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Abstract: Objective: Although multiple hub genes have been identified in head and neck squamous 
cell cancer (HNSCC) in recent years, because of the limited sample size and inconsistent 
bioinformatics analysis methods, the results are not reliable. Therefore, it is urgent to use reliable 
algorithms to find new prognostic markers of HNSCC. Method: The Robust Rank Aggregation 
(RRA) method was used to integrate 8 microarray datasets of HNSCC downloaded from the Gene 
Expression Omnibus (GEO) database to screen differentially expressed genes (DEGs). Later, Gene 
Ontology (GO) functional annotation together with Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis was carried out to discover functions of those discovered DEGs. According to the 
KEGG results, those discovered DEGs showed tight association with the occurrence and 
development of HNSCC. Then cibersort algorithm was used to analyze the infiltration of immune 
cells of HNSCC and we found that the main infiltrated immune cells were B cells, dendritic cells and 
macrophages. A protein-protein interaction (PPI) network was established; moreover, key modules 
were also constructed to select 5 hub genes from the whole network using cytoHubba. 3 hub genes 
showed significant relationship with prognosis for TCGA-derived HNSCC patients. Result: The 
potent DEGs along with hub genes were selected by the combined bioinformatic approach. AURKA, 
BIRC5 and UBE2C genes may be the potential prognostic biomarker and therapeutic targets of 
HNSCC. Conclusions: The Robust Rank Aggregation method and cibersort algorithm method can 
accurately predict the potential prognostic biomarker and therapeutic targets of HNSCC through 
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multiple GEO datasets. 

Keywords: bioinformatics; differentially expressed genes; biomarkers; robust rank aggregation 
method; cibersort algorithm 
 

1. Introduction 

Head and neck squamous cell cancer (HNSCC) ranks the 6th place among all cancers 
globally, which occurs in the oral cavity, nasal cavity, sinus, throat and pharynx. The 
pathological type of HNSCC is squamous cell carcinoma (except thyroid tumor). In America, 
the incidence of HNSCC was 7.863% in 2006 [1], in China, the incidence of HNSCC was up to 
3.268% [2]. At present, the standard treatment of HNSCC is still surgery, intensity-modulated 
radiotherapy and platinum-based chemotherapy. However, there is no better treatment plan when 
first-line therapy is ineffective. Therefore, new treatment is urgently needed for HNSCC to 
prolong the survival time of patient [3]. In recent years, the emergence of immunotherapy has 
brought new hope to cancer patients. Nivolumab and Pembrolizumab are approved by the FDA 
for advanced HNSCC after first-line treatment [4,5]. However, the effectiveness of 
immunotherapy of HNSCC is still low, in this regard, searching for novel therapeutic targets to 
treat HNSCC is of great necessity. 

With the development of computer science and bioinformatics, network-based methods have 
become an effective tool for the research of pathogenic mechanism [6]. Robust Rank Aggregation 
(RRA) method can maximally reduce errors or biases between multiple data sets [7]. Nowadays, 
RRA method has been widely used in cancer research [7–9]. This method is better than 
RemoveBatchEffect method, which was widely used on analyzing GEO datasets now.   

The cibersort algorithm is a general calculation method to quantify cell components from a 
large number of tissues expression profiles (GEPs). Combined with support vector regression and 
prior knowledge from the expression profile of purified leukocyte subsets, cibersort algorithm can 
accurately estimate the immune components of tumor tissues. 

The protein-protein interaction (PPI) network exerts a vital part in cancer biology, and it is an 
effective method for screening cancer related Hub genes. At present, some studies have pointed out 
that the method based on PPI network can successfully predict the Hub gene of breast cancer [10], 
liver cancer [11] and gastric cancer [12].  

In this study, we downloaded the mircoarray datasets GSE686 [13], GSE2379 [14], GSE6631 [15], 
GSE13399 [16], GSE33205 [17,18], GSE33493, GSE39376, GSE107591 [19,20] were 
downloaded from the GEO database (www.ncbi.nlm.nih.gov/geo/). In addition, the RRA 
approach was used to discover the potent DEGs in normal compared with HNSCC samples. This 
study discovered altogether 240 potent DEGs, among which, 105 showed up-regulation and 135 
showed down-regulation. Further, GO functional annotation and KEGG analyses were conducted 
to explore the functions of those identified DEGs. Cibersort algorithm was used to analyze the 
infiltration of immune cells. Then, a PPI network was established, meanwhile, the key modules 
were also built. At last, we screened 5 hub genes from the whole network using cytoHubba. Hub 
gene survival was analyzed by the R packages. To sum up, the potent DEGs along with hub genes 
were discovered in this study by the combined bioinformatic approach, which might be a new 
and potential prognostic biomarker. 
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2. Materials and methods 

2.1. Data collection and processing 

We downloaded 8 head and neck squamous cell carcinoma chips from GEO databases, which 
contained GSE686 [13], GSE2379 [14], GSE6631 [15], GSE13399 [16], GSE33205 [17,18], 
GSE33493, GSE39376, GSE107591 [19,20]. These datasets covered both human normal and tumor 
samples, and each dataset contained at least 20 samples. We downloaded the matrix files of all the 
microarray along with the platform annotation profiles, so that the names of microarray probes were 
easily converted into genetic symbols by the use of Perl. We identified the normal tissue from the 
HNSCC tissues from the 8 datasets using the R package limma function by the thresholds of P-value 
< 0.05 and log2-fold change (FC) > 0.5. 

2.2. Robust rank aggregation analysis 

The RRA method is a standard approach that can minimizes bias and errors between multiple 
datasets. It can detect genes whose ranking is consistently better than expected under null hypothesis 
of uncorrelated inputs, and assign a significance score to each gene, the specific algorithmic 
computations are shown by Eqs (1) and (2). The underlying probability model makes the algorithm 
parameter independent and robust to outliers, noise and errors. Significance sores also provide a 
rigorous way to keep only the statistically relevant genes in the final list. 

In this study, in order to integrate eight microarray datasets, we used RRA method to determine 
the robust DEGs. Before RRA analysis, we sequenced the up-regulated and down-regulated were 
sequenced from each dataset according to FC, then the sequencing results of 8 datasets were 
combined, and the R package RobustRankAggreg function was used to select robust DEGs 
according to the above thresholds. 

𝛽 ,𝓃 𝓍 ≔ ∑ ℓℓ 𝑥ℓ 1 𝑥 𝓃 ℓ                                                        (1) 

𝜌 𝑟 𝑚𝑖𝑛
,..,𝓃

𝛽 ,𝓃 𝑟                                                                          (2) 

2.3. Functional enrichment analysis: GO and KEGG 

For exploring functions of those selected DEGs, the R package “Clusterprofiler” was applied to 
obtain GO enrichment results, which included biological processes (BPs), cell components (CCs), 
together with molecular functions (MFs). and we also used the R package to analyzed the KEGG 
pathway of the robust DEGs. A difference of P < 0.05 indicated statistical significance. 

2.4. Immune infiltration calculated by cibersort analysis 

The cibersort algorithm [21] has been developed as the machine learning approach on the basis 
of linear support vector regression (SVR), as shown by Eq (3), which shows high robustness against 
noise. This algorithm outperforms others in terms of noise, tightly associated cell types, along with 
unclear mixture content. This algorithm was used in the present work for predicting the infiltrating 
degrees of 22 immunocyte types within HNSCC tissues. LM22 is called immune cell gene 
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expression tag matrix. It contained 547 genes and can distinguish 22 kinds of human hematopoietic 
cell phenotypes. The HNSCC data together with LM22 matrix were used to be the input of the above 
algorithm to obtain the proportions of those 22 immunocyte types within HNSCC. As a result, the 
cell composition related to HNSCC response was quantified. Using P < 0.05 as the standard to 
screen immune cell matrix, the relative expression of immune cells in normal compared with 
HNSCC samples was detected by R software package. Differences in normal compared with cancer 
tissues were determined by principal component analysis (PCA).   

𝑔 𝑠𝑖𝑔𝑛 ∑ 𝛼 𝒴 𝒵 𝒵 𝑏 𝑠𝑖𝑔𝑛 ∑ 𝛼 𝒴 𝐾 𝑥 , 𝑥 𝑏                   (3) 

2.5. Establishment of a PPI network and module analysis 

We uploaded the differentially expressed genes to string online database, and selected the 
confidence level > 0.7 as the screening criteria, and removed the free nodes to get the PPI 
(protein-protein interaction network), and downloaded the gene interaction files. The PPI network 
was visualized using Cytoscape (Version 3.6.1). In addition, the MCODE plug-in of Cytoscape was 
used to screen those significant modules from the as-constructed PPI network [22]. 

2.6. Identification of hub gene 

The Cytoscape plug-in CytoHubba can be used to sort those network-derived nodes based on 
network features. Cytohubba offers 11 topological analysis methods, such as edge penetration 
component, degree, maximum cluster centrality, maximum neighborhood component density, 
maximum neighborhood component, and six centralities (bottleneck, eccentricity, compactness, 
radius, intermediate degree and stress) based on the shortest path. Of these 11 approaches, the 
modified Maximal Clique Centrality (MCC) approach is more effective in predicting the essential 
proteins in PPI network.  

2.7. Survival analysis 

We obtained RNA-seq and clinical data of HNSCC cases from The Cancer Genome Atlas 
(TCGA) database. Thereafter, hub gene survival was analyzed by survminer and survival functions 
of R package. A difference of P < 0.05 indicated statistical significance. 

3. Results 

3.1. Discovery of DEGs from every dataset 

The bioinformatic approaches were utilized in the present work for identifying DEGs, and 
analyze the biological characteristics of these DEGs. We conducted this study according to the 
workflow shown in Figure 1.  
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Figure 1. Study workflow. GEO, Gene Expression Omnibus; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; RRA, robust rank aggregation; 
TCGA, The Cancer Genome Atlas. 

The microarray data of HNSCC GSE686, GSE2379, GSE6631, GSE13399, GSE33205, 
GSE33493, GSE39376, GSE107591 were downloaded and analyzed by R package limma software. 
The distribution of DEGs is shown in the volcanic map (Figure 2). A total of 336 samples including 
108 normal samples and 258 tumor samples were analyzed in our study. On the basis of the 
exclusion standard of log2FC > 1 and P < 0.05, there were 4 downregulated genes in GSE686. In 
GSE2379, there were 443 DEGs selected, among which, 238 showed up-regulation while 205 
showed down-regulation. In the GSE6631 dataset, we selected 142 GSEs, among which, 53 showed 
up-regulation while 89 showed down-regulation. Altogether 322 DEGs were selected from the 
GSE13399 dataset, among which, 149 showed up-regulation while 173 showed down-regulation. 
There were 419 DEGs selected from the GSE33205 dataset, of them, 178 showed up-regulation 
while 241 showed down-regulation. Altogether 3330 DEGs were found from GSE33493, of them, 
1773 showed up-regulation while 1557 showed down-regulation. Altogether 940 DEGs were 
selected from GSE39376, of them, 414 showed up-regulation while 526 showed down-regulation. In 
addition, altogether 466 DEGs were selected from GSE107591, of them, 200 showed up-regulation 
while 266 showed down-regulation. The volcano map for each GSE is shown in Figure 2, where the 
green and red dots indicate genes with down-regulation and up-regulation, separately. 
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Figure 2. Identification of DEGs and robust DEG. Volcano plots of the distribution of 
DEGs in GSE686 (A), GSE2379 (B), GSE6631 (C), GSE13399 (D), GSE33205 (E), 
GSE33493 (F), GSE39376 (G), GSE107591 (H). Red and green dots represent the 
upregulated and downregulated genes, respectively. (I) The heatmap of top 20 
upregulated and downregulated robust DEGs identified by RRA method. Red represents 
high expression robust DEGs, while blue represents low expression robust DEGs. DEG, 
differentially expressed gene; RRA, robust rank aggregation. 

3.2. Identification of robust DEGs by RRA method 

We used the RRA method to integrate eight datasets. We selected altogether 240 DEGs, among 
which, 105 showed up-regulation while 135 showed down-regulation. According to the P-value 
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threshold for selecting potent DEGs, the top 20 potent DEGs with up-regulation and down-regulation 
were distributed within the heat map.  

3.3. Functional enrichment analysis 

Functions of those identified potent DEGs were analyzed by GO as well as KEGG analysis. 
Three function types were included in the GO analysis results: including BP, CC and MF. For BP, the 
robust DEGs showed enrichment in extracellular matrix (ECM) organization, skin development and 
extracellular organization. In the CC term, these genes were enriched in cornified envelope, collagen 
trimer complex as well as collagen-containing ECM. And in MF sections, the most significantly 
enriched terms were activity of serine-type endopeptidase, activity of serine-type peptidase, along 
with activity of serine hydrolase. The Figure 3 also showed the KEGG pathway enrichment analysis. 
Among them, IL-17 signaling pathway, cell cycle and ECM-receptor interaction are highly related to 
tumor growth and progress. 

 

Figure 3. Functional enrichment analysis of robust DEGs. The Barplot (A) and Bubble 
plot (B) of GO enrichment analysis of robust DEGs in three parts: BP, CC, and MF. (C) 
KEGG pathway enrichment analysis of robust DEGs. DEG, differentially expressed gene; 
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular 
function; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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3.4. Immune cell infiltration analysis 

 

Figure 4. Immune cells infiltration analysis. (A) The distribution of 22 types of immune 
cells between normal and tumour HNSCC. (B) The difference of immune cells 
infiltration between normal and tumour HNSCC tissues visualized by heatmap. (C) 
Violin plot visualizing the differentially infiltrated immune cells (P < 0.05). (D) PCA 
performed on all HNSCC tissues. The two principal components showed nothing 
significant variation. PCA, principal component analysis. 
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Using cibersort algorithm, the barplot of immune cells between normal and tumor samples in 
HNSCC tissues was shown in Figure 4(A). The heapmap of immune cells between normal and tumor 
samples in HNSCC tissues was shown in Figure 4(B). From the visualized violin plot (Figure 4C), 
we could find that B cells memory, B cells naïve, Macrophages M0, M1, T cells CD4 memory 
activated, Dendritic cells activated and Dendritic cells resting showed significant differences in 
normal compared with cancer tissues. PCA revealed no difference in normal compared with cancer 
tissues (Figure 4D). 

3.5. Establishment of a PPI network and module analysis 

For better exploring the associations among the potent DEGs, the String database was used to 
establish the PPI network. The Cytoscape was used to establish the visual PPI network when there 
were hidden disconnected nodes with the confidence value of > 0.7 (Figure 5A). The final network 
contained 125 edges along with 115 nodes, and there were 85 upregulated genes and 67 
downregulated genes. We selected three key networks from the whole network through MCODE 
plugin (Figure 5B–D).  

 

Figure 5. Construction of PPI network, analysis of key modules, and identification of 
hub genes. (A) The whole PPI network. Upregulated genes are marked in red, while the 
downregulated genes are marked in green. (B) PPI network of module 1. (C) PPI network 
of module 2. (D) PPI network of module 3. (E) Hub genes were identified by intersection 
of 50 genes from 10 algorithms including MCC, DMNC, Degree, EPC, BottleNeck, 
EcCentricity, Closeness, Radiality, and Betweenness. PPI, protein-protein interaction.  
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3.6. The identification of hub genes 

CytoHubba was applied for predicting and exploring the key nodes from the as-constructed PPI 
network. It can score each node in PPI network with topological algorithms. The genes with high 
scores are identified to be the Hub genes. The present work adopted ten topological algorithms 
((Density of Maximum Neighhorhood Component (DMNC), Maximal Clique Centrality (MCC), 
Degrees, Maximum Neighborhood Component (MNC), BottleNeck, Edge Percolated Component 
(EPC), Closeness, EcCentricity, Betweenness and Radiality) to determine genes in the entire network. 
After calculation, there were 5 hub genes selected by the 10 algorithms, there were BIRC5, AURKA, 
UBE2C, CDC20, COL4A1.  

Table 1. Description of the 5 hub genes. 

Gene Full name Synonyms Function 

AURKA Aurora Kinase A  Activation of CDK1 

BIRC5 Baculoviral IAP Repeat 

Containing 5 

survivin Regulation of death receptor signaling and TNF 

signaling 

CDC20 Cell Division Cycle 20  Regulation of activated PAK-2p34 by proteasome 

mediated degradation; APC-CDC 20 mediated 

degradation of Nek2A 

COL4A1 Collagen Type IV Alpha 

1 Chain 

 Focal Adhesion; miRNA targets in ECM and membrane 

receptors; Overview of nanoparticle effects; Spinal Cord 

Injury 

UBE2C Ubiquitin Conjugating 

Enzyme E2 C 

 Ubiquitin-Proteasome Dependent Proteolysis 

3.7. Survival analysis 

We analyzed the relationship between 5 hub genes and the overall survival rate of patients with 
HNSCC using “survminer” and “survival” packages of R software. Based on the best cutoff value 
calculated by the “surv_cutpoint” function for all Hub genes, we classified HNSCC samples as 2 
groups (namely, high or low expression group), then acquired the respective Kaplan Meier (K-M) 
survival curves. As a result, BIRC5, AURKA (P = 0.017), UBE2C (P = 0.015) and (P = 0.045) 
expression was markedly related to the HNSCC survival.   
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Figure 6. Survival analysis. Gene changes of AURKA (A), BIRC5 (B) and UBE2C (C) 
were significantly correlated with the overall survival of HNSCC patients (P < 0.05).  

4. Discussion 

As a result of the development of bioinformatics, there are more and more studies on HNSCC 
biomarkers in public databases such as GEO and TCGA database. For example, Ding Y et al. [23] 
and Chamorro Petronacci CM et al. [24] screened potential prognosis biomarkers of HNSCC. 
Nevertheless, due to the fact that the DEGs in the above research were selected using one dataset 
only with a small sample size, the results are unstable. In our study, compared with other HNSCC 
researches, we conformitied eight datasets by RRA methods. 

In this study, we selected altogether 240 DEGs, including 105 with up-regulation while 135 
with down-regulation. As suggested by GO as well as KEGG enrichment analysis, those potent 
DEGs were mainly enriched to extracellular matrix organization, skin development, extracellular 
organization, cornified envelope, complex of collagen trimers, serine-type activity and IL-17 
signaling pathway, cell cycle and ECM-receptor interaction, which were related to tumor growth and 
progress. Then, we performed analysis of the immune cell infiltration between the normal and tumor 
HNSCC samples by cibersort algorithm. Module analysis was adopted to construct a PPI network 
based on the STRING database. Finally, 5 hub genes were screened from the whole network by 
cytoHubba including BIRC5, AURKA, UBE2C, CDC20, COL4A1. And the sample survival was 
analyzed using the R packages according to hub gene expression. 

We also examined the GO terms together with KEGG pathways within the HNSCC samples in 
enrichment analysis. It has been extensively suggested that, the epithelial-mesenchymal transition 
(EMT) indicates a metastatic process. In this process, the epithelial cells acquire migratory and 
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invasive mesenchymal phenotypes [25]. Extracellular matrix also exerts a vital part during cancer 
development, which can regulate cell growth, metabolism, migration, proliferation and 
differentiation through integrin or other cell surface receptors. Therefore, the degradation of ECM is 
indispensable for the invasion and metastasis of malignant tumors [26,27]. The high IL-17B level is 
verified to be tightly associated with dismal prognostic outcomes for cancer patients, such as breast 
cancer [28,29], gastric cancer [30], colon cancer [31], lung cancer [32] and so on. The IL-17 pathway 
may also be involved in the development of HNSCC. DNA damage may occur during normal cell 
division or in the presence of external stimuli. If the repair mechanism of DNA damage is defective, 
genomic instability can be caused. Cell cycle disorder is an important part of genomic instability, 
which may promote the further malignant transformation of unstable cells, thus accelerating the 
occurrence and development of tumors [33,34]. In line with the analysis above, the potent DEGs 
were tightly related to the HNSCC pathogenic mechanism as well as progression.  

An increasing number of recent articles suggest that, tumor microenvironment (TME) exerts a 
vital part in tumor genesis and progression [35,36]. Typically, TME mainly includes endothelial 
cells, mesenchymal cells, immune cells, and ECM [37]. From previous studies, we found that the 
B7 protein family contains seven members: CD80, CD86, ICOS-L, PD-L1, PD-L2, B7-H3 and 
B7-H4 [38]. All ligands of the B7 family can be detected in dendritic cells, B cells, together with 
macrophages. To be specific, the B7 family mainly plays a role in regulating immune response. If 
B7 family gene is knocked out, the mice will suffer from immune deficiency and autoimmune 
disease [39]. PD-L1 can lead to tumor escape in the immune system by weakening the specific 
response of T cells to tumor cells [40]. Based on two clinical trials of PD-1 and PD-L1 in HNSCC 
(KEYNOTE-012 and CheckMate-141), Nivolumab and Pembrolizumab are approved by the FDA to 
treat advanced HNSCC. In our study, we found that B cells, dendritic cells and macrophages were 
the principal infiltrating immune cells in HNSCC tissues. The immunotherapy for HNSCC needs to 
be further explored. 

In our study, we discovered 5 hub genes according to the as-constructed PPI network. Among 
them, 3 key genes were screened for further exploration. AURKA is one of the mitotic 
serine/threonine kinase family members, which exerts a vital part in a variety of biological events, 
such as centrosome separation and maturation, chromosome alignment, spindle assembly, as well as 
G2-to-M transition [41,42]. Besides, AURKA is previously suggested to show over-expression in 
diverse cancers [43–47], such as neuroblastoma [48], gastric cancer [49–51] and so on. AURKA can 
promote tumor development by inhibiting tumor suppressor genes such as p73 [52,53] and p53 [54], 
activating β-catenin [55], NF-κB [56] and cap-dependent translation of oncogenes [57]. Nonetheless, 
it remains unknown about the function of AURKA within HNSCC. BIRC5, which is also referred to 
as survivin, belongs to the IAP family [58]. Its expression can be detected in different cancers, 
including breast cancer (BC) [59], colorectal cancer (CRC) [60], liver cancer [61] and so on. It 
inhibited the Caspase activity and apoptosis by inhibiting the binding of Caspase-3 and Caspase-7, 
thus leading to the survival of cancer cells in the process of tumorigenesis [62]. UBE2C belongs to 
the E2 ubiquitin-conjugating enzyme family [63], which exerts an important part in regulating the cell 
cycle, and this is achieved through the catalysis of polyubiquitination-induced APC/C substrate 
degradation [64]. Many recent studies report the abnormal expression of UBE2C in different human 
cancers, like hepatocellular carcinoma (HCC) [65], CRC [66,67], lung cancer [68], BC [69] and so on.  

These abundant evidences showed that UBE2C played an important part in tumor genesis and 
development. According to our results, the high expression of AURKA, BIRC5 and UBE2C genes in 
HNSCC tumor showed poor survival of patients in TCGA database, suggesting that these genes are 
related to the prognosis of HNSCC, and they may act as therapeutic targets of HNSCC. 
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5. Conclusions 

In conclusion, through Robust Rank Aggregation method and cibersort algorithm method, a 
series of robust DEFs and gene modules were identified in HNSCC. The identified genes were 
subjected to functional analyses, which revealed their close relationship with the occurrence and 
development of HNSCC. We not only screened five hub genes, but also analyzed the immune cell 
infiltration in HNSCC. From above discussion, we found that AURKA, BIRC5 and UBE2C may 
be considered as new biomarker and therapeutic targets of HNSCC. The Robust Rank 
Aggregation method and cibersort algorithm method can accurately predict the potential 
prognostic biomarker and therapeutic targets. Further investigation is warranted to explore their 
roles in HNSCC in further research. 
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