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1. Introduction

In this paper, we study the oscillatory behavior for neutral delay differential equations of second-
order (

a (ξ)ϑ′ (ξ)
)′

+ q (ξ) f (κ (σ (ξ))) = 0, (1.1)

where ξ ≥ ξ0 and
ϑ (ξ) := κγ (ξ) + p (ξ) κ (τ (ξ)) .

Throughout this article, we assume:

(M1) γ is a quotient of odd positive integers and γ ≥ 1;
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(M2) a ∈ C1 ([
ξ0,∞) , (0,∞)

)
, p, q ∈ C

([
ξ0,∞) , [0,∞)

)
, 0 ≤ p (ξ) < 1 and∫ ∞

ξ0

1
a (ρ)

dρ = ∞;

(M3) τ, σ ∈ C
([
ξ0,∞) ,R

)
, τ (ξ) ≤ ξ, σ (ξ) < ξ and limξ→∞ τ (ξ) = limξ→∞ σ (ξ) = ∞;

(M4) f ∈ C (R,R) and f (κ) /κγ ≥ k for κ , 0 and a constant k > 0.

By a solution of Eq (1.1), we mean a nontrivial real-valued function κ ∈ C
([
ξκ,∞) ,R

)
with ξκ :=

min {τ (ξκ) , σ (ξκ)} for some ξκ ≥ ξ0,which has the property aϑ′ ∈ C1 ([
ξ0,∞) ,R

)
and satisfies Eq (1.1)

on
[
ξ0,∞). We will consider only those solutions of Eq (1.1) which exist on some half-line

[
ξκ,∞) and

satisfy the condition
sup {|κ (ξ)| : ξc ≤ ξ < ∞} > 0 for any ξc ≥ ξκ.

If y is either positive or negative, eventually, then y is called nonoscillatory; otherwise it is called
oscillatory.

Due to the many applications for differential equations of the second-order in various problems
of economics, biology, and physics, there is constant interest in obtaining new sufficient conditions
for the oscillation or nonoscillation of the solutions of varietal types for differential equations. The
development in the study of second-order delay differential equations with a canonical operator can be
followed through the works [1–6], while the equations with a noncanonical operator [7–11]. The works
[12–16] extended the results from the second-order to the higher-order delay differential equations .

For some related works, Baculikova and Dzurina [5] considered the oscillation of the neutral
differential equation

(a(ξ) (κ(ξ) + p(ξ)κ(τ(ξ)))′)′ + q(ξ)κ(σ(ξ)) = 0,

under the condition
0 ≤ p(ξ) ≤ p0 < ∞ and τ ◦ σ = σ ◦ τ. (1.2)

Grace and Lalli [3] studied the oscillation of the equation

(a(ξ) (κ(ξ) + p(ξ)κ(ξ − τ))′)′ + q(ξ) f (κ(ξ − τ)) = 0.

Dong [2], Liu and Bai [17] and Xu and Meng [18, 19] investigated the oscillation of equation

(a(ξ) (κ(ξ) + p(ξ)κ(τ(ξ)))γ)′ + q(ξ)κβ(σ(ξ)) = 0,

where 0 ≤ p(ξ) < 1. Li and Han [20–22] considered the oscillation of the second-order neutral
differential equation

(κ(ξ) + p(ξ)κ(τ(ξ)))′′ + q(ξ)κ(σ(ξ)) = 0

for the case where Eq (1.2) holds. Recently, Moaaz [6] obtained sufficient conditions for the oscillation
of neutral differential equations second order

(a(ξ) ((κ (ξ) + p (ξ) κ (τ (ξ))))γ)′ + f (ξ, κ (σ(ξ))) = 0,

where ∫ ∞

ξ0

(
1

a (ρ)

)1/γ

dρ = ∞.
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The objective of this paper is to establish new oscillation results for Eq (1.1). This paper is structured
as follows: Firstly, by applying the theorems of comparison that compare the second-order equations
with first-order delay equations, we establish a new criterion for oscillation of Eq (1.1). Secondly, we
present new results for oscillation of Eq (1.1) by using the Riccati technique. Finally, some examples
are considered to illustrate the main results.

2. Main results I

Throughout this paper, we will be employing the next notations:

U (ξ) : = kq (ξ) (1 − p (σ (ξ))) ,

η (ξ) : =

∫ ξ

ξ1

a−1 (ρ) dρ,

η̃ (ξ) : = η (ξ) +

∫ ξ

ξ1

η (ρ) η (σ (ρ)) U (ρ) dρ

and

η̂ (ξ) := exp
(
−

∫ ξ

σ(ξ)

du
η̃ (u) a (u)

)
.

To prove the oscillation criteria, we need the next lemmas.

Lemma 2.1. [1, Lemma 3] Let κ be a positive solution of Eq (1.1) on
[
ξ0,∞) , then there exists a

ξ1 ≥ ξ0 such that
ϑ (ξ) > 0, ϑ′ (ξ) > 0 and

(
a (ξ)

(
ϑ′ (ξ)

)γ)′
≤ 0. (2.1)

Proof. Assume that κ (ξ) > 0 is a solution of Eq (1.1). From Eq (1.1), we get(
a (ξ)ϑ′ (ξ)

)′
≤ −kq (ξ) κγ (σ (ξ)) < 0

Therefore, (a (ξ)ϑ′ (ξ))′ is decreasing. Thus ϑ′ (ξ) > 0 or ϑ′ (ξ) < 0 for ξ ≥ ξ1. If ϑ′ (ξ) < 0, then there
exists a constant c such that

ϑ′ (ξ) ≤ −
c

a (ξ)
< 0

Integrating from ξ1 to ξ, we have

ϑ (ξ) ≤ ϑ (ξ1) − c
∫ ξ

ξ1

1
a (s)

ds→ −∞ as ξ → ∞

This is a contradiction and we conclude that ϑ′ (ξ) > 0.

Theorem 2.2. If the first order delay differential equation

w′ (ξ) + U (ξ) η̃ (σ (ξ)) w (σ (ξ)) = 0 (2.2)

is oscillatory, then all solutions of Eq (1.1) are oscillatory.
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Proof. Assume that Eq (1.1) has a non-oscillatory solution κ on
[
ξ0,∞). Without loss of generality, we

assume that there exists a ξ1 ≥ ξ0 such that κ(ξ) > 0, κ(τ(ξ)) > 0 and κ(σ(ξ)) > 0 for ξ ≥ ξ1. By the
definition of ϑ, using τ (ξ) ≤ ξ and ϑ′ (ξ) > 0, we obtain, for ξ ≥ ξ1,

κγ (ξ) = ϑ (ξ) − p (ξ) κ (τ (ξ)) ≥ ϑ (ξ) − p (ξ)ϑ (τ (ξ))

≥ (1 − p (ξ))ϑ (ξ) ,

which together with Eq (1.1) implies that(
a (ξ)ϑ′ (ξ)

)′
≤ −kq (ξ) (1 − p (σ (ξ)))ϑ (σ (ξ))

≤ −U (ξ)ϑ (σ (ξ)) . (2.3)

From Lemma 2.1, we see that

ϑ (ξ) = ϑ (ξ1) +

∫ ξ

ξ1

1
a (ρ)

a (ρ)ϑ′ (ρ) dρ ≥ η (ξ) a (ξ)ϑ′ (ξ) .

By simple computations, we see that(
ϑ (ξ) − η (ξ) a (ξ)ϑ′ (ξ)

)′
= −η (ξ)

(
a (ξ)ϑ′ (ξ)

)′
≥ η (ξ) U (ξ)ϑ (σ (ξ)) . (2.4)

Integrating Eq (2.4) from ξ1 to ξ, we get

ϑ (ξ) ≥ η (ξ) a (ξ)ϑ′ (ξ) +

∫ ξ

ξ1

η (ρ) U (ρ)ϑ (σ (ρ)) dρ.

Thus, from the fact that (a (ξ) (ϑ′ (ξ))γ)′ ≤ 0, we arrive at

ϑ (ξ) ≥ η (ξ) a (ξ)ϑ′ (ξ) +

∫ ξ

ξ1

η (ρ) U (ρ) η (σ (ρ)) a (σ (ρ))ϑ′ (σ (ρ)) dρ

≥ η (ξ) a (ξ)ϑ′ (ξ) +

∫ ξ

ξ1

η (ρ) U (ρ) η (σ (ρ)) a (ρ)ϑ′ (ρ) dρ

≥ a (ξ)ϑ′ (ξ)
(
η (ξ) +

∫ ξ

ξ1

η (ρ) U (ρ) η (σ (ρ)) dρ
)

≥ a (ξ)ϑ′ (ξ) η̃ (ξ) . (2.5)

Next, we set w (ξ) = a (ξ)ϑ′ (ξ). Using Eqs (2.3) and (2.5), we note that w be a positive solution of

w′ (ξ) + U (ξ) η̃ (σ (ξ)) w (σ (ξ)) ≤ 0.

Using [25, Theorem1], we have that Eq (2.2) also has a positive solution, and so, we arrive at a
contradiction. This ends the proof.

Corollary 1. If

lim sup
ξ→∞

∫ ξ

σ(ξ)
U (ρ) η̃ (σ (ρ)) dρ > 1, σ is non-decreasing (2.6)

or

lim inf
ξ→∞

∫ ξ

σ(ξ)
U (ρ) η̃ (σ (ρ)) dρ >

1
e
, (2.7)

then all solutions of Eq (1.1) are oscillatory.
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Proof. Using [23, Theorem 2.1.1], we note that the conditions Eqs (2.6) or (2.7) ensure oscillation of
Eq (2.2). Thus, from Theorem 2.2, all solutions of Eq (1.1) are oscillatory.

Lemma 2.3. [4, Lemma 4] Let Eq (1.1) has an eventually positive solution κ. Suppose that σ is
strictly increasing. Assume for some δ > 0 that

lim inf
ξ→∞

∫ ξ

σ(ξ)
U (ρ) η̃ (σ (u)) du ≥ δ. (2.8a)

Then
ω (σ (ξ))
ω (ξ)

≥ θn (δ) (2.9)

for every n ≥ 0 and ξ large enough, where w (ξ) := a (ξ)ϑ′ (ξ) ,

θ0 (u) := 1 and θn+1 (u) := exp (uθn (u)) , n = 0, 1, ... . (2.10)

Theorem 2.4. Assume that σ is strictly increasing and Eq (2.8a) holds for some δ > 0. If there exists
a function ϕ ∈ C1 ([

ξ0,∞) , (0,∞)
)

such that

lim sup
ξ→∞

∫ ξ

ξ1

U (ρ)ϕ (ρ) −

((
ϕ′ (ρ)2

)
a (σ (ρ))

)
4ϕ (ρ)σ′ (ρ) θn (δ)

 dρ = ∞, (2.11)

for sufficiently large ξ ≥ ξ1 and for some n ≥ 0, where θn (δ) is defined as in Eq (2.10) and ϕ′+ (ξ) =

max {0, ϕ′ (ξ)} , then all solutions of Eq (1.1) are oscillatory.

Proof. Assume that there is a positive solution κ of Eq (1.1) on
[
ξ0,∞). Thus, there is a ξ1 ≥ ξ0 such

that κ (ξ) > 0, κ(τ(ξ)) > 0 and κ(σ(ξ)) > 0 for ξ ≥ ξ1. It follows from Lemma 2.3 that

ϑ (σ (ξ))
ϑ (ξ)

≥

(
θn (δ) a (ξ)
a (σ (ξ))

)
. (2.12)

We define the function Φ (ξ) by

Φ (ξ) := ϕ (ξ) a (ξ)
(
ϑ′ (ξ)

ϑ (σ (ξ))

)
. (2.13)

Then, Φ (ξ) > 0 for ξ ≥ ξ1. Differentiating Eq (2.13), we get

Φ′ (ξ) =
ϕ′ (ξ)
ϕ (ξ)

Φ (ξ) + ϕ (ξ)
(a (ξ)ϑ′ (ξ))′

ϑ (σ (ξ))
− ϕ (ξ)σ′ (ξ) a (ξ)

(
ϑ′ (ξ)

ϑ (σ (ξ))

) (
ϑ′ (σ (ξ))
ϑ (σ (ξ))

)
.

From Eqs (2.3), (2.12) and (2.11), we obtain

Φ′ (ξ) ≤ −ϕ (ξ) U (ξ) +
ϕ′+ (ξ)
ϕ (ξ)

Φ (ξ) −
(
σ′ (ξ) θn (δ)
ϕ (ξ) a (σ (ξ))

)
Φ2 (ξ)

≤ −ϕ (ξ) U (ξ) +
(ϕ′ (ρ))2 a (σ (ρ))
4ϕ (ρ)σ′ (ρ) θn (δ)

.

Integrating this inequality from ξ1 to ξ, we conclude

lim sup
ξ→∞

∫ ξ

ξ1

(
U (ρ)ϕ (ρ) −

(ϕ′ (ρ))2 a (σ (ρ))
4ϕ (ρ)σ′ (ρ) θn (δ)

)
dρ ≤ Φ (ξ1) ,

which contradicts with Eq (2.11). This ends the proof.
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Theorem 2.5. Assume that there exists a function φ ∈ C1 ([
ξ0,∞) , (0,∞)

)
such that

lim sup
ξ→∞

∫ ξ

ξ1

(
φ (ρ) U (ρ) η̂ (ξ) −

(ϕ′ (ρ))2 a (ρ)
4φ (ρ)

)
dρ = ∞, (2.14)

for some sufficiently large ξ ≥ ξ1, where φ′+ (ξ) = max {0, φ′ (ξ)}. Then all solutions of Eq (1.1) are
oscillatory.

Proof. Assume that there is a positive solution κ of Eq (1.1) on
[
ξ0,∞). Thus, there is a ξ1 ≥ ξ0 such

that κ (ξ) > 0, κ(τ(ξ)) > 0 and κ(σ(ξ)) > 0 for ξ ≥ ξ1. From Lemma 2.1, we have that Eq (2.1) holds.
As in the proof of Theorem 2.2, we arrive at Eq (2.5). From Eq (2.5), we have

ϑ′ (ξ)
ϑ (ξ)

≤
1

η̃ (ξ) a (ξ)
.

Integrating this inequality from σ (ξ) to ξ, we get

ϑ (σ (ξ))
ϑ (ξ)

≥ exp
(
−

∫ ξ

σ(ξ)

du
η̃ (u) a (u)

)
. (2.15)

Combining Eqs(2.3) and (2.15), we have

(a (ξ)ϑ′ (ξ))′

ϑ (ξ)
≤ −U (ξ)

(
ϑ (σ (ξ))
ϑ (ξ)

)
≤ −U (ξ) η̂ (ξ) . (2.16)

Define the function

Ψ (ξ) = φ (ξ) a (ξ)
(
ϑ′ (ξ)
ϑ (ξ)

)
. (2.17)

Then Ψ (ξ) > 0 for ξ > ξ1. Differentiating Eq (2.17), we arrive at

Ψ′ (ξ) ≤
(a (ξ)ϑ′ (ξ))′

ϑ (ξ)
φ (ξ) −

1
φ (ξ) a (ξ)

Ψ2 (ξ) +
φ′ (ξ)
φ (ξ)

Ψ (ξ) . (2.18)

From Eqs (2.16), (2.17) and (2.18), we deduce that

Ψ′ (ξ) ≤ −φ (ξ) U (ξ) η̂ (ξ) −
1

φ (ξ) a (ξ)
Ψ2 (ξ) +

φ′+ (ξ)
φ (ξ)

Ψ (ξ)

≤ −φ (ξ) U (ξ) η̂ (ξ) +

(
φ′+ (ξ)

)2 a (ξ)
4φ (ξ)

.

Integrating this inequality from ξ1 to ξ, we find

lim sup
ξ→∞

∫ ξ

ξ1

φ (ρ) U (ρ) η̂ (ξ) −

(
ϕ
′ (ρ)

)2
a (ρ)

4φ (ρ)

 dρ ≤ Ψ (ξ1) ,

which contradicts with Eq (2.14). This ends the proof.
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Theorem 2.6. If

lim inf
ξ→∞

1
ψ (ξ)

∫ ∞

ξ

a−1 (u)ψ2 (u) du >
1
4
, (2.19)

where

ψ (ξ) :=
∫ ∞

ξ

U (u) η̂ (u) du

then all solutions of Eq (1.1) are oscillatory.

Proof. Proceeding as in the proof of Theorem Eq (2.5), we arrive at Eq (2.18). Using Eq (2.18) with
φ (ξ) = 1, we obtain

Ψ′ (ξ) ≤
(a (ξ)ϑ′ (ξ))′

ϑ (ξ)
−

1
a (ξ)

Ψ2 (ξ)

Thus, we obtain

Ψ′ (ξ) ≤ −U (ξ) η̂ (ξ) −
1

a (ξ)
Ψ2 (ξ) < 0. (2.20)

By integrating Eq (2.20) from ξ to ρ, we get∫ ρ

ξ

U (u) η̂ (u) du +

∫ ρ

ξ

a−1 (u) Ψ2 (u) du ≤ Ψ (ξ) − Ψ (ρ) ,

Since Ψ > 0 and Ψ′ < 0, we see that limρ→∞Ψ (ρ) = c ≥ 0. Thus the previous inequality becomes

ψ (ξ) +

∫ ∞

ξ

a−1 (u) Ψ2 (u) du ≤ Ψ (ξ) ,

Hence

1 +
1

ψ (ξ)

∫ ∞

ξ

a−1 (u)ψ2 (u)
(
Ψ (u)
ψ (u)

)2

du ≤
Ψ (ξ)
ψ (ξ)

, (2.21)

Set

δ := inf
ξ≥ξ1

Ψ (ξ)
ψ (ξ)

.

From Eq (2.21), δ ≥ 1. Taking Eqs (2.19) and (2.21) into account, we find 1 + 1
4δ

2 ≤ δ, which not
possible with the permissible value δ ≥ 1. Thus, the proof is complete.

Example 2.7. Consider the differential equation(
κ (ξ) +

1
2
κ
(
ξ

e

))′′
+

q0

ξ2κ
(
ξ

e

)
= 0, (2.22)

where ξ > 0. By apply Theorem 2.1 in [24] or Theorem 1 in [26], Eq (2.22) is oscillatory if q0 >

1.3591. From Theorem 2.5, Eq (2.22) is oscillatory if q0 > 1.1425. Thus, our results improves results
in [24, 26].

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4390–4401.



4397

3. Mian results II: improved criteria

Q (ξ) = min {q (ξ) , q (τ (ξ))} .

0 ≤ p (ξ) ≤ p0 < ∞.

Lemma 3.1. [27] Let α be a ratios of two odd positive integers. Then

Kv − Lv
(α+1)/α

≤
αα

(α + 1)α+1

Kα+1

Lα
, L > 0.

Theorem 3.2. Assume that γ = 1, a′ (ξ) ≥ 0, σ′ (ξ) > 0, σ (ξ) ≤ τ (ξ) , τ′ ≥ τ0 > 0 and σ ◦ τ = τ ◦ σ.

Furthermore, Assume that there exists a function ρ (ξ) ∈ C1 ([
ξ0,∞) , (0,∞)

)
, for all sufficiently large

ξ1 ≥ ξ0, there is a ξ2 > ξ1 such that

lim sup
ξ→∞

∫ ξ

ξ2

kρ (s) Q (s) −
(
1 +

p0

τ0

)
1
4

a (s)
(
ρ′+ (s)

)2

ρ (s)σ′ (s)

 ds = ∞, (3.1)

where ρ′+ (ξ) = max {0, ρ′ (ξ)} . Then Eq (1.1) is oscillatory.

Proof. Assume that there is a positive solution κ of Eq (1.1) on
[
ξ0,∞). Thus, there is a ξ1 ≥ ξ0 such

that κ (ξ) > 0, κ(τ(ξ)) > 0 and κ(σ(ξ)) > 0 for ξ ≥ ξ1.Now, from Eq (1.1), we obtain

0 ≥
(
a (ξ)ϑ′ (ξ)

)′
+

p0

τ0

(
a (τ (ξ))ϑ′ (τ (ξ))

)′
+ kq (ξ) κ (σ (ξ))

+kp0q (τ (ξ)) κ (σ (τ (ξ))) ,

which follows from σ ◦ τ = τ ◦ σ that(
a (ξ)ϑ′ (ξ)

)′
+

p0

τ0

(
a (τ (ξ))ϑ′ (τ (ξ))

)′
+ kQ (ξ)ϑ (σ (ξ)) ≤ 0. (3.2)

Next, we define a function ω (ξ) by

ω (ξ) = ρ (ξ)
a (ξ) (ϑ′ (ξ))
ϑ (σ (ξ))

, (3.3)

then ω (ξ) > 0. Differentiating Eq (3.3) with respect to ξ, we have

ω′ (ξ) =
ρ′ (ξ)
ρ (ξ)

ω (ξ) + ρ (ξ)
(a (ξ) (ϑ′ (ξ)))′

ϑ (σ (ξ))
− ρ (ξ)

a (ξ) (ϑ′ (ξ))ϑ′ (σ (ξ))σ′ (ξ)
ϑ2 (σ (ξ))

, (3.4)

since ϑ′′ (ξ) ≤ 0 and σ (ξ) < ξ, we get

ω′ (ξ) ≤
ρ′ (ξ)
ρ (ξ)

ω (ξ) + ρ (ξ)
(a (ξ) (ϑ′ (ξ)))′

ϑ (σ (ξ))
− ρ (ξ)

a (ξ) (ϑ′ (ξ))2 σ′ (ξ)
ϑ2 (σ (ξ))

. (3.5)

It follows from Eqs (3.3) and (3.5) that

ω′ (ξ) ≤
ρ′ (ξ)
ρ (ξ)

ω (ξ) + ρ (ξ)
(a (ξ) (ϑ′ (ξ)))′

ϑ (σ (ξ))
−

σ′ (ξ)
a (ξ) ρ (ξ)

ω2 (ξ) . (3.6)
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Similarly, define another function ψ by

ψ (ξ) = ρ (ξ)
a (τ (ξ)) (ϑ′ (τ (ξ)))

ϑ (σ (ξ))
, (3.7)

then ψ (ξ) > 0. Differentiating Eq (3.7) with respect to ξ, we have

ψ′ (ξ) =
ρ′ (ξ)
ρ (ξ)

ψ (ξ) + ρ (ξ)
(a (τ (ξ)) (ϑ′ (τ (ξ))))′

ϑ (σ (ξ))
− ρ (ξ)

a (τ (ξ)) (ϑ′ (τ (ξ)))ϑ′ (σ (ξ))σ′ (ξ)
ϑ2 (σ (ξ))

, (3.8)

since ϑ′′ (ξ) ≤ 0 and σ (ξ) < τ (ξ) , we get

ψ′ (ξ) ≤
ρ′ (ξ)
ρ (ξ)

ψ (ξ) + ρ (ξ)
(a (τ (ξ)) (ϑ′ (τ (ξ))))′

ϑ (σ (ξ))
− ρ (ξ)

a (τ (ξ)) (ϑ′ (τ (ξ)))2 σ′ (ξ)
ϑ2 (σ (ξ))

. (3.9)

It follows from Eqs (3.7) and (3.9) that

ψ′ (ξ) ≤
ρ′ (ξ)
ρ (ξ)

ψ (ξ) + ρ (ξ)
(a (τ (ξ)) (ϑ′ (τ (ξ))))′

ϑ (σ (ξ))
−

σ′ (ξ)
ρ (ξ) a (ξ)

ψ2 (ξ) . (3.10)

Multiplying Eq (3.10) by p0/τ0 and combining it with Eq (3.6), we get

ω′ (ξ) +
p0

τ0
ψ′ (ξ) ≤ ρ (ξ)

(
(a (ξ) (ϑ′ (ξ)))′

ϑ (σ (ξ))
+

p0

τ0

(a (τ (ξ)) (ϑ′ (τ (ξ))))′

ϑ (σ (ξ))

)
+
ρ′+ (ξ)
ρ (ξ)

ω (ξ) −
σ′ (ξ)

a (ξ) ρ (ξ)
ω2 (ξ)

+
p0

τ0

(
ρ′+ (ξ)
ρ (ξ)

ψ (ξ) −
σ′ (ξ)

ρ (ξ) a (ξ)
ψ2 (ξ)

)
.

From Eq (3.2), we obtain

ω′ (ξ) +
p0

τ0
ψ′ (ξ) ≤ −kρ (ξ) Q (ξ) +

ρ′+ (ξ)
ρ (ξ)

ω (ξ) −
σ′ (ξ)

a (ξ) ρ (ξ)
ω2 (ξ)

+
p0

τ0

(
ρ′+ (ξ)
ρ (ξ)

ψ (ξ) −
σ′ (ξ)

ρ (ξ) a (ξ)
ψ2 (ξ)

)
. (3.11)

From Lemma 3.1, Eq (3.11), becomes

ω′ (ξ) +
p0

τ0
ψ′ (ξ) ≤ −kρ (ξ) Q (ξ) +

1
4

(
ρ′+ (ξ)

)2 a (ξ)
ρ (ξ)σ′ (ξ)

+
p0

τ0

1
4

(
ρ′+ (ξ)

)2 a (ξ)
ρ (ξ)σ′ (ξ)

(3.12)

integrating Eq (3.12) from ξ2 (ξ2 ≥ ξ1) to ξ, we get∫ ξ

ξ2

kρ (s) Q (s) −
(
1 +

p0

τ0

)
1
4

a (s)
(
ρ′+ (s)

)2

ρ (s)σ′ (s)

 ds ≤ ω′ (ξ2) +
p0

τ0
ψ′ (ξ2) ,

which contradicts Eq (3.1). This ends the proof.
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Example 3.3. Consider the differential equation(
κ (ξ) + 2κ

(
ξ

e

))′′
+

q0

ξ2κ
(
ξ

e

)
= 0, (3.13)

where γ = 1 and q0 > 0. We note that a′ (ξ) ≥ 0, p (ξ) = 2, σ′ (ξ) = 1/e > 0, σ (ξ) = τ (ξ) = ξ/e,
q (ξ) = q0/ξ

2, τ0 = 1/e > 0 and σ ◦ τ = τ ◦ σ = ξ/e2. It’s easy to verify that

Q (ξ) = q0/ξ
2.

By choosing ρ (ξ) = ξ2, the condition Eq (3.1) is satisfied if q0 > 17.496.
Thus, from Theorem 3.2, we see that Eq (3.13) is oscillatory if q0 > 17.496.

4. Conclusions

In this paper, by different techniques and criteria, the oscillatory behavior of a class of second-
order neutral delay differential equations has been studied. The results obtained are an extension and
supplement to the relevant results in the literature. It is interesting to extend the results in this paper to
Emden-Fowler delay differential equations with a sublinear neutral term.
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