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Abstract: This paper proposes an approach for modeling and mining curriculum Big data from real-
world education datasets crawled online from university websites in Australia. It addresses the scenario 
to give a student a study plan to complete a course by accumulating credits on top of subjects he or she 
has completed. One challenge to be addressed is that subjects with similar titles from different 
universities may put barriers for setting up a reasonable, time-saving learning path because the student 
may be unable to distinguish them before an intensive research on all subjects related to the degree 
from the universities. We used concept graph-based learning techniques and discuss data 
representations and techniques which are more suited for large datasets. We created ground truth of 
subjects relations and subject’s description with Bag of Words representations based on natural 
language processing. The generated ground truth was used to train a model, which summarizes a 
subject network and a concepts graph, where the concepts are automatically extracted from the subject 
descriptions across all the universities. The practical challenges to collect and extract the data from the 
university websites are also discussed in the paper. The work was validated on nineteen real-world 
education datasets crawled online from university websites in Australia and showed good performance.  

Keywords: graph learning; learning analytics; curriculum mapping; learning technologies; Big data 

 

1. Introduction  

Curriculum mapping is an important tool of modern educational design. A clearly mapped 
curriculum is able to show the links and relationships amongst the different courses in the curriculum 
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to students and other stakeholders. An important part for the educational curriculum design of a course 
is to determine the prerequisites for the subjects contained in the course [1]. The prerequisite 
knowledge can be defined as the skills and information which are necessary for a student to succeed 
in a given instructional subject within a curriculum [2]. The subject prerequisites serve two purposes: 
1) It ensures that a student has the necessary background knowledge before undertaking the subject to 
be studied; and 2) It forms a scaffolding for learning amongst the subjects so that students are led to 
take subjects with increasing levels of complexity (e.g., beginning from introductory subjects, to 
subjects with developing materials, and ending with subjects requiring more complex materials). This 
issue is particularly important for the rising popularity of online-based education [3] and the emergence 
of Massive Online Open Courses (MOOCs) [4]. One challenge to be addressed is that subjects with 
similar titles from different universities may put barriers for setting up a reasonable, time-saving 
learning path because the student may be unable to distinguish them before an intensive research on 
all subjects related to the degree from all universities. Therefore, it would be necessary to supply 
optimized relations amongst unlearned subjects based on the subjects previously learned. 

Several authors have proposed mathematical models for linking the dependencies of courses 
within a curriculum to identify useful relationships and connections. The authors in [5] used a complex 
systems approach to propose a mathematical model termed as the Curriculum Prerequisite Network. 
In their work, the authors used a mathematical graph theory model (directed acyclic graph) where the 
nodes were used for representing the courses and the links between nodes represented the course 
prerequisites. Another approach was taken by authors in [6] which used KDD (Knowledge Discovery 
in Databases) methods to mine useful information from a medical and healthcare curriculum. Their 
methodology used the CRISP-DM (Cross-Industry Standard Process for Data Mining) reference 
model [7] and investigated the following queries: 1) Educational disciplines which do not conform to 
the curriculum data; 2) Identification of overlapping areas across the curriculum; 3) Identification of 
discipline clusters within the curriculum; and 4) Identification of courses which belong to important 
parts of the curriculum.  

Some recent approaches and investigations for mining prerequisite information from education 
curriculum datasets have been proposed by authors in [8,9]. The authors in [8] proposed an approach 
termed as concept graph learning (CGL). In this work, the authors identified an issue where the course 
descriptions from different universities may contain descriptions and terms which vary amongst the 
universities. The authors proposed using an intermediate mapping termed as “universal concepts”. The 
key idea is that courses from different universities would use the same terms in the universal concepts 
mapping and this allows courses from different universities to be mapped to the common space. The 
model can then be used to predict implicit prerequisites amongst the various courses. Their work was 
validated from educational and curriculum datasets retrieved from four universities in the United States. 
The authors in [9] presented a survey of analytics and techniques for Big education datasets. The work 
also reported on graph learning for real-world educational datasets from four universities in Australia. 
The works in [8,9] have demonstrated the validity of mining curriculum data from education datasets. 
However, the full potential and various challenges of the curriculum mapping has not been investigated 
as only the data from four universities have been considered in the earlier works. 

Considering the above challenges, in this paper, we discuss an approach for modeling and mining 
real-world Big education datasets with application to curriculum mapping. We use concept graph-
based learning techniques, discuss data representations and techniques which are more suited for large 
datasets, and validate the work on nineteen real-world education datasets crawled online from 



4452 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4450–4460. 

university websites in Australia. The practical challenges to collect and extract the relevant data from the 
university websites are also discussed in the paper. The structure of this paper is as follows. Section 2 
introduces the description of education graph learning and the data pre-processing. The proposed 
graph-based learning approach is discussed in Section 3. Section 4 gives discussions for the 
experimental results and validates the effectiveness of the proposed approach. Section 5 gives some 
concluding remarks. 

2. Description of education graph learning and data pre-processing 

2.1. Description of education graph learning 

The overview of the education graph learning process is shown in Figure 1. The top part of the 
diagram shows examples of subjects in different universities. The second part of the diagram shows 
the Principal Concepts Pool (PCP), where the concepts of each subject are extracted by natural 
language processing (NLP) in the form of keywords. Given the ground truth data of prerequisite 
relations amongst subjects and the groups of concepts  (keywords) of each subject, the relations of 
keywords between different group can be established, where every group of keywords represent one 
subject. After training based on all ground truth data, the relations of concepts will be achieved. Such 
learned relations amongst concepts are capable of inferring relations amongst subjects. For example, 
if many of the concepts of subject 1 are prerequisites of concepts of subject 2, it can be concluded that 
subject 1 should be a prerequisite of subject 2. 

 

Figure 1. Overview of education graph learning process. 

2.2. Data pre-processing and representation 

The experimental data was provided by real-world datasets crawled online from nineteen 
Australian university websites. The experimental data was obtained by regular web scraping 
techniques using Python on the respective university subject data websites which are available on the 
Internet. There were several challenges that had to be addressed for the data pre-processing. A practical 
challenge that was faced during the data collection process was to dynamically extract the generated 
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subject data from the university websites. This process known as web-scraping was accomplished 
using Selenium [10]. A second challenge which was encountered was to clean the data to make it 
suitable for the experimental analytics. The raw data was cleaned by four methods including: 1) 
Conversion of data to lowercase—all characters were converted to lowercase; 2) Tokenization—
sentences were broken down into tokens where each token represents a word, symbol or number; 3) 
Word stemming—removing the redundancy over words by conversion to their root words (e.g., 
conversion of “calculating”, “calculated” to the root word “calculate”; and 4) Removal of stop words 
(e.g., “and”, “the”, “that”). The data representation used the Bag of Words (BoW) [11,12] approach. 
The BoW is a popular representation technique used for NLP to extract key attributes from large-
scale text-based documents and objects where histograms of words are used as features to perform 
the classification. 

The details of the experimental data are shown in Table 1. The first column shows the names of 
the universities in the experiment. The second column shows the number of subjects related to 
Computer Science (CS) and Information Technology (IT) in each university. The third column shows 
the total number of prerequisite relations relevant to CS and IT subjects in each university. The fourth 
column shows the number of key words retrieved from all CS and IT subjects in each university. The 
PCP contained a total of 30,840 concept keywords. 

Table 1. The details of subject datasets used in the experimental work. 

University Subjects Prerequisites Key Words 

University of Adelaide 75 110 1326 

University of Canberra 110 29 1760 

Central Queensland University 75 81 1256 

Curtin University 73 56 1067 

Deakin University 87 79 1723 

James Cook University 61 52 1686 

La Trobe University 71 78 966 

RMIT and Melbourne Technical College 106 81 1897 

University of Melbourne 49 88 1331 

University of South Australia 67 39 1226 

University of Western Australia 88 105 2324 

University of Sydney 131 41 2518 

Western Sydney University 96 93 1524 

University of New South Wales 84 142 1603 

University of Wollongong 84 72 1829 

University of Queensland 97 101 1222 

University of Tasmania 55 45 1075 

University of Technology Sydney 80 86 1343 

Victoria University 64 44 1949 

Total number of concept keywords: 30840 
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3. Methods  

3.1. Notation and methodology 

Table 2 shows a summary of the notations and terminology following the symbols used by the 
authors in [8]. Given a training set of courses with a bag-of-concepts representation per course as a 
row in matrix X, and a list of known prerequisite links per course as a row in matrix Y, the objective is 
to optimize the matrix A whose elements specify both the direction (sign) and the strength (magnitudes) 
of each link between concepts. 

Table 2. Summary of notations and terminology. 

Notation Description 

n Number of subjects in a training set 

c Dimension of the universal concept space 

ܺ ൌ ሾݔଵ, ,ଶݔ . . . ௡ሿ ∈Թn×c is a set of n subjects, where xi ∈Թc is the BoW representation of the i-th subjectݔ

ܻ 
n-by-n matrix where each entry represents relations of two subjects. yij = 1 if the i-th 

subject is a prerequisite of the j-th subject, otherwise yij = −1 

 ܣ
∈Թc×c where aij represents the strength of relations between the i-th concept/keyword 

and the j-th concept/keyword. 

The relation between two subjects (subject i and subject j) can be expressed as: 

௜௝ܨ  ൌ ௜ݔ
 ௝ (1)ݔܣ்

The objective is to find a matrix ܣ by minimizing the cost function: 

 ∑ ሺሺ1ݔܽ݉ െ ௜௝	௜௝ሻଶሻܨ௜௝ݕ ൅ 	 ఈ
ଶ
ඥܶݎሺܣܣுሻ (2) 

where, ܶݎ  represents the trace of a matrix and ܪ  is the conjugate transpose. We discuss two 
approaches to perform the optimization: 1) Rank approach; and 2) Learning a sparse concept graph.  

3.2. Rank approach 

It should be noticed that ܿ or the length of ݔ is large, and increases the computation cost of 
Eq (1). Therefore, it becomes necessary to solve the following problem. 

 ∑ ሺሺ1ݔܽ݉ െ ௜௝	௜௝ሻଶሻܨ௜௝ݕ ൅ 	 ఈ
ଶ
ඥܶݎሺܣܣுሻ	 ൅	 ൏ ܨ െ ܯ,்ܺܣܺ ൐ (3) 

ܨ  െ ்ܺܣܺ ൌ 0 (4) 

The inner product in the angle brackets of Eq (3) is 0. The gradient of the Eq (3) over ܣ is 

 αA െ ܺܯ்ܺ ൌ 0 (5) 

An observation is that ்ܺ is a ܿ ൈ ݊	 matrix, and the matrix ܯ is a ݊ ൈ ݊ matrix. Therefore, 
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we only have to calculate the ܯ matrix, then the matrix ܣ can be projected back by Eq (5). The Rank 
approach algorithm based on Projected Gradient Decent (PGD) [8] is shown in Figure 2.  

 

Figure 2. Rank approach algorithm (Algorithm 1). 

3.3. Learning a sparse concept graph 

A finding from the data collected from the 19 universities is that ܺ is a sparse matrix. The matrix 
 is also a sparse matrix as many concepts have no relations between each other. Therefore, an  ܣ
optimization could be performed by calculating the cost function based on sparse matrices. The cost 
function is changed as shown in Eq (6). 

 ∑ ሺሺ1ݔܽ݉ െ ௜௝	௜௝ሻଶሻܨ௜௝ݕ ൅ 	 ߙ ∑ |ܽ௜௝|௜௝  (6) 

The Learning a sparse concept graph algorithm based on Projected Gradient Decent (PGD) is 
shown in Eq (7) and Figure 3. For sparse techniques involving tree-structured data, the technique in [13] 
can be considered. 

 P୩ ൌ S஑୲ౡሺA
୩ିଵ െ t୩ሻ׏୥ሺA୩ିଵሻ (7) 

 

Figure 3. Learning a sparse concept graph algorithm (Algorithm 2). 
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4. Experimental results and discussion 

4.1. Within-university prediction results and discussion 

The crawled and pre-processed data from Section 2.2 were split into training sets and test sets. 
For an initial investigation, the models were used for within-university prediction. In this experiment, 
the models were trained from subject data from one university, and tested by the data from the same 
university. In this case, one third of the data set was used to train the model, another one third was used 
for validation, and the final one third was used to test the model. Validation was performed using three-
fold cross validation. Two metrics MAP (mean average precision) and AUC (area under the curve) 
were used to evaluate the performance of the algorithms. MAP [14] is the average precision which is 
a popular metric used to measure the performance of models for the applications or tasks such as 
document/information retrieval, object detection. AUC [15] is the measure of the ability of a classifier 
to distinguish between classes and is used as a summary of the receiver operating characteristic (ROC) 
curve, which is a graph showing the performance of a classification model at all classification 
thresholds. Table 3 shows the within-university performance for Algorithms 1 and 2. The following 
observations can be made from the comparisons in Table 3: 1) Algorithm 1 gave better performance 
than Algorithm 2 for the majority of the universities tested; and 2) In general, the AUC scores were 
higher than the MAP scores for the within-university performance. Based on the observations in 1) 
and 2), we will focus on using Algorithm 1 with the AUC metric for further investigations. 

Table 3. Experimental results for within-university performance. 

University name 
Algorithm 1 (Rank) Algorithm 2 (Sparse) 

AUC MAP AUC MAP 

University of Adelaide (UoA) 0.878 0.610 0.908 0.654 

University of Canberra (UCanberra) 0.273 0.048 0.907 0.355 

Central Queensland University (CQU) 0.864 0.483 0.706 0.304 

Curtin University (Curtin) 0.798 0.505 0.488 0.399 

Deakin University (Deakin) 0.672 0.278 0.543 0.261 

James Cook University (JCU) 0.741 0.247 0.174 0.405 

La Trobe University (LaTrobe) 0.793 0.454 0.267 0.137 

Royal Melbourne Institute of Technology (RMIT) 0.758 0.422 0.771 0.380 

University of Melbourne (UMelbourne) 0.680 0.318 0.368 0.290 

University of South Australia (UNISA) 0.663 0.228 0.524 0.141 

University of Western Australia (UWA) 0.884 0.528 0.612 0.211 

University of Sydney (USydney) 0.579 0.125 0.592 0.089 

University of New South Wales (UNSW) 0.928 0.686 0.766 0.419 

Western Sydney University (WSU) 0.907 0.558 0.722 0.353 

University of Wollongong (UWollongong) 0.863 0.486 0.826 0.434 

University of Queensland (UQ) 0.773 0.383 0.393 0.262 

University of Tasmania (UTasmania) 0.918 0.440 0.647 0.344 

University of Technology Sydney (UTS) 0.738 0.431 0.451 0.273 

Victoria University (VU) 0.552 0.118 0.467 0.132 
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Table 4. Experimental results for cross-university performance. 

University UoA UCan CQU Curt Deak JCU LaTr RMIT UMel UNSA UWA USyd UNS WSU UWol UQ UTas UTS VU 

UoA 0.878 0.907 0.403 0.405 0.359 0.300 0.493 0.746 0.389 0.539 0.527 0.419 0.421 0.578 0.380 0.458 0.691 0.232 0.416 

UCanberra 0.345 0.273 0.260 0.384 0.524 0.285 0.428 0.409 0.250 0.502 0.42 0.283 0.209 0.370 0.410 0.302 0.464 0.215 0.309 

CQU 0.271 0.745 0.864 0.169 0.485 0.454 0.310 0.270 0.118 0.176 0.338 0.125 0.302 0.231 0.227 0.196 0.506 0.196 0.275 

Curtin 0.556 0.614 0.348 0.798 0.295 0.176 0.335 0.282 0.260 0.095 0.261 0 0.238 0.396 0.372 0.024 0.375 0.242 0.232 

Deakin 0.609 0.602 0.219 0.378 0.672 0.522 0.344 0.479 0.497 0.337 0.492 0.022 0.461 0.380 0.431 0.349 0.679 0.235 0.606 

JCU 0.152 0.440 0.243 0.085 0.280 0.741 0.169 0 0.257 0.125 0.199 0 0.195 0.216 0.164 0.072 0.071 0.177 0.094 

LaTrobe 0.260 0.703 0.253 0.087 0.260 0.227 0.793 0.134 0.155 0.223 0.201 0 0.098 0.151 0.212 0.065 0.191 0.127 0.045 

RMIT 0.535 0.857 0.513 0.608 0.486 0.368 0.530 0.758 0.287 0.429 0.697 0.338 0.635 0.574 0.464 0.519 0.655 0.371 0.309 

UMelbourne 0.321 0.425 0.263 0.281 0.292 0.446 0.307 0.195 0.680 0.213 0.465 0 0.287 0.288 0.262 0.210 0.452 0.246 0.057 

UNISA 0.808 0 0.222 0.302 0.141 0.044 0.056 0.616 0.240 0.663 0.287 0.305 0.293 0.331 0.161 0.393 0.441 0.034 0.082 

UWA 0.416 0.348 0.215 0.396 0.451 0.768 0.380 0.263 0.551 0.238 0.884 0.125 0.602 0.214 0.576 0.377 0.458 0.491 0.703 

USydney 0.199 0.351 0.289 0.124 0.143 0.242 0.299 0.392 0.243 0.407 0.130 0.579 0.327 0.331 0.213 0.175 0.333 0.255 0.241 

UNSW 0.658 0.819 0.599 0.608 0.514 0.398 0.468 0.653 0.510 0.600 0.693 0.489 0.928 0.689 0.620 0.500 0.702 0.432 0.547 

WSU 0.792 0.795 0.499 0.771 0.586 0.483 0.609 0.735 0.439 0.539 0.639 0.338 0.654 0.907 0.610 0.568 0.685 0.454 0.516 

UWollongong 0.367 0.378 0.362 0.307 0.383 0.224 0.324 0.574 0.405 0.586 0.554 0.092 0.623 0.531 0.863 0.371 0.655 0.362 0.198 

UQ 0.367 0.637 0.573 0.304 0.417 0.459 0.369 0.392 0.439 0.546 0.484 0.206 0.311 0.468 0.350 0.773 0.679 0.309 0.303 

UTasmania 0.611 0.355 0.154 0.220 0.220 0.029 0.324 0.295 0.351 0.267 0.491 0 0.326 0.135 0.271 0.093 0.918 0.236 0.212 

UTS 0.456 0.502 0.170 0.515 0.456 0.278 0.400 0.269 0.500 0.418 0.542 0.335 0.479 0.389 0.569 0.217 0.530 0.738 0.337 

VU 0.120 0.595 0.083 0.174 0.297 0.068 0 0.345 0.399 0.044 0.441 0.191 0.153 0.063 0.077 0.134 0.411 0.146 0.552 
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4.2. Cross-university prediction results and discussion 

For a next investigation, the models were used for cross-university prediction. In this experiment, 
the models were trained from subject data from one university, and tested by the data from a different 
university. The keywords from the various universities were combined to create a dictionary which 
was then used for coding concepts for all universities. Table 4 shows the cross-university performance 
using Algorithm 1 and the AUC metric. The following observations can be made from the comparisons 
in Table 4: 1) For most universities, the inter-university performance (shown by the diagonals of the 
matrix) gave better prediction performance that the cross-university performance. However, in some 
cases, the cross-university performance gave better performance. This shows that having universal 
concepts and keywords amongst different universities could allow for significant cross-university 
prediction (i.e., transfer learning amongst universities, e.g., UoA and UCan which gave a performance 
of 0.907); and 2) There were some cross-university AUC results which gave zero values. This shows 
the converse situation where the different universities do not have any keywords or have very few 
keywords in common. In this case, the subject data learnt from one university is not able to help in the 
prediction performance for the other university. 

For a final investigation, we performed a comparison of the number of keywords versus the sum 
of the predictive performance for all universities. Figure 4 shows a summary of the results for the 
various universities. Although, there were universities with many keywords which gave high predictive 
performance, there were also universities with fewer keywords which gave comparable performance 
(e.g., USydney with 2518 keywords gave a performance of 4.694, however UTasmania with 1075 
keywords gave a comparable performance of 4.590). This shows that the keywords which are used are 
more important than the total number of keywords. It is important to note that the experimental data 
was automatically provided by real-world datasets crawled online from Australian university websites. 
No further pre-processing or keyword selection was performed other than that discussed in Section 2.2. 

 

Figure 4. Comparison of number of keywords vs performance. 
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5. Conclusions 

This paper has proposed an approach for modeling and mining curriculum Big data from real-
world education datasets crawled online from university websites. The practical scenario is to enable 
students to have a study plan to complete a course by accumulating credits on top of subjects he or she 
has already completed from different universities. Other than the practical use for students, the work 
also demonstrates the value of transfer learning amongst different universities for Big education data 
where the subject data from universities can be used for predicting pre-requisite links amongst subjects 
from other universities. The work has been validated on nineteen (50% of the total number of public 
universities in Australia) real-world education datasets from university websites in Australia and 
showed good performance. Our future work aims to extend the investigation to all 38 public 
universities in Australia, and also investigate the transfer learning for universities in different countries. 
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