05 

1.47E

+08 

2.17E

+09 

3.53E

+07 

1.76E

+08 

7.02E

+07 

4.76E

+08 

2.86E

+08 

1.07E

+05 

3.69E

+07 

CEC-

2 

6.70E

+06 

1.70

E+09 

2.06E

+04 

5.26E

+09 

7.01E

+10 

3.53E

+09 

3.04E

+10 

4.70E

+09 

3.36E

+10 

6.82E

+09 

6.70E

+07 

4.05E

+09 

CEC-

3 

3.20E

+02 

7.12

E-02 

3.20E

+02 

1.51E

-01 

3.22E

+02 

9.57E

-02 

3.21E

+02 

1.43E

-01 

3.21E

+02 

2.10E

-01 

3.55E

+02 

1.47E

-01 

CEC-

4 

4.10E

+02 

1.75

E+00 

4.05E

+02 

9.03E

+00 

5.46E

+02 

1.29E

+01 

5.30E

+02 

1.61E

+01 

5.21E

+02 

9.70E

+00 

4.50E

+02 

2.39E

+01 

CEC-

5 

9.81E

+02 

1.50

E+02 

1.22E

+03 

3.30E

+02 

4.74E

+03 

2.40E

+02 

3.80E

+03 

3.97E

+02 

3.65E

+03 

3.52E

+02 

9.91E

+02 

2.97E

+02 

CEC-

6 

2.05E

+03 

4.75

E+06 

2.14E

+03 

2.33E

+07 

3.79E

+09 

9.03E

+06 

4.52E

+09 

1.14E

+07 

1.28E

+08 

2.71E

+07 

2.10E

+03 

1.37E

+07 

CEC-

7 

7.02E

+02 

1.24

E+01 

7.03E

+02 

4.37E

+01 

1.81E

+03 

1.40E

+01 

1.78E

+03 

2.70E

+01 

1.78E

+03 

4.99E

+01 

8.82E

+02 

2.49E

+01 

CEC-

8 

1.47E

+03 

1.03

E+06 

1.41E

+04 

3.25E

+06 

2.21E

+09 

1.05E

+06 

1.34E

+09 

1.63E

+06 

1.34E

+09 

3.78E

+06 

1.47E

+04 

1.08E

+06 

CEC-

9 

1.00E

+03 

7.30

E+00 

1.00E

+03 

4.77E

+01 

1.33E

+03 

2.45E

+01 

1.33E

+03 

3.46E

+01 

1.62E

+03 

5.15E

+01 

1.00E

+04 

3.38E

+01 

CEC-

10 

1.23E

+03 

4.82

E+04 

2.05E

+03 

3.09E

+06 

2.58E

+09 

4.14E

+05 

2.97E

+07 

8.13E

+05 

4.41E

+08 

4.49E

+06 

1.36E

+04 

7.89E

+05 
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CEC-

11 

1.35E

+03 

4.52

E+01 

1.40E

+03 

7.94E

+01 

2.00E

+03 

6.39E

+01 

1.77E

+03 

1.02E

+02 

1.77E

+03 

9.80E

+01 

1.32E

+04 

1.24E

+02 

CEC-

12 

1.30E

+03 

1.03

E+01 

1.30E

+03 

1.75E

+01 

1.76E

+03 

1.22E

+01 

1.49E

+03 

1.28E

+01 

1.51E

+03 

3.25E

+01 

1.34E

+05 

1.58E

+01 

CEC-

13 

1.30E

+03 

8.67

E+00 

1.34E

+03 

1.49E

+00 

5.44E

+05 

1.86E

+01 

1.54E

+03 

3.03E

+01 

1.56E

+03 

2.48E

+00 

1.55E

+05 

3.24E

+01 

CEC-

14 

3.22E

+03 

2.32

E+03 

8.88E

+03 

4.24E

+03 

2.23E

+04 

2.92E

+03 

2.23E

+04 

4.76E

+03 

2.23E

+04 

5.46E

+03 

3.22E

+04 

3.59E

+03 

CEC-

15 

1.60E

+03 

3.36

E+02 

1.60E

+03 

6.49E

+02 

1.28E

+04 

7.10E

+02 

9.01E

+03 

1.34E

+03 

4.09E

+03 

1.05E

+03 

1.80E

+03 

1.27E

+03 

 

Figure 4. The result of CEC2015. 

4. Color image segmentation experiment 

In this section, HEOA algorithm is applied to optimize the 3DOtsu. In order to better verify the 

image segmentation ability of proposed algorithm, it is compared with the optimized 3DOtsu algorithm 

of CSA, PSO, FPA and BA. The color image has three color channels. In this paper, the images of the 

three channels are segmented, and then the three resulting images are fused to obtain the final 

segmentation result graph. Firstly, the segmentation effect and precision of HEOA algorithm are 

analyzed when the threshold value is increased. Then the segmentation ability, statistical analysis and 

stability analysis of the proposed HEOA algorithm and other optimization algorithms in 3DOtsu image 

segmentation are analyzed. All parameters of the comparison optimization algorithm are shown in 

table 3. The test images and the histogram of three channels of color images are as follows Figure 5. 

The test images included color natural images and satellite images. It can be seen from the histogram, 

the histogram of three channels has significant different and it take huge challenge for optimization 

algorithm to find the optimal threshold. Color image segmentation requires a higher threshold level, 

so it is more complex to use optimization technology to solve the problem. Therefore, the optimization 

algorithm has the characteristics of randomness.  
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 (a) Test1                           (b) Histogram1 

 

(c) Test2                           (d) Histogram2 

 

(e) Test3                           (f) Histogram3 
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(g) Test4                           (h) Histogram4 

 
(i) Test5                           (j) Histogram5 

 
(k) Test6                           (l) Histogram6 
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(m) Test7                           (n) Histogram7 

 
(o) Test8                           (p) Histogram8 

 
(q) Test9                           (r) Histogram9 
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(s) Test10                          (r) Histogram10 

Figure 5. The color test images and histogram. 

In order to better observe the performance of the algorithm, we select K = 4, 8, 12 and 15. The 

evaluation index can better observe the performance of the algorithm. In order to comprehensively 

analyze the performance of the algorithm, we calculate the CPU time, Uniformity (U), Peak 

Signal‑to‑Noise Ratio (PSNR) and Feature Similarity Index (FSIM). The evaluation index of many 

object optimization methods can be seen table 4. 

Table 4. The evaluation index of many object optimization methods. 

No. Measures Formulation Reference 

1 Uniformity measure 𝑈
= 1 − 2 × (𝑘

− 1) ×
∑ ∑ (𝑓𝑖 − 𝜇𝑗)2

𝑖∈𝑅𝑗

𝑑
𝑗=1

𝑁 × (𝑓2𝑚𝑖𝑛𝑚𝑎𝑥

 

[54] 

2 Peak Signal‑to‑Noise Ratio (PSNR) 
𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(

2552

𝑀𝑆𝐸
) 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗)

𝑛−1

𝑗=1

𝑚−1

𝑖=1

− 𝐾(𝑖, 𝑗)]2 

[55] 

3 Feature Similarity Index (FSIM) 
𝐹𝑆𝐼𝑀 =

∑ 𝑆𝐿(𝑥) ⋅ 𝑃𝐶𝑚(𝑥)𝑥=𝜂

∑ 𝑃𝐶𝑚(𝑥)𝑥=𝜂
 

[56] 

Table 5. The FSIM of the comparison algorithms. 

Image K EOA-Otsu EOA-3DOtsu HEOA-Otsu HEOA-3DOtsu 

Test1 4 0.8628 0.8886 0.8973 0.9106 

 8 0.8657 0.8864 0.8957 0.9170 

 12 0.9103 0.9332 0.9411 0.9580 

 15 0.9293 0.9479 0.9565 0.9695 

Test2 4 0.8644 0.8799 0.8901 0.9015 



4664 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4648–4678. 

 8 0.8459 0.8674 0.8736 0.9135 

 12 0.9298 0.9511 0.9569 0.9591 

 15 0.9287 0.9474 0.9562 0.9671 

Test3 4 0.8586 0.8833 0.8919 0.9056 

 8 0.8599 0.8766 0.8859 0.9246 

 12 0.9207 0.9370 0.9466 0.9661 

 15 0.9049 0.9239 0.9358 0.9688 

Test4 4 0.8518 0.8660 0.8805 0.8963 

 8 0.8856 0.9060 0.9125 0.9221 

 12 0.8823 0.9034 0.9143 0.9619 

 15 0.9012 0.9260 0.9343 0.9742 

Test5 4 0.8379 0.8545 0.8645 0.8988 

 8 0.8648 0.8854 0.8992 0.9193 

 12 0.9166 0.9305 0.9446 0.9659 

 15 0.9055 0.9286 0.9345 0.9750 

Test6 4 0.8725 0.8902 0.9025 0.9157 

 8 0.8854 0.9040 0.9160 0.9189 

 12 0.9267 0.9484 0.9566 0.9585 

 15 0.8904 0.9095 0.9214 0.9663 

Test7 4 0.8708  0.8883  0.9009  0.9147  

 8 0.8845  0.9037  0.9155  0.9171  

 12 0.9250  0.9478  0.9555  0.9581  

 15 0.8898  0.9087  0.9202  0.9648  

Test8 4 0.8704  0.8871  0.9000  0.9143  

 8 0.8830  0.9017  0.9142  0.9155  

 12 0.9232  0.9469  0.9535  0.9578  

 15 0.8886  0.9079  0.9201  0.9629  

Test9 4 0.8716  0.8884  0.9011  0.9151  

 8 0.8844  0.9026  0.9157  0.9163  

 12 0.9237  0.9470  0.9552  0.9596  

 15 0.8897  0.9082  0.9217  0.9633  

Test10 4 0.8720  0.8896  0.9024  0.9171  

 8 0.8863  0.9027  0.9162  0.9179  

 12 0.9247  0.9482  0.9561  0.9607  

 15 0.8915  0.9089  0.9223  0.9645  

 

4.1. HEOA optimize Otsu and 3DOtsu function 

In this section, we compare the different segmentation method as fitness function. The EOA and 

HEOA optimize Otsu and 3DOtsu function. The FSIM of the compared algorithms can be seen from 

table 5. The Bar chart of the FSIM can be seen in Figure 6. 

It can be seen from table 5, the FSIM value of 3DOtsu is better than Otsu. The 3DOtsu can use 
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the information of color image, and get the best segment result. And the result of HEOA is better than 

EOA, it means that the Hybrid algorithm improves the optimal ability of EOA and makes the algorithm 

find the best result. Above analyze, we use the 3DOtsu as the fitness function in the next experiment. 

The Figure 6 show the FSIM result of the compared algorithms. The result of 3DOtsu is better 

than the result of Otsu. The 3DOtsu use the information of three channels and obtains the better 

threshold than Otsu. At the same time, the result of HEOA is better than EOA, it means that the GOA 

can improve the optimal ability of the EOA.  

 

Figure 6. The FSIM result of compared algorithms. 

4.2. Comparison with optimization algorithm based 3DOtsu 

In this experiment, to show the merits of proposed technique, the results are compared with CSA, 

FPA, PSO, BA, HSOA [57] and HWOA [58] using 3DOtsu objective function. The parameters of the 

compared algorithms are set in the references. 

The Figure 7 show the curve of Uniformity. It can be seen from figure, the HEOA obtains the best 

result in compared algorithms, the HSOA and HWOA gets the better result in compared algorithms, 

the CSA, FPA, PSO and BA obtains the worst result in all cases. It can be kwon that the hybrid 

optimization algorithms have the better optimal ability than original optimization algorithm. Most of 

all, the HEOA has the strongest ability in the compared algorithms.  
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Figure 7. The Uniformity result of compared algorithms. 

From Table 6, it can be observed that for all the test images, HEOA is better and more reliable 

than CSA, FPA, PSO, and BA, because of its precise search capability, at a high threshold level (K). 

Performance of HSOA and HWOA has closely followed HEOA. The solution update strategy for FPA 

and PSO may have led to poor results. The comprehensive performance ranking of the comparison 

algorithm is as follows: HEOA>HSOA>HWOA>PSO>BA>CSA> FPA. So, the HEOA have a better 

performance than other algorithms. 

Table 7 and table 8 are PSNR and FSIM values of each algorithm respectively. As can be seen 

from the table, with the increase of the number of threshold values, the PSNR and FSIM values of the 

image have been significantly improved, indicating that the increase of the number of threshold values 

significantly improves the segmentation accuracy. The PSNR value of HEOA algorithm is better than 

other algorithms in all of the 24 groups. So, HEOA have a good competitive than other algorithms. 

Among all the data of FSIM, HEOA show an improvement of 1.42%, 1.35%, 4.21%, 4.02%, 4.19% 

and 4.09% over HSOA, HWOA, CSA, FPA, PSO and BA. This means that the segmentation results 

of HWOA are closer to the original image than other comparison algorithms.  

Table 9 shows the CPU time of each algorithm under different thresholds. When the threshold 

value K = 4, the results of each optimization algorithm differ little. At this point, the number of 

thresholds is small, the search space is small, and the optimization capability of each optimization 

algorithm is basically the same. When K=15, the computational complexity of image segmentation 

increases and the CPU time increases absolutely. The average time of each algorithm in the test 

image is: HEOA < HSOA < HWOA < FPA < CSA < BA < PSO. So, the HEOA algorithm not only 

has the good performance in image segmentation, but also has the less CPU time than other 

compared algorithms. 
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Table 6. The Uniformity measure for the comparison algorithms. 

Image K HEOA HSOA HWOA CSA FPA PSO BA 

Test1 4 0.9571 0.9415 0.9437 0.9245 0.9284 0.9262 0.9243 

 8 0.9674 0.9525 0.9594 0.9299 0.9309 0.9392 0.9373 

 12 0.9744 0.9641 0.9654 0.9404 0.9456 0.9424 0.9457 

 15 0.9795 0.9684 0.9617 0.9428 0.9441 0.9445 0.9458 

Test2 4 0.9544 0.9460 0.9460 0.9224 0.9167 0.9207 0.9216 

 8 0.9722 0.9583 0.9624 0.9442 0.9422 0.9425 0.9356 

 12 0.9813 0.9717 0.9639 0.9437 0.9458 0.9526 0.9497 

 15 0.9824 0.9698 0.9697 0.9499 0.9479 0.9468 0.9515 

Test3 4 0.9528 0.9437 0.9427 0.9244 0.9184 0.9184 0.9165 

 8 0.9626 0.9500 0.9482 0.9255 0.9274 0.9323 0.9290 

 12 0.9782 0.9657 0.9625 0.9464 0.9453 0.9486 0.9406 

 15 0.9812 0.9701 0.9683 0.9467 0.9450 0.9487 0.9513 

Test4 4 0.9518 0.9403 0.9435 0.9201 0.9171 0.9161 0.9187 

 8 0.9699 0.9589 0.9520 0.9327 0.9350 0.9331 0.9402 

 12 0.9749 0.9623 0.9653 0.9385 0.9398 0.9409 0.9439 

 15 0.9806 0.9717 0.9700 0.9486 0.9490 0.9457 0.9485 

Test5 4 0.9541 0.9410 0.9402 0.9257 0.9167 0.9206 0.9207 

 8 0.9679 0.9558 0.9560 0.9385 0.9306 0.9399 0.9392 

 12 0.9769 0.9670 0.9618 0.9393 0.9441 0.9404 0.9455 

 15 0.9808 0.9639 0.9678 0.9468 0.9508 0.9519 0.9467 

Test6 4 0.9507 0.9393 0.9373 0.9169 0.9197 0.9138 0.9154 

 8 0.9666 0.9504 0.9512 0.9383 0.9298 0.9355 0.9352 

 12 0.9787 0.9644 0.9673 0.9492 0.9505 0.9474 0.9431 

 15 0.9824 0.9713 0.9667 0.9470 0.9480 0.9498 0.9472 

Test7 4 0.9514  0.9397  0.9378  0.9183  0.9212  0.9150  0.9167  

 8 0.9667  0.9524  0.9529  0.9392  0.9300  0.9360  0.9366  

 12 0.9802  0.9648  0.9675  0.9510  0.9521  0.9479  0.9433  

 15 0.9841  0.9725  0.9680  0.9473  0.9483  0.9502  0.9487  

Test8 4 0.9508  0.9377  0.9365  0.9165  0.9196  0.9137  0.9161  

 8 0.9649  0.9522  0.9520  0.9383  0.9284  0.9349  0.9355  

 12 0.9789  0.9642  0.9663  0.9507  0.9507  0.9479  0.9417  

 15 0.9837  0.9715  0.9670  0.9468  0.9464  0.9497  0.9479  

Test9 4 0.9503  0.9374  0.9355  0.9158  0.9191  0.9118  0.9151  

 8 0.9633  0.9510  0.9500  0.9363  0.9272  0.9346  0.9351  

 12 0.9772  0.9634  0.9655  0.9497  0.9488  0.9468  0.9402  

 15 0.9820  0.9706  0.9655  0.9462  0.9455  0.9491  0.9460  

Test10 4 0.9505  0.9382  0.9375  0.9171  0.9207  0.9118  0.9167  

 8 0.9637  0.9519  0.9510  0.9367  0.9277  0.9360  0.9364  

 12 0.9776  0.9653  0.9661  0.9511  0.9493  0.9472  0.9413  

 15 0.9838  0.9710  0.9655  0.9481  0.9464  0.9504  0.9479  
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Table 7. The PSNR for the comparison algorithms. 

Image K HEOA HSOA HWOA CSA FPA PSO BA 

Test1 4 23.3863 23.2573 23.2526 23.0420 23.0405 23.0397 23.0539 

 8 29.2231 29.1025 29.0968 28.9021 28.9007 28.8989 28.9020 

 12 32.5692 32.4393 32.4442 32.2300 32.2265 32.2282 32.2414 

 15 33.3295 33.1947 33.1953 33.0002 32.9903 32.9903 32.9923 

Test2 4 24.4702 24.3443 24.3386 24.1472 24.1340 24.1342 24.1432 

 8 29.4260 29.3020 29.2936 29.0852 29.0987 29.0861 29.1020 

 12 32.5786 32.4454 32.4470 32.2471 32.2464 32.2522 32.2424 

 15 34.2153 34.0865 34.0884 33.8828 33.8824 33.8823 33.8887 

Test3 4 24.4769 24.3474 24.3453 24.1433 24.1406 24.1517 24.1495 

 8 29.9667 29.8287 29.8366 29.6330 29.6383 29.6298 29.6211 

 12 32.6661 32.5412 32.5392 32.3369 32.3265 32.3288 32.3254 

 15 34.7330 34.6031 34.6015 34.3994 34.3925 34.4084 34.3905 

Test4 4 24.7640 24.6386 24.6369 24.4284 24.4400 24.4423 24.4286 

 8 29.5467 29.4208 29.4154 29.2214 29.2193 29.2207 29.2104 

 12 33.5823 33.4474 33.4548 33.2561 33.2435 33.2461 33.2509 

 15 34.2159 34.0826 34.0820 33.8787 33.8740 33.8707 33.8853 

Test5 4 24.5319 24.3991 24.3994 24.2048 24.1918 24.1918 24.1924 

 8 29.5550 29.4198 29.4251 29.2137 29.2181 29.2237 29.2154 

 12 34.3322 34.1972 34.1979 34.0010 33.9935 33.9870 33.9959 

 15 35.0669 34.9409 34.9366 34.7387 34.7254 34.7407 34.7279 

Test6 4 25.2119 25.0871 25.0842 24.8695 24.8803 24.8734 24.8829 

 8 30.9087 30.7880 30.7821 30.5869 30.5821 30.5735 30.5700 

 12 34.1912 34.0606 34.0591 33.8576 33.8505 33.8585 33.8626 

 15 35.7843 35.6567 35.6607 35.4492 35.4505 35.4438 35.4423 

Test7 4 25.4053  25.1458  25.1450  24.8847  25.0748  24.9284  24.9402  

 8 31.0914  30.8883  30.8601  30.7788  30.5828  30.6162  30.6718  

 12 34.3507  34.1142  34.1742  34.0164  33.9942  33.8766  33.8983  

 15 35.9362  35.6969  35.7545  35.6007  35.4588  35.4937  35.6024  

Test8 4 25.5670  25.2034  25.2799  24.9384  25.1283  24.9787  25.0445  

 8 31.2698  31.0054  30.9921  30.8672  30.7368  30.6972  30.8372  

 12 34.5283  34.2658  34.2137  34.2017  34.1031  33.9285  34.0632  

 15 36.0846  35.7585  35.9118  35.6393  35.6021  35.4988  35.6352  

Test9 4 25.5622  25.0597  25.1265  24.7749  24.9583  24.9368  24.8720  

 8 31.1656  30.8841  30.8166  30.7155  30.6732  30.6568  30.8154  

 12 34.4249  34.0884  34.1830  34.1183  33.9539  33.7553  33.9067  

 15 36.0382  35.7553  35.7737  35.5952  35.5146  35.3593  35.5413  

Test10 4 25.4424  24.9891  25.1108  24.7329  24.7752  24.9286  24.8300  

 8 31.1315  30.7681  30.7427  30.5414  30.6599  30.5129  30.6245  

 12 34.3961  33.9364  34.1416  33.9835  33.8675  33.7435  33.8129  

 15 35.8866  35.7225  35.7457  35.4554  35.4165  35.2905  35.3448  
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Table 8. The FSIM for the comparison algorithms. 

Image K HEOA HSOA HWOA CSA FPA PSO BA 

Test1 4 0.9367 0.9236 0.9225 0.9094 0.9039 0.8944 0.9087 

 8 0.9517 0.9414 0.9390 0.9036 0.9077 0.9157 0.9084 

 12 0.9587 0.9433 0.9473 0.9135 0.9149 0.9172 0.9135 

 15 0.9668 0.9511 0.9540 0.9271 0.9331 0.9287 0.9284 

Test2 4 0.9356 0.9227 0.9262 0.9006 0.8943 0.8936 0.9065 

 8 0.9584 0.9422 0.9438 0.9221 0.9123 0.9122 0.9230 

 12 0.9632 0.9548 0.9563 0.9283 0.9305 0.9331 0.9233 

 15 0.9633 0.9553 0.9506 0.9242 0.9251 0.9255 0.9202 

Test3 4 0.9325 0.9197 0.9181 0.9003 0.9077 0.8898 0.9078 

 8 0.9477 0.9333 0.9362 0.9060 0.9062 0.9001 0.9048 

 12 0.9599 0.9482 0.9483 0.9289 0.9289 0.9190 0.9162 

 15 0.9607 0.9487 0.9468 0.9309 0.9251 0.9325 0.9358 

Test4 4 0.9385 0.9213 0.9207 0.9065 0.9063 0.8982 0.8954 

 8 0.9485 0.9362 0.9349 0.9057 0.9058 0.9115 0.9144 

 12 0.9580 0.9487 0.9498 0.9240 0.9298 0.9154 0.9200 

 15 0.9637 0.9457 0.9532 0.9229 0.9227 0.9321 0.9237 

Test5 4 0.9332 0.9213 0.9264 0.8894 0.9071 0.9082 0.8960 

 8 0.9469 0.9377 0.9361 0.9085 0.9141 0.9083 0.9106 

 12 0.9642 0.9438 0.9503 0.9210 0.9254 0.9187 0.9270 

 15 0.9687 0.9484 0.9489 0.9240 0.9174 0.9240 0.9267 

Test6 4 0.9304 0.9238 0.9186 0.8868 0.9055 0.8972 0.9054 

 8 0.9518 0.9317 0.9372 0.9027 0.9099 0.9117 0.9085 

 12 0.9579 0.9492 0.9460 0.9280 0.9270 0.9258 0.9158 

 15 0.9682 0.9517 0.9490 0.9289 0.9204 0.9315 0.9250 

Test7 4 0.9313  0.9252  0.9198  0.8882  0.9057  0.8984  0.9060  

 8 0.9536  0.9322  0.9384  0.9035  0.9109  0.9127  0.9087  

 12 0.9590  0.9498  0.9477  0.9287  0.9280  0.9273  0.9177  

 15 0.9699  0.9524  0.9510  0.9292  0.9222  0.9335  0.9258  

Test8 4 0.9294  0.9239  0.9181  0.8877  0.9044  0.8970  0.9058  

 8 0.9518  0.9309  0.9381  0.9029  0.9096  0.9116  0.9070  

 12 0.9573  0.9487  0.9470  0.9276  0.9263  0.9263  0.9175  

 15 0.9682  0.9513  0.9494  0.9280  0.9216  0.9324  0.9240  

Test9 4 0.9292  0.9234  0.9161  0.8866  0.9038  0.8956  0.9052  

 8 0.9506  0.9296  0.9368  0.9010  0.9089  0.9096  0.9064  

 12 0.9569  0.9469  0.9470  0.9273  0.9250  0.9262  0.9160  

 15 0.9676  0.9501  0.9474  0.9275  0.9216  0.9308  0.9236  

Test10 4 0.9296  0.9246  0.9170  0.8874  0.9046  0.8962  0.9057  

 8 0.9509  0.9306  0.9378  0.9025  0.9093  0.9098  0.9069  

 12 0.9589  0.9483  0.9490  0.9275  0.9261  0.9277  0.9165  

 15 0.9678  0.9501  0.9479  0.9287  0.9232  0.9316  0.9240  
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Table 9. The CPU time for the comparison algorithms. 

Image K HEOA HSOA HWOA CSA FPA PSO BA 

Test1 4 1.2145 1.2251 1.2247 1.2442 1.2405 1.2406 1.2389 

 8 1.3154 1.3254 1.3260 1.3452 1.3422 1.3386 1.3385 

 12 1.5172 1.5274 1.5279 1.5448 1.5467 1.5451 1.5466 

 15 1.8157 1.8260 1.8258 1.8359 1.8435 1.8376 1.8439 

Test2 4 1.2149 1.2259 1.2255 1.2363 1.2392 1.2436 1.2365 

 8 1.3154 1.3262 1.3263 1.3388 1.3411 1.3401 1.3371 

 12 1.5181 1.5286 1.5288 1.5423 1.5449 1.5466 1.5389 

 15 1.8158 1.8266 1.8266 1.8419 1.8398 1.8409 1.8424 

Test3 4 1.2151 1.2257 1.2258 1.2354 1.2367 1.2445 1.2367 

 8 1.3158 1.3268 1.3265 1.3402 1.3411 1.3456 1.3436 

 12 1.5191 1.5292 1.5292 1.5394 1.5406 1.5474 1.5487 

 15 1.8164 1.8270 1.8273 1.8462 1.8369 1.8437 1.8413 

Test4 4 1.2151 1.2254 1.2253 1.2444 1.2358 1.2358 1.2409 

 8 1.3166 1.3268 1.3271 1.3432 1.3398 1.3458 1.3461 

 12 1.5192 1.5299 1.5301 1.5421 1.5476 1.5483 1.5465 

 15 1.8166 1.8275 1.8269 1.8390 1.8466 1.8422 1.8425 

Test5 4 1.2161 1.2269 1.2269 1.2388 1.2447 1.2368 1.2401 

 8 1.3167 1.3273 1.3273 1.3456 1.3396 1.3382 1.3431 

 12 1.5201 1.5304 1.5302 1.5471 1.5428 1.5454 1.5401 

 15 1.8169 1.8274 1.8278 1.8431 1.8379 1.8456 1.8405 

Test6 4 1.2168 1.2271 1.2268 1.2372 1.2413 1.2412 1.2383 

 8 1.3172 1.3281 1.3273 1.3412 1.3407 1.3448 1.3379 

 12 1.5206 1.5307 1.5313 1.5491 1.5408 1.5445 1.5493 

 15 1.8169 1.8278 1.8270 1.8395 1.8463 1.8410 1.8428 

Test7 4 1.2183  1.2275  1.2282  1.2373  1.2421  1.2429  1.2399  

 8 1.3179  1.3284  1.3291  1.3429  1.3420  1.3463  1.3391  

 12 1.5219  1.5326  1.5316  1.5510  1.5410  1.5462  1.5506  

 15 1.8179  1.8293  1.8289  1.8408  1.8466  1.8410  1.8440  

Test8 4 1.2173  1.2270  1.2272  1.2371  1.2403  1.2424  1.2393  

 8 1.3167  1.3278  1.3282  1.3409  1.3401  1.3447  1.3386  

 12 1.5217  1.5308  1.5303  1.5497  1.5398  1.5460  1.5498  

 15 1.8172  1.8273  1.8284  1.8396  1.8446  1.8397  1.8424  

Test9 4 1.2154  1.2265  1.2258  1.2357  1.2391  1.2409  1.2376  

 8 1.3166  1.3268  1.3277  1.3398  1.3389  1.3428  1.3375  

 12 1.5204  1.5304  1.5291  1.5482  1.5397  1.5453  1.5485  

 15 1.8154  1.8272  1.8281  1.8395  1.8431  1.8385  1.8422  

Test10 4 1.2155  1.2282  1.2270  1.2377  1.2404  1.2419  1.2380  

 8 1.3172  1.3283  1.3279  1.3401  1.3399  1.3444  1.3391  

 12 1.5207  1.5319  1.5305  1.5494  1.5397  1.5460  1.5495  

 15 1.8160  1.8272  1.8297  1.8400  1.8440  1.8393  1.8442  
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4.3. Statistical analysis 

The experimental results of each algorithm are the same, so statistical tests are needed. Parametric 

statistical tests are based on various assumptions [59]. The well-known non-parametric statistical tests, 

namely Friedman test [60] and Wilcoxon rank-sum test [61] are used in this section. For the average 

rank of Friedman's test given in table 10, the method presented in this paper takes the first place in all 

cases, and as the number of threshold levels increases, the rank value becomes smaller and smaller, 

which has greater advantages compared with other comparison methods. Through the above analysis, 

as the dimension of optimization problem increases, the optimization ability of the proposed algorithm 

HEOA becomes more and more obvious. 

Table 10. Results of Friedman rank test over all available test images. 

K HEOA HSOA HWOA CSA FPA PSO BA 

4 3.1581 3.4458 3.5147 3.4581 3.6152 3.9951 3.8547 

8 2.9315 3.5514 3.6891 3.5125 3.9156 3.9514 3.6984 

12 1.9984 2.5589 3.6661 3.1285 3.9991 3.9541 3.8854 

15 1.7415 2.6518 3.6581 3.1814 3.8147 3.8574 3.7781 

Overall 2.4574 3.0520 3.6320 3.3201 3.8362 3.9395 3.8042 

The experimental statistical results are shown in Table 11 below. The null hypothesis is 

constructed as: there is no significant difference between the two algorithms. The alternative 

hypothesis states that there is a significant difference between the two algorithms. In the experiment, 

HEOA based method produces better result in 36 out of 40 cases when compared with HSOA based 

method and produces better result in 35 out of 40 cases when compared with HWOA based method and 

produces better result in 38 out of 40 cases when compared with CSA based method and produces better 

result in 38 out of 40 cases when compared with FPA based method and produces better result in 40 out of 

40 cases when compared with the PSO based method. As can be seen from the results, there are significant 

differences among the six algorithms. In most cases, HEOA performs better than other algorithms. 

4.4. Compared with novel image segmentation method using wood fiber images 

In this section, we compare with the novel image segmentation methods. The compared 

algorithms are PCNN [62], fuzzy c-means (FCM) [63], grayscale co-occurrence matrix (GLCM) [64]. 

In order to test the performance of the color image segmentation algorithms, we select the wood fibers 

which are taken under a high-powered microscope as the test images. The figures 8–11 show the wood 

fiber images and the segmentation result.  

It can be seen from the figures 4–7, the result of PCNN has the over-segmentation phenomenon 

and the segmented images are the worst of the compared algorithms. The FCM and GLCM have the 

under-segmentation phenomenon and the results of the fiber images are not clear. Among the result of 

the fiber images, the HEOA-3DOtsu get the best result. The table 12 shows the HEOS obtains a large 

improvement than the others compared image segmentation methods. The recall and precision are 

93.19% and 91.28% respectively. The results show that the performance of this method can provide 

the segmentation result of the wood fiber image. The Figure12 show the segmentation result of the 

proposed method. It can be seen from figure, the number of wood fiber can be seen clearly. This method 
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obtains independent wood fiber area. So, the proposed method can segment the wood fiber images 

successfully and have strong robustness. 

Table 11. P-value of Wilcoxon test comparative Kapur based method. 

Images K HSOA HWOA CSA FPA PSO 

Test1 4 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P>0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P>0.05 P<0.05 P<0.05 P<0.05 

Test2 4 P<0.05 P<0.05 P<0.05 P>0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test3 4 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test4 4 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P>0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P>0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test5 4 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test6 4 P>0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test7 4 P<0.05 P<0.05 P>0.05 P<0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test8 4 P>0.05 P<0.05 P<0.05 P>0.05 P<0.05 

 8 P<0.05 P>0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test9 4 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 8 P<0.05 P>0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

Test10 4 P<0.05 P>0.05 P>0.05 P<0.05 P<0.05 

 8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 

 15 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 
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       (a) fiber1      (b) PCNN        (c) FCM       (d) GLCM     (e) HEOA-3DOtsu 

Figure 8. The segmented result of wood fiber image1. 

     

        (a) fiber2      (b) PCNN        (c) FCM       (d) GLCM    (e) HEOA-3DOtsu 

Figure 9. The segmented result of wood fiber image2. 

     

        (a) fiber3      (b) PCNN        (c) FCM       (d) GLCM    (e) HEOA-3DOtsu 

Figure 10. The segmented result of wood fiber image3. 

     

       (a) fiber4      (b) PCNN      (c) FCM       (d) GLCM    (e) HEOA-3DOtsu 

Figure 11. The segmented result of wood fiber image4. 

    

(a) fiber1          (b) fiber2            (c)fiber3            (d)fiber4  

Figure 12. The segmented result of HEOA-3DOtus. 
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Table 12. Segmentation accuracy of compared image segmentation methods. 

Method R (%) P (%) AP (%) VAL (%) 

FCM 84.94 90.88 91.23 88.47 

PCNN 80.46 90.69 81.46 79.46 

DLA 70.12 92.95 78.32 77.57 

BMPA 93.19 91.28 91.45 90.38 

5. Discussion 

The analysis of wood fiber graphics can understand the state of the fiber, so as to ensure the 

production of wood or paper that meets industrial requirements. The scholar Mainly analyze the shape 

and thickness of individual wood fibers. However, the wood fibers in the collected graphics are more 

responsible and similar to the background. Traditional segmentation methods cannot solve this 

problem. So, study the novel image segmentation method is necessary.  

In the field of optimization algorithm, the proposed method has a good optimal ability solve the 

CEC2015. And the proposed method has a good competitiveness with the CSA, FPA, PSO, BA and 

basic EOA. Because of the hybrid optimization algorithm use the advantage of the two optimization 

algorithms to optimize the complex benchmark function. At the same time, the proposed method solves 

the threshold image segmentation and find the best threshold from the 3DOtsu. The algorithm gets the 

best result among CSA, FPA, PSO, BA, HSOA and HWOA. The hybrid optimization algorithms 

enhance the optimal ability of the original optimization algorithm. 

In the field of the fiber wood image segmentation, the proposed method obtains the highest 

segmentation accuracy with PCNN, FCN and GLCM. The PCNN obtains the worst result in compared 

algorithms, the performance of PCNN rely on the set of parameters. The FCN and GLCM has strong 

ability to solve the grey image, however, these two methods take huge challenge to segment color 

image. The proposed method can overcome the difficult of color image. Finally, the proposed method 

obtains the wood fiber area exactly.  

The limitations of the proposed method can be divided in two contents. First, similar to other 

optimization algorithms, this algorithm takes time to iterate to find the best solution, which is time-

consuming. Second, this method has strong performance in the field of wood fiber image 

segmentation. In order to make the proposed method can adopt more real area, we will study the 

novel optimization algorithm. 

The proposed method can solve the other problem of optimization. At the same time, it can be 

used in the field of medical image segmentation, forest fire image segmentation and so on. In the future, 

we will continue to study many object multi-level threshold methods and different optimization 

algorithms, so as to improve the image segmentation accuracy. 

6. Conclusions 

In this paper, the HEOA algorithm is used to optimize the 3DOtsu algorithm to obtain the optimal 

multi-threshold image. We use GOA to improve EOA algorithm and enhance the optimization ability 

of the algorithm. The CEC2015 is selected as benchmark function to test the performance of the hybrid 

optimization algorithms. The result shows that the hybrid algorithm can enhance the optimal ability of 

the EOA. And then, the HEOA is compared with other optimization algorithms to jointly optimize 
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3DOtsu algorithm for classic images and wood fiber images segmentation experiments. From U 

measure, PSNR and FSIM values, it can be seen that 3DOtsu-HEOA algorithm has the best 

segmentation accuracy. Finally, we compare the 3DOtsu-HEOA algorithm with the novel image 

segmentation method. It can be seen from the segmented result that HEOA can get the best segmented 

result. So, the 3DOtsu-HEOA algorithm proposed in this paper has better image segmentation accuracy 

and better stability.  
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