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Abstract: Semi-supervised learning has always been a hot topic in machine learning. It uses a large 
number of unlabeled data to improve the performance of the model. This paper combines the co-
training strategy and random forest to propose a novel semi-supervised regression algorithm: semi-
supervised random forest regression model based on co-training and grouping with information 
entropy (E-CoGRF), and applies it to the evaluation of depression symptoms severity. The algorithm 
inherits the ensemble characteristics of random forest, and combines well with co-training. In order 
to balance the accuracy and diversity of co-training random forests, the algorithm proposes a 
grouping strategy to decision trees. Moreover, the information entropy is used to measure the 
confidence, which avoids unnecessary repeated training and improves the efficiency of the model. In 
the practical application of evaluation of depression symptoms severity, we collect cognitive 
behavioral data of emotional conflict based on the depressive affective disorder. And on this basis, 
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feature construction and normalization preprocessing are carried out. Finally, the test is conducted 
on 35 labeled and 80 unlabeled depression patients. The result shows that the proposed algorithm 
obtains MAE (Mean Absolute Error) = 3.63 and RMSE (Root Mean Squared Error) = 4.50, which is 
better than other semi-supervised regression algorithms. The proposed method effectively solves the 
modeling difficulties caused by insufficient labeled samples, and has important reference value for 
the diagnosis of depression symptoms severity. 

Keywords: semi-supervised learning; E-CoGRF; depression; symptoms severity; emotional conflict 

 

1. Introduction  

In practical application, data tagging is limited by various factors, and sometimes even needs to 
pay a high price. Compared with labeled samples, the data acquisition of unlabeled samples is 
relatively simple. Semi-supervised learning is generated under the drive of practical application. It 
mainly studies how to make learners automatically use a large number of unlabeled data to assist the 
learning of a small number of labeled data under the premise of partial information missing in 
training data. Semi-supervised learning has been widely used in many fields because of its strong 
practical demand. Especially for psychiatric disorders research, there is a shortage of medical 
information talents and a low rate of clinical practice, so it is very expensive to obtain labeled 
samples. For example, in a recent study on bipolar disorder [1], the authors investigated the use of a 
semi-supervised learning method to process data obtained from patient-smartphone interactions, and 
considered the evolving time structure. The results shown that the semi-supervised model can 
effectively derive patient’s status even if only 25% of the labeled data are available. 

Depression is a psychiatric disorder characterized by significant and persistent loss of pleasure. 
To date, the pathogenesis of depression is still unclear. The diagnosis of depression is mainly carried 
out by psychiatrists through structured interviews based on diagnostic manuals [2]. Clinically, 17-
item Hamilton depression rating scale (HAMD-17) [3] is considered as the gold standard for the 
evaluation of depression symptoms severity. However, the evaluation of the HAMD scores is time-
consuming. On the one hand, the evaluation time depends on patients’ symptoms and cooperation, 
and it will take longer if the patient is severely blocked. On the other hand, HAMD scores are 
evaluated independently by two trained evaluators through conversation and observation, which also 
requires a high level of experience and skill. Therefore, it is very difficult to obtain the HAMD 
scores, which results in less labeled (HAMD score) data and more unlabeled data in patients with 
depression. It may be difficult to train a learning system with strong generalization if only a small 
number of labeled data is used for supervised learning, while ignoring a large number of unlabeled 
data will cause a great waste of data resources. In this paper, the semi-supervised learning method 
is used to construct the evaluation model, which can solve the above problems well and achieve 
better performance. 

In addition, machine learning methods based on objective biomarkers have become key 
technologies and effective means to diagnose depression. A large number of studies have shown that 
depression is related to the abnormalities in brain structure and function [4,5]. At present, the use of 
functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG) to record brain 
structure or brain activity has become an important means of identifying depression [6–8]. In addition, 
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depression not only causes brain abnormalities, but also leads to behavioral disorders [9,10]. Therefore, 
in recent years, more and more attention has been paid to the correlation between depression and 
behavioral patterns such as facial expression, speech, language and body posture [11–13]. 

This study considers the basic characteristic of depression—affective disorder, and collects 
cognitive behavioral data derived from emotional conflict tasks. Cognitive behavioral data on 
conflict tasks are obtained by active attention and conscious cognitive. Compared with EEG/fMRI, 
or expression/speech/language data, it is purer, reliable, and more likely to show the depression 
mood of patients with depression [14,15]. 

Emotional conflict is caused by the processing conflict between the information arousing 
different emotions, which leads to the interference of irrelevant emotional stimulation on current 
emotional cognition. Researches based on cognitive psychology have shown that patients with 
depression show delayed reaction effect no matter in dealing with emotional conflict or non-conflict 
information. In particular, the delay is more significant when dealing with emotional conflict 
information [15]. The reason is that emotional disorder leads to negative emotional attention bias in 
patients with depression, which is manifested as excessive attention to sadness and insufficient 
attention to happiness [16,17]. Meanwhile, patients with depression have rumination. That is, they 
indulge and repeat negative emotions, which leads to slow thinking and movement, and difficult 
decision-making [18,19]. In addition, due to the sequence adjustment effect, the reaction time in 
dealing with an emotional conflict task is also affected by the previous task type [20]. Therefore, this 
study collects four kinds of cognitive behavior data: conflict/non-conflict/conflict 
monitoring/conflict resolution reaction time. 

Although deep learning is widely studied in image processing, speech and text recognition [21,22], 
the emotional conflict data in this study is tabular data, which is not suitable for deep learning model. 
In the future, we will use deep learning to explore the evaluation method of depression severity 
based on facial expression, speech and language text data obtained under emotional stimulation. 

The rest of this paper is arranged as follows: Section 2 is related work. Section 3 is data 
acquisition and processing. Section 4 is the proposed model. Section 5 is result and discussion. 
Section 6 is conclusion of this study. 

2. Related works 

At present, automatic depression evaluation methods based on machine learning have been 
widely studied. For example, Yoshida et al. (2017) adopted partial least squares regression for fMRI-
based depression recognition. The Beck Depression Inventory-II (BDI-II) score was used to evaluate 
depression severity with a prediction error of RMSE = 9.56 [6]. Kang et al. (2017) presented a deep 
transformation learning (DTL) method for visual-based depression recognition, and the prediction 
error for BDI-II score was RMSE = 9.43 and MAE = 7.74 [11]. Haque et al. (2018) evaluated 
depression symptoms severity by using causal convolutional network (C-CNN) based on spoken 
language and 3D facial expressions. The final prediction error on the Patient Health Questionnaire-8 
(PHQ-8) was MAE = 3.67 [12]. Muzammel et al. (2020) proposed a speech-based depression 
evaluation method through deep learning, with the evaluation error of PHQ-8 was RMSE = 3.22 [13]. 

Current studies on the evaluation of depression symptoms severity all use self-rating depression 
scales like PHQ-8 or BDI-II. However, these self-rating scales are too subjective to be used for 
clinical symptoms evaluation in patients with depression. HAMD depression scale is a clinical scale 
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specially used to evaluate symptoms of patients with depression. In the evaluation process, two 
psychiatrists or two trained professionals are required to score independently. So the evaluation has a 
high accuracy and can be used as the standard for the selection of treatment methods or evaluation of 
treatment effects. Therefore, the HAMD scale is called the “gold standard” for clinical depression 
symptoms evaluation. The acquisition of HAMD-17 score is time-consuming and laborious, leading 
to the existence of a large number of samples without HAMD score labels in reality. Therefore, there 
is a lack of research on automatic evaluation methods of HAMD-17 score. The semi-supervised 
learning method introduced in this paper can solve this problem well. 

At present, there are four main paradigms in semi-supervised learning: generative model, 
transductive SVM, graph-based algorithm and co-training algorithm [23]. In many branches of semi-
supervised learning, co-training algorithm has the characteristics of simple, effective, stable and fast 
convergence, which has attracted the extensive attention of many scholars and achieved a lot of 
research results. 

In 2005, Zhou and Li first studied semi-supervised regression and proposed co-training 
regressors (CoReg) [23]. This method generates two different KNN models based on different 
distance measures. Each regression model labels and selects unlabeled samples with high confidence 
to join the training set of another regression model. Lei et al. [24] proposed a semi-supervised 
regression algorithm based on support vector machine co-training. After that, Li et al. [25] proposed 
a semi-supervised regression algorithm based on co-training with SVR-KNN by combining SVR and 
KNN. In addition, some people [26,27] proposed the method of combining co-training strategy with 
partial least squares model (PLS). 

In the above co-training methods, only one model is used to assist the training of the other 
model. That is, one model selects some high confidence samples from the unlabeled samples to label 
and add them to the training set of the other model. However, the prediction result of the single 
model is not reliable and it is easy to introduce noise data into the model. Therefore, Hady et al. [28] 
constructed a co-training algorithm based on ensemble method—CoBCReg. CoBCReg uses a 
committee of regressors (RBFNNs constructed by bagging) to predict unlabeled samples instead of a 
single regressor. The algorithm combines co-training and ensemble learning to generate a more 
powerful learning system. 

Random forest is an ensemble learning method composed of decision trees, which is easy to 
implement in parallel. Moreover, randomness is introduced in both row and column directions, 
which can weaken over-fitting. Therefore, it is a powerful classification and regression method. Co-
training of decision trees in random forest does not require the integration of different basic learners, 
but also ensures the diversity among members. However, there is a lack of research on co-training 
random forest in regression. Saitoh et al. [29] and Levatić et al. [30] only use random forest for self-
training in regression. Therefore, this paper applies random forest to semi-supervised regression, and 
realizes the combination of ensemble learning and co-training. 

There are still some problems in the semi-supervised random forest regression model based on 
co-training: 1) a small number of decision trees will lead to low prediction accuracy; a large number 
of decision trees will reduce the diversity. Therefore, in this paper, the random grouping strategy is 
used to group the decision trees to achieve the balance between prediction performance and model 
diversity. 2) The confidence measure method used in the previous research [23,28] has the problems 
of large amount of calculation and low generalization. Therefore, this paper proposes a confidence 
measure method based on information entropy. 
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3. Data acquisition and processing 

3.1. Subjects 

All 115 patients with depression in this study were from the clinic. All participants provided 
signed informed consent and this study was approved by the Ethics Committee at Beijing Anding 
Hospital, Capital Medical University, Beijing, China. And the experiments have been conducted in 
accordance with the Helsinki declaration.  

In the decision-making tasks of emotional conflict, we collected the time-related features of 
all 115 patients with depression while performing the tasks. However, HAMD-17 scores were 
obtained from only 35 patients. When building the dataset using the acquired values of HAMD-17 
and the time-related features of the decision-making tasks, HAMD-17 values for only 35 people are 
available, and those for the remaining 80 people are absent. Therefore, we adopted a semi-supervised 
machine learning approach to solve the problem of incomplete HAMD-17 labels in the samples. 

Table 1. Distribution and depressive symptoms of HAMD-17 scores. 

HAMD-17 score Symptoms severity Samples size 

0–7 none 0 

8–17 mild 7 

18–24 moderate 19 

> 25 severe 9 

3.2. Data acquisition 

3.2.1. Acquisition method 

In order to obtain the cognitive behavioral data on emotional conflict, we require participants to 
complete the word-face Stroop tasks [14,31]. Each Stroop task is composed of an emotional face 
(happy face or sad face) and an emotional word (“HAPPY” or “SAD”) in red ink. Emotional face 
pictures are from the International Standard Expressions Library (NimStim Set of Facial 
Expressions [32]), including 40 happy face pictures (22 males and 18 females) and 40 sad face 
pictures (22 males and 18 females). Photoshop is used to process all pictures in a unified way, so that 
the size of all face pictures are consistent. 

According to whether the emotions expressed by the face picture and the word are consistent, 
the experimental tasks are divided into two categories: 1) conflict tasks or incongruent tasks (happy 
face + “SAD” and sad face + “HAPPY”); 2) non-conflict tasks or congruent tasks (happy face + 
“HAPPY” and sad face + “SAD”), as shown in Figure 1. 

In addition, due to the sequence adjustment effect, the reaction time in dealing with an 
emotional conflict task is also affected by the previous task type. Therefore, conflict tasks can be 
further divided into two types: 1) conflict monitoring tasks (Figure 1a): a non-conflict task activates 
a non-conflict expectation mechanism, resulting in the weakening of conflict resolution in the next 
conflict task (high conflict monitoring and low conflict resolution). In other words, after completing 
a non-conflict task, the participants will make a decision relatively slowly on the next conflict task. 2) 



4591 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4586–4602. 

conflict resolution tasks (Figure 1b): a conflict expectation mechanism activated by a conflict task 
enhances the conflict resolution in the next conflict task (high conflict resolution and low conflict 
monitoring). In other words, the participants will have conflict awareness after completing a conflict 
task, so that they will make a decision relatively quickly on the next conflict task. 

In the end, it constitutes a total of 80 conflict tasks and 80 non-conflict tasks. Because of the 
different types of the previous task, the 80 conflict tasks are divided into 40 conflict monitoring tasks 
and 40 conflict resolution tasks. 

 

Figure 1. Experimental tasks. 

3.2.2. Acquisition process 

The data acquisition process is shown in Figure 2. The 160 emotional decision-making tasks (80 
conflict tasks and 80 non-conflict tasks) are divided into two sessions, and each session contains 80 
trials. At the beginning of each trial, a “+” is displayed at the center of the screen for 3–5 s, followed 
by an emotional decision-making task for 1s. Participants are required to ignore the word, and 
quickly recognize the emotional valence (happy or sad) of the face and press the key (left key for 
happy and right key for sad). The next trial starts automatically after the key or task ends. 

When the participants carry out each task, the acquisition program automatically records the 
start time and end time, and calculates the reaction time. 

 

Figure 2. Data acquisition process. 

3.2.3. Depression symptoms severity and conflict decision-making 

Table 2 shows the mean reaction time of patients with different depression symptoms in conflict 
or non-conflict decision-making tasks. It can be seen that the more severe depression symptoms, the 
longer the reaction time required for decision-making. The result shows that the decision-making 
ability decreases with the increase of depression symptoms severity. It also illustrates that the 
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decision-making reaction time under emotional conflict can characterize depression symptoms 
severity. Since the HAMD scale is a rating scale for depression symptoms severity, if the HAMD 
values are used as the labels of the samples, we can use the decision-making information on 
emotional conflict to predict the HAMD value and thus evaluate depression symptoms severity. 

Table 2. Depression symptoms severity and conflict decision-making. 

Symptoms severity 
Mean of reaction time (ms) 

conflict non-conflict 

mild 752.25 702.48 

moderate 758.15 709.32 

severe 771.84 725.07 

3.3. Feature construction 

In the process of data acquisition, each participant acquired 80 non-conflict reaction time, 80 
conflict reaction time, 40 conflict monitoring reaction time and 40 conflict resolution reaction time. 

From the perspective of statistical distribution, we extract 9 features from each kind of reaction 
time data of each participant, which are: 4 central tendency features (mean, median, 1st quartile, 3rd 
quartile), 3 dispersion tendency features (minimum, maximum, standard deviation) and 2 distribution 
pattern features (skewness coefficient, kurtosis coefficient). 

Therefore, a total of 36 features are constructed in this study, as shown in Table 3. The value of 
each feature is the mean of samples (ms). 

Table 3. Feature construction (Q1 = 1st quartile, Q3 = 3rd quartile). 

 
Central tendency Dispersion tendency Distribution pattern 

Mean Median Q1 Q3 Min Max Std. Skewness Kurtosis 

conflict 743.40 722.71 643.29 819.20 487.50 1226.53 146.84 0.97 4.37 

non-conflict 703.12 675.71 606.55 764.43 467.13 1185.40 141.53 1.14 4.89 

conflict monitoring 744.22 722.02 641.90 824.34 502.63 1161.20 146.64 0.91 4.16 

conflict resolution 742.57 719.04 642.84 821.61 512.10 1162.20 144.96 0.86 3.94 

3.4. Feature normalization 

As shown in Table 3, the values of skewness feature and kurtosis feature are much smaller than 
other features, so their role in model construction will be ignored. In order for all features to 
participate in decision-making equally, it is necessary to perform feature normalization. 

In this paper, the min-max conversion function is used for feature normalization, and the feature 
data is converted to the interval [0, 1]. For each feature, the normalization method is shown in 
formula (1). 
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௜ݔ
ᇱ ൌ

௜ݔ െ ݉݅݊ሺܺሻ
ሺܺሻݔܽ݉ െ ݉݅݊ሺܺሻ

(1)

where, ܺ ൌ ሼݔ௜ሽ, ݅ ൌ 1, 2, … , ܰ. X is the dataset (N is the number of samples), ݔ௜
ᇱ is the normalized 

value of ݔ௜. ݉ܽݔሺܺሻ、݉݅݊ሺܺሻ are the maximum and minimum of X, respectively. 

4. Proposed model 

In this study, a semi-supervised regression method based on co-training is used to evaluate 
HAMD scores of patients with depression. The idea of co-training algorithm is as follows: First, train 
at least two models on the initial labeled sample set; Then, one of them is selected as the main model 
in turn, and the others constitute the auxiliary model of the main model; The auxiliary model predicts 
the unlabeled samples and provides the samples with high confidence for the main model; The main 
model retrains on the updated labeled sample set. Keep training in this way until convergence. 

This research combines co-training algorithm and random forest (CoRF), and on this basis, 
introduces a grouping strategy and a confidence measure method using information entropy. 

4.1. Grouping strategy 

Co-training is effective only when members are diverse. Obviously, if the regression models are 
similar or even identical, there is no more information to be transmitted between the members, and 
the co-training is meaningless. 

CoRF: For a random forest with N decision trees, one of the decision trees is selected as the 
main model by turns in each iteration, and the other N-1 decision trees constitute its auxiliary model. 
Only one decision tree is different between the auxiliary models of any two main models, and the 
diversity is 1/ (N-1). The larger N is, the smaller the diversity between the two auxiliary models. The 
diversity between the two new labeled sample sets predicted and selected by the two auxiliary 
models will also be small, leading to the similarity of the two main models after retraining. Similarly, 
any two models will become similar to each other. After many iterations, the diversity between 
models is destroyed. 

CoGRF: According to the above description, when there are many decision trees, it is difficult 
for CoRF to ensure its diversity; when there are few decision trees, it is impossible to guarantee the 
accuracy. Therefore, a grouping strategy is introduced in this paper. N decision trees are divided into 
m groups, and there are N/m decision trees in each group. In each iteration, one group is taken as the 
main model, and the other m-1 groups are used as its auxiliary model. One group is different between 
the auxiliary models of any two main models, including N/m decision trees, and the diversity is 1/ 
(m-1). The grouping strategy greatly improves the diversity of the co-training model and ensures the 
number of decision trees. 

4.2. Confidence measure method based on information entropy 

An important factor affecting the performance of co-training algorithm is how to measure the 
confidence of new labeled samples. Incorrect confidence measure method will lead to the selection 
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and addition of samples with wrong labels, which will have a negative impact on the algorithm. 
In previous studies, RMSE difference was often used to measure the reliability of new labeled 

samples [23,28]. That is, the most reliable new labeled sample should be the one that reduces the 
regression model’s error on the labeled sample set the most, as shown in formula (2). 

∆௫ೠൌ ܧܵܯܴ െ (2) ∗ܧܵܯܴ

where ݔ௨ is the unlabeled sample. RMSE is the prediction error of the original regression model on 
the validation set. ܴܧܵܯ∗ is the prediction error of the new regression model on the validation set. 
The new regression model is obtained by adding ݔ௨ to the original training set and retraining. 
Finally, the sample with the largest ∆௫ೠ is regarded as the sample with the highest confidence.  

This method has a significant disadvantage. That is, in each iteration, it has to repeated training 
model and calculate RMSE after adding each sample of the new labeled sample set. This method is 
computationally intensive and time-consuming. Therefore, this study proposes a simple and effective 
method to measure the confidence of samples: information entropy. 

In the actual system, the probability of each possible case in the system may not be the same. So 
information entropy is used to measure the uncertainty of the whole system. It is also a measure of 
the consistency of all possible cases in the system. The calculation formula of information entropy is 
as follows: 

ܪ ൌ െ෍ ௜݌ ∗ ௜݌݃݋݈
௡

௜ୀଵ
 (3)

where, n indicates that there are n possible cases in the system. ݌௜ is the probability of each possible 
case. The larger H is, the higher the system uncertainty is and the higher the consistency of all 
possible cases is. 

In the auxiliary model, the predicted values of different decision trees are different. Therefore, 
we use information entropy to measure the consistency of predictions, that is, the similarity degree of 
the predicted values of all decision trees. For sample ݔ௨, The confidence measure method follows 
formula (3), where ݌௜ is defined as follows: 

௜݌ ൌ ௜ܶሺݔ௨ሻ/෍ ௜ܶሺݔ௨ሻ
௡

௜ୀଵ
 (4)

where n is the number of decision trees in the auxiliary model. ௜ܶሺݔ௨ሻ is the predicted value of the i-
th decision tree to sample ݔ௨. ݌௜ represents the proportion of predicted value of the i-th decision 
tree to predicted values of all decision trees in the auxiliary model. 

The larger the information entropy of the sample is, the higher the consistency of the predictions 
of the auxiliary decision trees is, and the higher the confidence of the sample is. The confidence 
measure method based on information entropy, on the one hand, greatly reduces the training process 
and the time complexity. On the other hand, considering the difference of predictions of all auxiliary 
decision trees, the selection of samples with the highest consistency is conducive to improving the 
generalization of the model. 

4.3. E-CoGRF algorithm process 

The algorithm process of semi-supervised random forest regression model based on co-training 
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and grouping with information entropy (E-CoGRF) is shown in Figure 3. 

 

Figure 3. E-CoGRF algorithm process. 

 

Figure 4. Retraining process of ܩଵ. 

After the random forest is trained and randomly grouped, each group is retrained with the help 
of its auxiliary model (Figure 4). Verify whether the prediction error of the retrained random forest 
on the validation set decreases, that is, whether ܴܧܵܯ_ܸሺݐሻ ൏ ݐሺܸ_ܧܵܯܴ െ 1ሻ is correct. If it is 
true, repeat the Retraining-Verification process until the max iteration is reached; otherwise, regroup 
and then perform the Retraining-Verification process. 

Figure 4 describes the retraining process of ܩଵ in Figure 3 in detail. In this process, ܩଵ is the 
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main model, and other groups constitute the auxiliary model ܣଵ. All auxiliary decision trees in ܣଵ 
predict and measure the confidence of all unlabeled samples. The k samples with the highest 
confidence are selected and added to the training set of all decision trees in ܩଵ. Verify whether the 
addition of k samples reduces the prediction error of the main decision tree on the verification set. 
That is, for the main decision tree ௜ܶ, judge whether ܴܧܵܯ௜_ܸሺݐሻ ൏ ݐ௜_ܸሺܧܵܯܴ െ 1ሻ is correct. If 
not, execute k-1, retrain and verify. In the end, New ܩଵ is obtained with the assistance of ܣଵ. See 
Table 4 for the specific algorithm. 

Table 4. The E-CoGRF pseudo-code. 

Algorithm: E-CoGRF 

1: Initialize: the labeled training set Tr, the labeled validation set V, the unlabeled sample set U, max iteration T, the 

number of decision trees N, the number of groups m, the number of decision trees within a group n=N/m. 

2: Train: Construct a Random Forest consisting N Decision Tree, {Tଵ, Tଶ, … , Tே} 

3: Group: Randomly divide all trees into m groups equally, {ܩଵ, …,ଶܩ ,  {௠ܩ

Construct Auxiliary groups for each group, {ܣଵ, ,ଶܣ … ,  {௠ܣ

4:  Repeat for T round:  

5:  for ݅ ∈ ሼ1,2, … ,݉ሽ  

6:       for each ݔ ∈ U do 

7:                for each T௝ ∈ ݆ ௜, whereܣ ∈ ሼ1,2, … , ܰ െ ݊ሽ, do     

8:                     predict:  ˆ j jy T x  

9:          end of for 

10:               Mean:  
1

ˆ ˆ /
N n

u jj
y y N n




   

11:               Confidence: 
1

ˆ ˆ/
N n

j j jj
p y y




   

ሻݔሺܪ                      :12 ൌ െ∑ ௝݌ ∗ ௝݌݃݋݈
ேି௡
௝ୀଵ  

13:       end of for 

14:            Sort H in descending order 

15:            Select top k, X={ݔଵ, ,ଶݔ … , ,ଵෞݕ}=௞}, Yݔ …,ଶෞݕ ,  {௞ෞݕ

16:            Add: Tr௜
ᇱ ← Tr௜ ∪ ሺܺ, ܻሻ 

17:            Retrain: T௜
ᇱ ← ሺTr௜݁݁ݎܶ݊ݎ݈ܽ݁

ᇱሻ  

18:            Verify: ܴܧܵܯ௜_ܸሺݐሻ ← T௜
ᇱሺVሻ 

19:                     if ܴܧܵܯ௜_ܸሺݐሻ >= ܴܧܵܯ௜_ܸሺݐ െ 1ሻ 

20:                        k=k-1, repeat step 15-19 

21:         end of for 

22:         Verify: ܴܧܵܯ_ܸሺݐሻ ←  ሺVሻܨܴ

23:                if RMSE_V(t) >= RMSE_V(t-1) 

24:                  Regroup and Reconstruct the auxiliary model 

25:    end of Repeat 

26: Output: Regressor ܴܨ∗ሺݔሻ ൌ
ଵ

௡
ሺTଵሺݔሻ ൅ Tଶሺݔሻ ൅⋯൅ Tேሺݔሻ) 



4597 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4586–4602. 

5. Results and discussion 

5.1. Model training strategy 

The total number of samples used in the study is 115, including 35 labeled (HAMD score) 
samples and 80 unlabeled samples. In order to obtain general results, we perform 5 fold cross-
validation on 35 labeled samples. One of the folds (7 samples) is used as the test set to evaluate the 
model each time. The rest are used as the training set to train the model. In the iterative training 
process, 80 unlabeled samples are reused to achieve semi-supervised learning. Finally, five 
evaluation models are obtained, and the evaluation results of the five models are averaged to obtain 
the final evaluation value. 

In E-CoGRF algorithm, the number of decision trees in random forest is set to 12, and the max 
number of iterations is set to 100. 

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the 
results of the model. 

ܧܣܯ ൌ
1
݉
෍ หݕሺ௜ሻ െ ොሺ௜ሻหݕ

௠

௜ୀଵ
 (5)

ܧܵܯܴ ൌ ඨ
1
݉
෍ ሺݕሺ௜ሻ െ ොሺ௜ሻሻଶݕ

௠

௜ୀଵ
(6)

where, m is the sample size,	  ොሺ௜ሻ is the predicted value ofݕ ,ሺ௜ሻ is the actual value of the i-th sampleݕ
the i-th sample. 

5.2. Comparison of different number of groups 

In order to obtain the best grouping effect, we compare the prediction accuracy of the proposed 
E-CoGRF algorithm for HAMD scores when the grouping number is 2, 3, 4, and 6, as shown in 
Table 5 below. Among them, when the number of groups is 4, the lowest prediction error and the 
largest improvement range are obtained. Therefore, the optimal number of groups of 12 decision 
trees is 4. 

Table 5. Performance comparison of E-CoGRF with different number of groups. 

groups 
MAE RMSE 

Initial Final Improved Initial Final Improved 

2 3.97 ± 0.64 3.82 ± 0.63 3.78% 4.97 ± 0.91 4.73 ± 0.88 4.83% 

3 3.88 ± 0.72 3.7 ± 0.65 4.64% 4.91 ± 0.79 4.63 ± 0.75 5.70% 

4 4.15 ± 0.89 3.63 ± 0.65 12.53% 5.12 ± 1.04 4.50 ± 0.97 12.11% 

6 4.09 ± 0.51 3.78 ± 0.44 7.58% 5.06 ± 0.77 4.71 ± 0.73 6.92% 

Note: Initial: the prediction error of the model trained on the initial labeled sample set. 

Final: the prediction error of the model after 100 iterations. 

Improved: the improvement rate of ‘Final’ compared to ‘Initial’. 
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5.3. Comparison of CoRF and E-CoGRF 

The following experimental analysis is performed with 12 decision trees divided into 4 groups, 
and the number of decision trees within each group is 3. 

E-CoGRF is compared with CoRF, a co-training random forest regression algorithm, as shown 
in Table 6. It can be seen from the table that both the CoRF and E-CoGRF improve the evaluation 
accuracy of HAMD scores, which shows that they can effectively use unlabeled samples for 
regression estimation. Further analysis shows that compared with CoRF, E-CoGRF has lower error 
and shorter runtime. This indicates that introduction of the grouping strategy and the information 
entropy strategy effectively improves the performance of the model. 

Figure 5 draws the error curves of the two algorithms in iteration process. It can be intuitively 
seen that E-CoGRF achieves the best convergence accuracy for both MAE and RMSE. 

Table 6. Performance comparison between CoRF and E-CoGRF. 

 
MAE RMSE 

Runtime(s) 
Initial Final Improved Initial Final Improved 

CoRF 4.22 ± 0.74 3.76 ± 0.60 10.90% 5.34 ± 0.91 4.82 ± 0.84 9.74% 7.77 × 102 

E-CoGRF 4.15 ± 0.89 3.63 ± 0.65 12.53% 5.12 ± 1.04 4.50 ± 0.97 12.11% 1.12 × 102 

Note: Initial: the prediction error of the model trained on the initial labeled sample set. 

Final: the prediction error of the model after 100 iterations. 

Improved: the improvement rate of ‘Final’ compared to ‘Initial’. 

 

Figure 5. Error convergence curves in iteration process. 

5.4. Comparison with other methods 

In order to further verify the performance of the proposed E-CoGRF, five semi-supervised 
regression algorithms are applied to evaluate HAMD scores of depression. The comparative 
algorithms include co-training methods based on different basic learners (#1–#4) and a self-training 
method based on random forest (#5). As shown in Table 7. 

Among the various co-training methods, CoBCReg achieves the best accuracy, which reveals 
the important role of ensemble learning in semi-supervised co-training regression. Compared with 
RBFNN (Radial Basis Function Neural Networks), KNN (K-Nearest Neighbor), SVR (Support 
Vector Regression), PLS (Partial Least Squares Regression) and other basic learners, RF shows 
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better performance (#5). The proposed algorithm combines RF with co-training, and achieves better 
performance than the other five algorithms. 

Table 7. Comparison of evaluation results of several semi-supervised regression methods. 

# Method Regressor MAE RMSE 

1 CoBCReg (2009) [28] RBFNN 4.07 4.68 

2 SVR-KNN CoREG (2014) [25] SVR and KNN 4.63 5.51 

3 COSVR (2019) [33] SVR 5.22 5.85 

4 Co-training PLS (2020) [27] PLS 4.13 4.81 

5 Self-training RF (2017) [30] RF 3.97 4.54 

6 Proposed RF 3.63 4.50 

6. Conclusions 

In this study, a semi-supervised random forest regression model based on co-training and 
grouping with information entropy is proposed and applied to evaluate depression symptoms severity. 
Finally, the evaluation error of MAE = 3.63 and RMSE = 4.50 is obtained on 35 labeled (HAMD-17 
scores) and 80 unlabeled samples. 

Firstly, the conflict/non-conflict decision-making tasks of two different emotions, happiness and 
sadness, are constructed based on the basic characteristics of depression affective disorders. Then 
four kinds of decision-making behavior data (reaction time) of conflict/non-conflict/conflict 
monitoring/conflict resolution are collected. On this basis, 36 features are constructed according to 
the statistical distribution. And then the features are normalized. 

Secondly, random forest is introduced into semi-supervised co-training algorithm. On this basis, 
a grouping strategy is proposed to balance the accuracy and diversity of the model, and a confidence 
measure method based on information entropy is proposed to reduce unnecessary repeated training in 
the model. Compared with CoRF, E-CoGRF achieves the lowest error and the shortest runtime. 

In addition, compared with other semi-supervised regression algorithms in recent years, E-
CoGRF achieves better evaluation performance. This paper provides an effective method to solve the 
problem of less labeled samples and more unlabeled samples, and provides technical support for the 
evaluation of depression symptoms severity. 

The automatic evaluation method of HAMD proposed in this study not only solves the problem 
of low efficiency of manual evaluation in clinical, but also improves the evaluation accuracy. 

The work only focuses on the evaluation of depression symptoms severity in patients with 
depression, but does not involve an automatic evaluation method for depression risk. Moreover, due 
to the limitations of data type, deep learning method is not applied. Based on this, we will further 
explore this issue by using facial expression, speech, language and other features acquired under 
emotional stimulation and deep learning methods in the future. 
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