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Abstract: This paper proposes a model that considers the action and timing of insulin and glucagon in
glucose homeostasis after an oral stimulus. We use the Bayesian paradigm to infer kinetic rates, namely
insulin and glucagon secretion, gastrointestinal emptying, and basal glucose concentration in blood.
We identify two insulin scores related to glucose concentration in both blood and the gastrointestinal
tract. The scores allow us to suggest a classification for individuals with impaired insulin sensitivity.
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1. Introduction

This paper builds on the model of blood glucose dynamics during the Oral Glucose Tolerance
Test (OGTT) of Kuschinski [1]. Our model considers the action and timing of insulin and glucagon in
glucose homeostasis after an oral stimulus. We use the Bayesian paradigm to infer kinetic rates, namely
insulin and glucagon secretion, gastrointestinal emptying, and basal glucose concentration in blood.
We identify two insulin scores related to glucose concentration in both blood and the gastrointestinal
tract, suggesting a classification for individuals with impaired insulin sensitivity.

Most tissues and organs in our body use glucose as an essential source of energy. The process of
maintaining blood glucose at a steady state is called glucose homeostasis [2]. Food ingestion, fasting,
physical activity, or exercise constantly shift the blood glucose concentration away from equilibrium
throughout the day. A low blood concentration of glucose can causes seizures, loss of consciousness,
or even death. On the other hand, the long-lasting elevation of blood glucose concentrations can result
in blindness, renal failure, vascular disease, and neuropathy. Therefore, blood glucose concentration
in healthy individuals stays within narrow limits. Two hormones secreted by the pancreas: insulin and
glucagon, are the primary regulators of blood glucose. The World Health Organization (WHO) refers
to diabetes type 2 as a chronic and metabolic disease characterized by elevated blood glucose levels.
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Type 2 diabetes is more common in adults and occurs when the body becomes resistant to insulin or
does not produce enough insulin. One standard test to screen for diabetes is the Oral Glucose Tol-
erance Test (OGTT). In this procedure, the patient must drink a sugary solution after eight-hour of
fasting. Several blood samples are taken over the process, the first before consuming the sugary solu-
tion, the rest are taken afterward to monitor the body’s reaction to the glucose intake. A prediabetic
state is characterized by an impaired fasting glucose level (IFG), an impaired blood glucose level at
two hours after consuming the drink, referred to as impaired glucose tolerance (IGT), or both. Studies
suggest that IFG may be associated with impaired insulin secretion while IGT is related to insulin resis-
tance [3]. OGTT based diabetes diagnostics suffers from uncertainties along the test [4] on the amount
of glucose absorbed and its absorption rate. A popular approach to describing glucose dynamics is
compartmental models [5, 6]. The inference of model parameters from glucose observations is called
an inverse problem. The critical task of solving the inverse problem is to reliably predict quantities of
interest in terms of the models variables and parameters. Of note, inverse problems are an imperfect
path to knowledge due to errors in observation, modeling, and numerical simulation [7]. The Bayesian
paradigm allows solving the inverse problem producing predictions with quantified uncertainties. Un-
der this approach, the solution of the inverse problem is a probability distribution for the parameters
of interest [8], which describes multiple consistent scenarios to fit the data. In this work, we use the
Bayesian approach to model and analyze OGTT data. Here the regressor comes from an ODE system
that describes the glucose dynamics. We model insulin and glucagon secretion originated from blood
glucose concentration. Also, we consider delays and hormonal effects from the gastrointestinal tract.

1.1. Related work

Research on glucose dynamics through compartmental models is quite common; see [5, 6] for re-
views. Usually, the description level is related to the crucial features of the diagnostic tests involved.
For the Oral Glucose Tolerance Test, one of the main features to be modeled is the gastrointestinal
tract [2, 4, 9]. Most models include the insulin effect on the glucose homeostasis process, include
glucagon action is less common. Several works describe OGTT dynamics with a second-order differ-
ential equation [10–13]. Authors in [12] have shown that a linear model may describe some postpran-
dial glucose excursions.The process in the gastrointestinal tract has become relevant in the last years.
Incretins are hormones secreted by the gut, which stimulate insulin secretion before blood glucose
level increases. This effect is reduced or even vanished for type 2 diabetes patients, see [14, 15]. Also,
gut hormone secretion is low in the fasting state [2]. Reactions of the body to the rise of the glucose
level come with a delay, modeled by explicit delays in time [16, 17] or by extra compartments in the
dynamical system [1,4,18]. In epidemiology, latency and infection periods are usually described by an
exponential distribution. Authors in [19] argued the inadequacy of this distribution since this proposal
overestimates shorter and longer durations of the phenomenon in the period. A gamma distribution
may describe more realistic distributions. We can obtain this effect by subdividing the compartment
into n stages. Specifically, the distribution obtained is an Erlang distribution, a gamma distribution
with a shape integer parameter [20]. Inference problems look for determining the value of model pa-
rameters based on observed quantities of interest, like glucose, insulin, GLP-1, and/or GIP [4,18]. For
a complex model, often, several sources of data are required to infer the parameters. Using just glucose
data limits the complexity and may lead to an identifiability problem of the parameters. Continuous
Glucose Monitoring (CGM) provides information about the body reaction during a more extended pe-
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riod [12, 21, 22]. Authors in [22] proposed a minimal model with CGM data and prove the structural
identifiability using software packages. Authors in [11] proposed lifestyle adjustments for T2D sub-
jects using glucose data for more than 4 hours each 30 min. The results show that the recovery time of
post-prandial blood glucose level can be adjusted to 4 hours. Bayesian approaches for estimate param-
eters of compartmental models were proposed in [1, 13]. Authors in [13] proposed a minimal model
for glucose-insulin dynamics. They proposed interpreting the glucose-insulin system as a damped har-
monic oscillator and suggested a classification based on two parameters: the peak of the curve and an
average of rates. Authors in [1] proposed a Bayesian experimental design for time’s sample collection.
Since the inference results depend strongly on the quality of the data, an experimental design looks to
improve the ability of the test to provide a more accurate result. Authors define a utility function for
different time collections that allow determining an optimal among these candidates. For a Bayesian
experimental design, this utility depends on posterior quantities.

1.2. Contributions

The main contributions of this work are a model that includes: (i) A description of insulin secretion
dependent on direct blood glucose level as well as gastrointestinal glucose. The incretin effect has a
significant role in insulin secretion when the body reacts to an oral stimulus. Separately, these two
sources allow us to propose a classification between patients. These parameters may suggest possible
alterations in healthy patients and determine misclassified subjects. We obtain those by a Bayesian
inference that takes less than five minutes and five glucose measurements, making it a fast, reliable,
and accessible tool. (ii) Delays of the body in the gastrointestinal tract and the endocrine system are
modeled by gamma distributions. We introduce Erlang distributed periods in the hormonal dynamics
for incretin, insulin, and glucagon.

1.3. Limitations

We remark some limitations for this approach: (i) Since the glucagon dynamics turn on when the
glucose level is lower than the basal level (Gb), for patients with all measurements higher than Gb, we
do not have information about the parameter corresponding to this reaction. The consequence is that
the posterior marginal for θ2 matches the prior marginal. Monitoring the glucose level for more than
two hours may circumvent this situation. (ii) The classification proposed is based on two parameters.
Each is the product of two quantities with biological meaning. Nevertheless, we can not recover each
action separately. Adding insulin data in the inference may allow recovery of each action parameter.

The organization of the rest of this paper is as follows. In Section 2.1, we present the ODE system
that describes the biological situation for the glucose dynamics during OGTT. This section includes
the description of the Bayesian inference problem in Subsection 2.2. Our numerical results are present
in Section 3. Finally, we discuss our results and findings in Section 4.
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2. Materials and methods

2.1. Modeling of Glucose dynamics during OGTT

In this section, we describe the physiological situation in detail to justify our approach. The biolog-
ical modeling on which we rely is given by the following ODE system

Ġ = λ1L − λ2I + λ3V, G(0) = y0 (2.1)
İ = λ4(G −Gb)+ + λ8V − λ5I, I(0) = 0 (2.2)
L̇ = λ6(Gb −G)+ − λ7L, L(0) = 0 (2.3)
V̇ = −λ3V, V(0) = V0 (2.4)

where G denotes the glucose blood level ( in mg/dl), I the insulin level above the basal insulin ( in
µU/ml), L the glucagon level above the basal glucagon ( in mg/dl), and V the glucose from the sugary
drink in the gastrointestinal tract ( in mg/dl). We propose a dynamical system centered in the basal
glucose level denoted by Gb, which typically takes values in the range [75 − 100] mg/dl, [6]. Above
Gb, the dynamics are regulated mainly by insulin action, while below Gb, mainly due to glucagon. This
system describes linear interactions for both cases. A linear description for the load path through the
gastrointestinal system is usual, while nonlinear functions describe glucose appearance in blood [18].
In this case, we decided to maintain the linearity assumption as in [10], which simplifies the biological
phenomenon but reaches the objective of predicting the glucose level, a major quantity of interest for
the inference [7]. Note that the complexity of models in [4, 18, 23] comes with a diversity of observed
data to validate it. In our case, we proposed the inference using just glucose data at five times, which
is a limitation to increase the complexity. Also, the model’s simplicity is not a limitation to obtain
a good fit and reliable inference [7]. Equation (2.1) models the glucose dynamics, which decreases
proportionally to the insulin level and increases according to two sources, first by the glucose of the
sugary drink from the intestinal tract, second by the glucagon action. λ1 and λ2 are efficacy rates for
the glucagon and the insulin, λ3 is the rate of glucose absorption from the gastrointestinal tract. The
dynamics of insulin and glucagon are very similar and depend on the basal glucose level of the body.
The pancreas secretes insulin when the blood glucose level is higher than the basal glucose level on
the body. Conversely, the pancreas secretes glucagon when the blood glucose level is lower than the
basal glucose level on the body. We model this secretion action by a switch on the quantity G − Gb.
Mathematically speaking, we use the positive part of G −Gb, denoted by (G −Gb)+, and defined by

(G −Gb)+ =

G −Gb G ≥ Gb

0 G ≤ Gb
(2.5)

to model the secretion of insulin, conversely (Gb − G)+ to the secretion of glucagon. λ4 and λ6 are
secretion rates for the insulin and the glucagon due to blood glucose level, and λ5 and λ7 are its disinte-
gration rates. λ8 is the insulin secretion rate due to the glucose level in the gastrointestinal tract. After
a meal, insulin secretion may occur in two phases: an initial rapid release and a long-term release if
glucose concentrations remain high [2]. Hormones from the gut play a main role in insulin secretion
on oral glucose consumption. The second term on equation (2.2) mimics the secretion due to a high
concentration of glucose in the gastrointestinal tract as for example, the incretin effect. The Incretin
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effect is reduced or even vanished in diabetic patients [14, 15]. Therefore, insulin secretion may be
due to direct glucose blood level and/or gastrointestinal glucose level. The model defined by equations
(2.1)- (2.4) has eight parameters. Parameters λ5 and λ7 will be taken from the literature [1, 25]. For
the other six parameters, we will face an identifiability problem; that is, the structure of the model may
lead to issues related to the uniquely estimation of parameters during the inference. To face this prob-
lem, we introduce scaled versions of insulin and glucagon. Note that by multiplying equation (2.2) by
a constant, we obtain a scaled insulin

λI İ = λIλ4(G −Gb)+ + λIλ8V − λIλ5I (2.6)

If we name Is = λI I, we have İs = ˙(λI I) = λI İ. By substituying in equation (2.6), we obtain

İs = θ(G −Gb)+ + γV − λ5Is (2.7)

We will apply this idea to obtain a scaled insulin and glucagon by multiplying equation (2.2) by λ2 and
equation (2.3) by λ1. As we will explain later, we use only glucose observations for the inference, for
which the loss of meaning for these scaled amounts do not represent a limitation. Finally we obtain the
system

Ġ = L1 − I1 + λ3V (2.8)
İ1 = θ1(G −Gb)+ + θ3V − λ5I1 (2.9)
L̇1 = θ2(Gb −G)+ − λ7L1 (2.10)
V̇ = −λ3V (2.11)

where L1 = λ1L, I1 = λ2I, θ1 = λ2λ4, θ3 = λ2λ8 and θ2 = λ1λ6. Note that these substitutions allow
us to decrease the number of parameters in the system, which will be helpful in the inference to fight
the identifiability problem. Table 1 summarizes information about the model’s parameters given by
equations (2.8) - (2.11). For this model and the specific case when G − Gb ≥ 0, we can show by
the Similarity Transform Method [26] that θ0 is identifiable and θ3 is not, see supplementary section
B. Note that, for the cases of OGTT curves with all data greater than Gb, the term (Gb − G)+ = 0
during most all the test, which causes a non-identifiability of θ2 and Gb. Let us recall that the uniden-
tifiability of parameters produces unrealistic values or high uncertainty around the estimated values of
the parameters. A Bayesian approach deals with these problems by proposing a prior distribution on
the parameters and approximating integrals from the MCMC, which produces less sensitivity on the
results [27].

Also, we would like to address the possible delays of the body reaction. Introducing explicit time
delays into the ODE system is very common [16, 17]. The same effect may be obtained by intro-
ducing extra compartments. In epidemiology, these additional compartments model aspects as la-
tency and infection periods with a more realistic distribution. This technique is known as an Erlang
model [19,20,28,29]. Typically, people use the exponential distribution. Nevertheless, the exponential
distribution overestimates the number of individuals whose duration of infection is shorter or longer
than the mean [19]. This approach subdivides stage I (and/or E ) into identical substages in a classical
SEIR compartment model. This modeling matches the renewal approach [20], which considers the co-
horts of infectious(exposed) individuals while the ODE approach considers each infectious(exposed)
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Table 1. Information on the model parameters.

Parameter Units Description Value
λ3 hr−1 GI Glucose Absorption Unknown
θ1 hr−2 Insulin Response to Blood Glucose Level Unknown
Gb mg/dl Basal Glucose level Unknown
θ3 hr−2 Insulin response to GI Glucose Level Unknown
λ5 hr−1 Inverse of mean-life insulin clearance 31 min, [1, 25]
θ2 hr−2 Glucagon response to Blood Glucose level Unknown
λ7 hr−1 Inverse of mean-life glucagon clearance 31 min, [1, 25]
V0 mg/dl Initial Glucose in Gastrointestinal Tract 400, Proposed

individual. In this work, we consider the same idea to model hormonal behavior during the OGTT test.
That is, instead of considering an exponential decay of quantities V1, L1 and I1, we introduce extra com-
partments to obtain a different and delayed behavior of these into the bloodstream. The main difference
is illustrated in Figure 1 (a) for the digestive compartment. An exponential decay (m = 1) gives higher
weights to initial times. Note that the parameters λ5 and λ7 are the mean-life clearance of hormones
insulin and glucagon. Under this approach, these parameters retain their meaning [20]. We propose a
modification of the model in [30], deduced before in equations (2.8)-(2.11). This modification is given
by

Ġ = L2 − I2 + θ0V2 (2.12)
İ1 = θ1(G −Gb)+ + θ3V2 − 2λ5I1 (2.13)
İ2 = 2λ5I1 − 2λ5I2 (2.14)
L̇1 = θ2(Gb −G)+ − 2λ7L1 (2.15)
L̇2 = 2λ7L1 − 2λ7L2, (2.16)
V̇1 = −2θ0V1 (2.17)
V̇2 = 2θ0V1 − 2θ0V2, (2.18)

where θ0 = λ3. After ingestion, glucose is absorbed in the upper gastrointestinal tract, transported to
the liver, and finally reaches the peripheral circulation [23]. Introducing a second compartment for V
allows us to model this behavior of glucose due to the sugary drink in the digestive system as in [1,31].
Compartments V1 and V2 model the stomach and the small intestine. The second compartments for I
and L allow us to model the delays due to the pancreas reaction [16]. These delays are a consequence
of recurrent inhibitory dynamics [32, 33]. In recurrent inhibition, we can see how the activation of a
quantity produces excitation in a second quantity that inhibits the first’s activity. This phenomenon is
present in the dynamics of glucose-insulin-glucagon. The specific case for glucose-insulin dynamics
is known as a negative feedback loop [34]. Following this approach, we can introduce extra compart-
ments without new kinetic constants. This model is locally stable around the unique equilibrium point
(Gb, 0, 0, 0, 0, 0, 0) for subjects with small θ1. We show details about the stability of the model in Ap-
pendix C. In the following subsection, we propose a regressor from the dynamical system in equations
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(2.12)–(2.18) to fit the glucose data provided by the OGTT. The inference process follows a Bayesian
approach.

2.2. Bayesian Formulation for the Inference Problem

In this section, we consider the inverse problem of determining the posterior distribution for the
parameter Θ = (θ0, θ1, θ2,Gb, θ3). Under the Bayesian approach, the solution of the inverse problem is
a probability distribution conditioned on the information of the data. We have glucose measurements
at five times ti = 0.0, 0.5, 1.0, 1.5 and 2.0 hours. We assume that the data y follow the noise model

yi = G(Θ)i + ηi (2.19)

where G(Θ)i = G(ti,Θ) and G is the solution for the glucose on the ODE system given in equation
(2.12) and ηi ∼ N(0, σ2). The parameters λ5, λ7 are determined from previous works [1, 31]. We
propose σ = 5 mg/dl as in [1, 13].

Our prior knowledge about the parameters are that θi > 0 and the basal level of glucose is in the
range of [75, 100] mg/dl [6]. We assumed independence on the prior parameters, that is

π0(Θ) = π0
0(θ0)π1

0(θ1)π2
0(θ2)π3

0(Gb)π4
0(θ3) (2.20)

We propose gamma distribution for each parameter. Le us recall that if Z ∼ Γ(α, β) then E[Z] = α/β

and Var[Z] = α/β2. Our priors proposal are given by:

θ0 ∼ Γ(2, 1)
θ1 ∼ Γ(10, 1)
θ2 ∼ Γ(10, 1)
θ3 ∼ Γ(10, 1)

Gb ∼ Γ(902/20, 90/20). (2.21)

The prior distribution for the parameter θ0 corresponding to the gastrointestinal dynamic is truncated.
From simulations, we propose values greater than 0.5 to avoid almost constant trajectories for the
glucose. For Gb, we consider a prior with mean 90 mg/dl and variance 20 mg/dl. The priors for θ1, θ2

and θ3 are less informative with same mean and variance in 10. Having the likelihood π(y|Θ) and
the prior π0(Θ), and since we are working in finite dimensions, Bayes theorem ensures the posterior
distribution π(Θ|y) existence and

π(Θ|y) ∝ π(y|Θ)π0(Θ). (2.22)

Since we are using a numerical regressor in equation (2.19), the posterior distribution has no closed-
form, and we need to generate samples of it. Note from equation (2.22) that the posterior distribution
is known up to a constant of proportionality. Markov Chain Monte Carlo (MCMC) allows obtaining
samples from a distribution under this condition. Let us recall that the chain is a sequence of ran-
dom variables obtained from a transition kernel and distributed according to a stationary probability
distribution. To illustrate the results, we consider estimators for this distribution. The more popular
estimators are the conditional mean (CM), which is the mean of the posterior distribution; the condi-
tional median, which is the median of the posterior distribution; or the maximum a posteriori (MAP),
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which is the value of the parameters where the posterior reaches its maximum value. These estima-
tors are computed based on the samples generated from the MCMC. To generate samples, we used
the t-walk [36]. We perform 10000 iterations for each patient with a burnin of 1000. To assess the
efficiency of the sampler, we compute the integrated autocorrelation time (IAT). IAT is the number of
steps required for the chain to produce independent samples. Authors in [37] argue that IAT/n, where
n is the number of parameters, is a measure of efficiency among MCMC samplers. Let us recall that
the Monte Carlo error introduced in the approximations of integrals is proportional to

√
IAT/N, where

N is the number of samples from the posterior distribution [38]. That means we are looking for small
values of the IAT to have efficiency. We show our results in the following subsection.

3. Results

In this subsection, we show the results of the inference. We perform a MCMC using t-walk. Data
were collected from 2012 to 2019 in the General Hospital of Mexico Dr. Eduardo Liceaga under
the research Identificación de factores que predisponen a la diabetes mellitus tipo 2 en sujetos nor-
moglicémicos con historia familiar de diabetes y su relación con obesidad. These data were previously
used in [13]. All participants signed a consent. A first measurement is taken at fasting, after eight hours
of fasting. After that, the patient has five minutes to consume a drink with 75 gr. of dextrose. Four
different measurements of glucose are taken at 30, 60, 90, and 120 minutes. We have data from 80
female patients classified as follows:

1. 51 healthy patients (H).
2. 4 patients with Impaired Fasting Glucose (IFG): Fasting blood glucose level ≥ 100.
3. 15 patients with Impaired Glucose Tolerance (IGT): Blood glucose level ≥ 140 at t = 2.
4. 7 patients with IFG and IGT (IFG-IGT: both alterations).
5. 3 patients with Diabetes Mellitus 2 (T2D): Fasting blood glucose level ≥ 126 and blood glucose

level ≥ 200 at t = 2.

Since only a fraction of the ingested glucose appears in the blood [39], we propose a value of V0 = 400
based on the maximum value of the data set (375 mg/dl). The initial condition for the glucose level
G(0) is equal to the fasting observation y0. Figure 1 (a) illustrates Erlang’s distribution effects for 1, 2,
and 3 compartments in the digestive tract. The case m = 1 corresponds to an exponential distribution.
This case may describe the process of the glucose level in the stomach. For m = 2 and 3, the quantity
of glucose at t = 0 is 0 and may describe different parts of the intestine. We proposed the case m = 2
based on simulation results. Figure 1 (b) shows the RMSE at the MAP estimate for each category of
patients in boxplots. The results are consistent with the standard deviation proposed on the likelihood
(σ = 5). In Figure 1 (c)-(d), we show trace plots for the parameters θ1 and θ3 for several condition
patients. These results illustrate the chain values without the burnin. In Figure 2, we show the fit to
the data for several patients. We include (in grey) trajectories generated from posterior samples and
the curve generated by the posterior median. The CM and the MAP estimates generate very similar
trajectories.

From the inference information, we would like to explore the values of the parameters that describe
different situations on patients. In Figure 3 (a), we show chain values for five different scenarios. In
Figure 3 (b), we show the corresponding glucose measurements. Note that parameters θ1 and θ3 allow
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(a) (b)

(c) (d)

Figure 1. (a) Erlang’s distribution effects for 1, 2 and 3 compartments in the gastrointestinal
(GI) tract. (b) Boxplots of the RMSE at the MAP for each patient’s category. Note that the
results are consistent with the standard deviation proposed on the likelihood (σ = 5). Trace
plots for parameters θ1 in (c) and θ3 in (d) for four patients with different characteristics:
healthy biphasic, healthy monophasic, IGT and T2D. Their corresponding IAT/5 are 38, 56,
31,10.

us to recognize low secretion insulin levels. The gastrointestinal emptying parameter θ0 allows us to
identify the initial slope during the test. That is, θ0 determines the increase from level at fasting and
level at t = 30 minutes. Two patients with low gastrointestinal emptying labeled as impaired2 and
diabetic2 present higher values close to two hours instead of at the beginning. Note that this parameter
does not allow us to recognize anomalies since, for two diabetic patients, the parameter may take very
different values.

In Figure 5 (a)–(c), we show the posterior variance for the parameters θ0, θ1 and θ3 inferred from
the MCMC. Note that for θ1, there are some healthy outliers with high variance, consequence of the
unindentifiability problem, see details in Appendix A. In Figure 4 (a), we show the values of the MAP
estimate for parameters θ1 and θ3 inferred. We plotted 1/θ3 against 1/θ1. A high value for 1/θ1 may
be produced by a high glucose level at time 30 minutes whilst a high value for 1/θ3 may be produced
by a high glucose level at time 1 hour and 30 minutes. Patients diagnosed with IFG are considered
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(a) (b) (c)

(d) (e) (f)

Figure 2. Glucose data (red points), the median of the posterior distribution for each patient
and 200 trajectories of the posterior distribution to illustrate the uncertainty (grey area): (a)
Healthy Patient with Biphasic curve, (b) Healthy Patient with Monophasic curve, (c) Patient
with IFG , (d) Patient with IGT (high glucose level at t = 2), (e) Patient with IGT (low
glucose level at t = 2), (f) Diabetic patient.

healthy in the classification based on insulin secretion indicators. Its condition is not a consequence a
the oral stimulus. We performed a linear Support Vector Machine (SVM) algorithm using the package
scikit-learn in python [40]. An SVM is a supervised machine learning algorithm for classification,
which has become popular in biological applications [41]. In this case, we are looking for a separating
line between two different classes, healthy patients and patients with an impaired condition. This
hyperplane is optimal in the sense that it results from an optimization problem. Since naturally there is
a transition stage from a healthy patient and a diabetic patient, we performed this algorithm for all the
quantiles from 10 to 90 to include the uncertainty of our simulations in the classification. In Figure 4
(b), we show the glucose data, the fit, and the uncertainty corresponding to the patient with IGT inside
the healthy zone in (a) (cyan star at left down corner). For this case, the parameter Gb is identifiable,
see Figure 5 (d). We show results of the inference for this patient in Table 2. Our results suggested that
this subject may be misclassified as IGT instead of healthy.

4. Discussion and conclusions

In this work, we propose a Bayesian approach to analyze OGTT data. The modeling includes two
insulin indicators, one related to blood glucose level, the other with the glucose level in the gastroin-
testinal tract. These indicators describe insulin dynamics due to oral stimulus. Figure 4 (c) illustrates a
possible classification for patients. Now, we discuss its scope and limitations. Patients diagnosed with
IFG have an impaired value at fasting state and unimpaired values at two hours. Their insulin indica-
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(a)

(b)

Figure 3. (a) Chain values of the MCMC for parameters θ0, θ1, and θ3 for two diabetic pa-
tients, two patients with impaired Glucose Tolerance and a Healthy patient. Gastric emptying
parameter θ0 allow us to recognize initial slope during the test. (b) Glucose level measure-
ments from patients in (a).

tors classify these patients as healthy because their situation is not a consequence of the oral stimulus.
A patient with IGT may have healthy values for its insulin indicators, as shown in Figure 4 (a) (cyan
star in the left down corner). From its glucose values (Figure 4 (b)), we can deduce that its situation
is a consequence of impaired glucagon secretion. Also, note that the glucose measurement at t = 2
is almost on the limit of a healthy condition. The insulin indicators allow recognizing this possible
misclassification. Note that the detection of these cases is conditioned to have more data than fasting
and 2h level sample. Finally, the classification places some healthy patients in the transition zone. This
situation may result from a high glucose level at 30 minutes, for θ1, or at 1 hour and 30 minutes for θ3,
or a measurement close to 140 at 2 hours. This situation may be the beginning of an anomaly. Control
and follow-up of these patients for several months or years may confirm it. The scores presented here
have physiological meaning, discriminate between healthy and diabetic patients, and are accessible
since the inference takes less than five minutes and the data needed to perform it are just from glucose
measurements. From our results, it seems to us that the classification in healthy, IFG, IGT, IFG-IGT,
and T2D could be modified to recognize more specific details about the cause of an impaired condition.
IGT subjects may suffer from diminished glucagon suppression and an impaired glucose level at 2 h
may be caused by this irregularity [42]. Recognize the real causes of an impaired condition leads to
different therapies and savings of health care resources. Also, early detection of anomalies and/or high
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(a) (b)

Figure 4. (a) Plot 1/θ3 against 1/θ1 for the MAP estimate values: a linear SVM allow us to
produce a classification between healthy and unhealthy patients. This algorithm performed
from 10 to 90 quantile illustrate a transition stage between healthy and diabetic patients
including the uncertainty of our simulations, (b) Glucose data and fitted trajectories from an
IGT patient with healthy indicators values (cyan star at left down corner in (a)). Note that
the impaired glucose at t = 2 is due to the glucagon secretion effect. This last measurement
is almost in the limit of the IGT and the healthy classes.

risk of developing T2D allows for implementing healthy habits therapeutic strategies and postponing
medication. The model described here is very simple but incorporates all essential elements of the
physiological situation. As we mentioned before, the lack of complexity corresponds to the limited di-
versity of data. In this case, just with five glucose measurements, a very basic observation scenario, we
were allowed to propose a classification. This classification enables recognizing possible misclassified
patients and determining a transition zone, which may represent the risk of developing anomalies for
healthy patients. Future work contemplates how to adapt the model to incorporate insulin and glucagon
data. This information may provide possible explanations for an impaired condition.
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Supplementary

A. Some inference results

In this Section, we show some results about the inference as the posterior variance of parameters
θ0, θ1 and θ3 in Figure 5 (a)-(c). Since parameters θ2 and Gb are not practical identifiable for most of the
subjects, we omit this information. We show inference results for a possible misclassified IGT patient
in Figure 5 (d) and Table 2.

Table 2. Statistics of misclassified IGT patient in Figure 4 (b).

Indicator/Parameter θ0 θ1 θ2 Gb θ3

MAP 0.96 9.77 45.07 108.9 6.77
CM 0.96 11.55 45.11 107.9 6.2

Median 0.93 10.77 44.6 108.1 6.44
std 0.13 3.6 4.5 3.06 0.84
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(a) (b)

(c) (d)

Figure 5. (a)-(c) Posterior Variance for θ0, θ1 and θ3 by category. Note that for healthy
patients, we can find outliers with high variance, probably related with the unidentifiability
of these parameters. (d) Prior and posterior marginals of the parameter Gb for misclassified
IGT patient in Figure 4 (b).

B. Identifiability

In this section, we use the Similarity Transform Method [26] to show some results about the identi-
fiability of parameters θ0 and θ3. Let us consider X = G −Gb and the system for X ≥ 0

Ẋ
İ1

L̇1

V̇1

 =


0 −1 1 θ0

θ1 −λ5 0 θ3

0 0 −λ7 0
0 0 0 θ0




X
I1

L1

V1

 = A


X
I1

L1

V1

 (B.1)

subject to glucose observations
ỹ = X (B.2)

We need to find T , non singular, such that

A(θ)T = T A(θ̃) (B.3)
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0 −1 1 θ0

θ1 −λ5 0 θ3

0 0 −λ7 0
0 0 0 −θ0



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44




0 −1 1 θ̃0

θ̃1 −λ5 0 θ̃3

0 0 −λ7 0
0 0 0 −θ̃0

 (B.4)


−T21 + T31 + θ0T41 −T22 + T32 + θ0T42 −T23 + T33 + θ0T43 −T24 + T34 + θ0T44

θ1T11 − λ5T21 + θ3T41 θ1T12 − λ5T22 + θ3T42 θ1T13 − λ5T23 + θ3T43 θ1T14 − λ5T24 + θ3T44

−λ7T31 −λ7T32 −λ7T33 −λ7T34

−θ0T41 −θ0T42 −θ0T43 −θ0T44

 =

(B.5)
T12θ̃1 −T11 − λ5T12 T11 − λ7T13 θ̃0T11 + θ̃3T12 − θ̃0T14

T22θ̃1 −T21 − λ5T22 T21 − λ7T23 θ̃0T21 + θ̃3T22 − θ̃0T24

T32θ̃1 −T31 − λ5T32 T31 − λ7T33 θ̃0T31 + θ̃3T32 − θ̃0T34

T42θ̃1 −T41 − λ5T42 T41 − λ7T43 θ̃0T41 + θ̃3T42 − θ̃0T44


After some computations, we can deduce that

T31 = T32 = T34 = T41 = T42 = T43 = 0

then 
−T21 −T22 −T23 + T33 −T24 + θ0T44

θ1T11 − λ5T21 θ1T12 − λ5T22 θ1T13 − λ5T23 θ1T14 − λ5T24 + θ3T44

0 0 −λ7T33 0
0 0 0 −θ0T44

 = (B.6)


T12θ̃1 −T11 − λ5T12 T11 − λ7T13 θ̃0T11 + θ̃3T12 − θ̃0T14

T22θ̃1 −T21 − λ5T22 T21 − λ7T23 θ̃0T21 + θ̃3T22 − θ̃0T24

0 0 −λ7T33 0
0 0 0 −θ̃0T44


Since T must be non singular, then T44 , 0 and θ̃0 = θ0. We have θ0 is identifiable. Now, from the
observation condition, we have T1 = (1, 0, 0, 0), then

−T21 −T22 −T23 + T33 −T24 + θ0T44

θ1 − λ5T21 −λ5T22 −λ5T23 −λ5T24 + θ3T44

0 0 −λ7T33 0
0 0 0 −θ0T44

 = (B.7)


0 −1 1 θ̃0

T22θ̃1 −T21 − λ5T22 T21 − λ7T23 θ̃0T21 + θ̃3T22 − θ̃0T24

0 0 −λ7T33 0
0 0 0 −θ̃0T44
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Now, T21 = 0 and T22 = 1 and θ1 is identifiable,


0 −1 −T23 + T33 −T24 + θ0T44

θ1 −λ5 −λ5T23 −λ5T24 + θ3T44

0 0 −λ7T33 0
0 0 0 −θ0T44

 =


0 −1 1 θ̃0

θ̃1 −λ5 −λ7T23 θ̃3 − θ̃0T24

0 0 −λ7T33 0
0 0 0 −θ̃0T44


Then T23 = 0 and T33 = 1


0 −1 1 −T24 + θ0T44

θ1 −λ5 0 −λ5T24 + θ3T44

0 0 −λ7 0
0 0 0 −θ0T44

 =


0 −1 1 θ̃0

θ̃1 −λ5 0 θ̃3 − θ̃0T24

0 0 −λ7 0
0 0 0 −θ̃0T44


Finally, since θ̃0 = θ0, we have that each

T =


1 0 0 0
0 1 0 θ0(T44 − 1)
0 0 1 0
0 0 0 T44

 (B.8)

with T44 =
θ̃3 + θ0(θ0 − λ5)
θ3 + θ0(θ0 − λ5)

, is a similarity transform for the system and θ3 is unidentifiable.

C. Stability analysis

The process of maintaining blood glucose at a steady-state level is known as glucose homeostasis
[2]. In this case, we model this steady-state as the basal glucose level, denoted by Gb. The model
proposed in equations (2.12)-(2.18) has an unique equilibrium point (Gb, 0, 0, 0, 0, 0, 0). This model is
piecewise linear, and we would like to demonstrate that every solution of the ODE system converges to
this point which in practice means that under a perturbation or stimulus of the glucose level, the body
looks for returning to balance. Note that we are not interested in the period of time it takes, even if
for diabetic patients we expect greater times than for healthy patients. Let us consider the change of
variable X = G −Gb. The system given by equations (2.12)-(2.18) may be expressed as



Ẋ
İ1

İ2

L̇1

L̇2

V̇1

V̇2


=



0 0 −1 0 1 0 θ0

θ1 −2λ5 0 0 0 0 θ3

0 2λ5 −2λ5 0 0 0 0
0 0 0 −2λ7 0 0 0
0 0 0 2λ7 −2λ7 0 0
0 0 0 0 0 −2θ0 0
0 0 0 0 0 2θ0 −2θ0





X
I1

I2

L1

L2

V1

V2


(C.1)
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for x ≥ 0, and by 

Ẋ
İ1

İ2

L̇1

L̇2

V̇1

V̇2


=



0 0 −1 0 1 0 θ0

0 −2λ5 0 0 0 0 θ3

0 2λ5 −2λ5 0 0 0 0
−θ2 0 0 −2λ7 0 0 0
0 0 0 2λ7 −2λ7 0 0
0 0 0 0 0 −2θ0 0
0 0 0 0 0 2θ0 −2θ0





X
I1

I2

L1

L2

V1

V2


(C.2)

for x < 0. The unique equilibrium point of this piece-wise linear systems is (0, 0, 0, 0, 0, 0, 0). Ac-
cording to [35], the switched linear system given by equations (C.1) and (C.2) is Globally Uniform
Exponential Stable (GUES) iff it is locally attractive for every switching signal (see Theorem 2.4). Let
us recall that the local attractivity property means that all trajectories starting in some neighborhood of
the origin converge to the origin. For x ≥ 0, we can convert system in Equation (C.1) in the third order
linear equation

x(3) + 4λ5 ẍ + 4λ2
5 ẋ + 2λ5θ1x = f (t) (C.3)

with f (t)→ 0. Associated to equation (C.3), we have a third order polynomial

at3 + bt2 + ct + d = 0 (C.4)

which roots determine the behavior of its solutions. Let us recall that the discriminant of a depressed
cubic t3 + pt + q = 0 is ∆ = −(4p3 + 27q2). For equation (C.4), after a change of variable to obtain it
depressed form, we have

∆ = −(4p3 + 27q2) = −4λ2
5θ1(−16λ2

5 + 27θ1) (C.5)

Recall that for ∆ < 0, the equation has one real root and two non-real complex conjugate, while for

∆ > 0, three real roots. Note that the value θ1 =
16
27
λ2

5 satisfies ∆ = 0.

For θ1 <
16
27
λ2

5, ∆ > 0 is satisfied. In this case is very simple to verify that the three real roots are

negative. Consider the polynomial G(t) = t3 + 4λ5t2 + 4λ2
5t + 2λ5θ1, which satisfies:

G(−2/3λ5) = 2λ5(θ1 − 16/27λ2
5) < 0 < 2λ5θ1 = G(0) (C.6)

that means, there exist a root x1 ∈] − 2/3λ5, 0[ of G(t). Analogously, we can find x2 ∈] − 2λ5,−2/3λ5[
and x3 ∈] − 4λ5,−2λ5[ roots of G(t). Since all are negative, the local attractivity property is satisfied in
this case.
For θ1 >

16
27
λ2

5, ∆ < 0 is satisfied. In this case, the roots of G(t) are given by

xk = −
1

3a

(
b + ξkC +

∆0

ξkC

)
, k = 0, 1, 2 (C.7)

with ξ =
−1 +

√
3i

2
, C =


∆1 +

√
∆2

1 − 4∆3
0

2


1/3

, ∆0 = b2 − 3ac and ∆1 = 2b3 − 9abc + 27a2d. Since

a = 1, b = 4λ5, c = 4λ2
5, d = 2λ5θ1, we have

∆0 = 16λ2
5 − 12λ2

5 = 4λ2
5, ∆1 = −16λ3

5 + 54λ5θ1 = 2λ5(−8λ2
5 + 27θ1) (C.8)
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then
∆2

1 − 4∆3
0 =

(
−2λ5(8λ2

5 − 27θ1)
)2
− 4 · 64λ6

5 = 4λ2
5

(
(8λ2

5 − 27θ1)2 − 64λ4
5

)
= 4λ2

5

(
−2 · 8λ2

5 · 27θ1 + 272θ2
1

)
= 4λ2

5 · 27θ1

(
−16λ2

5 + 27θ1

)
Since θ1 >

16
27
λ2

5 then C > 0, and therefore x0 = −
1
3a

(
b + C +

∆0

C

)
is real and negative. Now, x1 =

−
1

3a

(
b + ξC +

∆0

ξC

)
= −

1
3a

(
b + ξC + ξ2 ∆0

C

)
= −

1
3a

b − 1
2

C −
∆0

2C
+

√
3

2
i
(
C −

∆0

C

). Its real part is

−
1

3a

(
b −

1
2

C −
∆0

2C

)
. We are interested in determining under what conditions

(
b −

1
2

C −
∆0

2C

)
> 0. A

straightforward computation leads to the condition

(4 − 2
√

3)λ5 < C < (4 + 2
√

3)λ5. (C.9)

This condition establish an upper bound for the value of θ1. In practice, this condition is satisfy for
values of θ1 < 29. A similar analysis is valid for x < 0 and θ2 < 29.
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