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Abstract: The current statistical modeling of coronavirus (COVID-19) spread has mainly focused on
spreading patterns and forecasting of COVID-19 development; these patterns have been found to vary
among locations. As the survival time of coronaviruses on surfaces depends on temperature, some
researchers have explored the association of daily confirmed cases with environmental factors. Fur-
thermore, some researchers have studied the link between daily fatality rates with regional factors such
as health resources, but found no significant factors. As the spreading patterns of COVID-19 devel-
opment vary a lot among locations, fitting regression models of daily confirmed cases or fatality rates
directly with regional factors might not reveal important relationships. In this study, we investigate
the link between regional spreading patterns of COVID-19 development in Italy and regional factors
in two steps. First, we characterize regional spreading patterns of COVID-19 daily confirmed cases by
a special patterned Poisson regression model for longitudinal count; the varying growth and declining
patterns as well as turning points among regions in Italy have been well captured by regional regression
parameters. We then associate these regional regression parameters with regional factors. The effects
of regional factors on spreading patterns of COVID-19 daily confirmed cases have been effectively
evaluated.

Keywords: novel coronavirus disease; daily confirmed cases; hierarchical model; temperature effect;
turning point

1. Introduction

Much of the effort on statistical modeling of coronavirus (COVID-19) spread has contributed to
spreading patterns and forecasting of COVID-19 development; these patterns have been found to vary
among locations [1, 2]. As the survival time of coronaviruses on surfaces has found to depend on tem-
perature, some researchers have explored the association of daily or cumulative confirmed cases with
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environmental factors [3–5]. To forecast COVID-19 related new cases and deaths, various authors have
employed deep learning, artificial intelligence (AI) and time series approaches. For example, recurrent
neural network (RNN) based deep learning techniques is proposed by [6] for forecasting COVID-19
related new cases. For predicting the dynamical behavior of COVID-19 cases various artificial intelli-
gence (AI) based modeling techniques such as Bayesian regression neural network, cubist regression,
k-nearest neighbors, quantile random forest, and support vector regression were employed in [7]. Au-
toregressive integrated moving average (ARIMA) based time series forecasting techniques were also
incorporated in the literature to envision COVID-19 related new cases as well as deaths [8–12]. To
predict the short-term spread of COVID-19, Singhal et al. [13] have proposed Gaussian mixture model-
based techniques. Batista [14] has used susceptible-infected-recovered (SIR) model for estimating the
final size of the COVID-19 pandemic spread. To accommodate time varying transmission and removal
rate, and temporal trend of COVID-19 disease, Hong and Li [15] proposed time-dependent Poisson
model. Bertozzi et al. [16] incorporated three models such as exponential growth, self-existing branch-
ing process and SIR models to predict the behavior of COVID-19 transmission in various stages of the
diseases. These models in [13–16] are suitable for analyzing time series data without accommodating
any covariate. But incorporating covariate information for predicting the COVID-19 disease spread
may reveal important information. Furthermore, some researchers have studied the link between daily
fatality rates with regional factors such as health resources, but found no significant factors [17]. As the
spreading patterns of COVID-19 development vary a lot among locations, fitting regression models of
daily confirmed cases or fatality rates directly with regional factors might not always reveal important
relationships. In this study, we investigate the link between regional spreading patterns of COVID-19
development in Italy and regional factors in two steps. First, we extend the method of Zhang et al. [1]
to handle longitudinal count in order to characterize regional spreading patterns of COVID-19 daily
confirmed cases; the varying growth and declining patterns as well as turning points among regions
in Italy have been well captured by regional regression parameters of this model. We then associate
these regional regression parameters with regional factors. The effects of regional factors on regional
spreading patterns of COVID-19 daily confirmed cases have been effectively evaluated.

The coronavirus disease 2019 (COVID-2019) has so far spread to over 200 countries causing more
than 20 million confirmed cases globally by August 15, 2020. In addition to countermeasures such
as lockdowns and social distancing, it is also important to explore and reveal the relationship between
virus transmission and potential environmental covariates such as temperature, to help us better under-
stand the behavior of the virus, and further implement more efficient public interventions to contain the
spread. Italy, as one of the countries first affected by the virus with a total number of more than 240,000
confirmed cases by the end of June, has experienced the transmission periods from exponential growth,
turning point to flattened tail, which provides us an ideally mature data set for relevant regression anal-
ysis. Furthermore, potential covariates such as demographic and economic status vary from region to
region in the country, and specially, as Italy has a geographically narrow and long shape from north to
south, plus the mountainous terrain in midland, temperature conditions also vary at regional level. The
variability of covariates makes regression analysis approach more feasible. In addition, the fact that
Italy has carried out a unified countermeasure policy across the country helps minimize various effects
brought by human intervention at regional level.

Our proposed hierarchical linear model deals with the analysis of the daily confirmed cases from
February 24 to June 30, 2020 from various regions in Italy. To accommodate the heterogeneity among
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various regions, we consider regional level random effects. To depict infection-Time relationship, we
adopt a power law with exponential cutoff (PLEC) function [1,18], which has exponential increase and
decay terms. By incorporating the PLEC function into the hierarchical linear model, we can achieve
the two major goals in this study: First, we construct a new hierarchical model to fit and predict the
COVID-19 transmission trend in Italy, and compare it with the PLEC model [1, 18]. Second, we
conduct regression analysis on the relationship between COVID-19 transmission in Italy and spatially-
varied covariates, including population density, GDP per capita and temperature. Our main interest in
this study is the relationship between transmission and temperature.

Construction of the manuscript is as follows. After the proposed methodology in Section 2, we
discuss our analysis results in Section 3. Some further discussions and conclusions of the proposed
research are in Sections 4 and 5, respectively.

2. Materials and methods

2.1. Data

In this section, we briefly discuss the dataset used in the manuscript first before introducing the
model. We collected daily confirmed cases data in Italy from Github [19] website from February 24,
2020 to June 30, 2020, from each of the 21 regions in Italy (including autonomous areas). There are
situations when daily new cases are negative in certain regions due to data correction by the Italian
authority, and we treat these observations as 0. Coordinates of each region were also gathered for
further use. Italian demographic and economic data were collected from Wikipedia [20], including
each region’s population density and Gross Domestic Product (GDP) per capita. We also collected
each region’s historical daily average temperature from January 1 to June 30, 2020 on Wunderground
website [21], and then calculated an average temperature in Fahrenheit during this period for each
region. To better understand the geography, we present the map of Italy with various regions presented
in Figure 1.

Figure 1. Map of Italy Republic.
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We consider regional factors such as population density, GDP per capita, and average temperature
on the transmission of COVID-19 virus in Italy. To accommodate the different longitudinal patterns
among the regions, we introduce three region-specific random effects, corresponding the three parame-
ters in the PLEC function. Figure 2 demonstrates how fixed and random effects affect the transmission
of the virus in different regions. Curves in different regions generally follow patterns that can be de-
scribed by some PLEC curves, experiencing exponential growth and decay process, but the starting
and turning point, as well as the growth rate of each curve differ across the regions in Italy, due to
the influence from both fixed and random effects. By adding legends on average temperature and pop-
ulation density, some fixed effects from these two covariates can be visualized: Regions with higher
average temperature appear to have curves at lower position, while curves of higher population density
regions are at higher positions in the graph.

Figure 2. Regional daily new cases curve with (Left) average temperature and (Right) pop-
ulation density legend.

2.2. Model formulation and assumptions

2.2.1. Level-one model with PLEC function

In this section we present the PLEC function which will be used in the level-one model. It is
noteworthy to point out that the PLEC function has a satisfactory performance on depicting COVID-
19 transmission curves in different countries [18, 22]. Following Ma [18], Wei and Zhang [22], the
PLEC function has the following form

I = cT w exp(−dT ) (2.1)

where T is the time(in days) since the transmission begins, I is the number of daily new infections, c,
w, and d are three positive parameters to be estimated from the data. Each of the parameters has its
biological interpretation: cT w term is a power function with w dominating the transmission growth with
a multiplier c, and the exponential term exp(−dT ) characterizes the declining trend of the transmission
curve. Following [1], we can get the maximum value of infection by taking the derivative of d f (I)/dT
and setting it to zero as,
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Imax = c
(w

d

)w
exp(−w), (2.2)

which occurs at the turning point of

Tmax(peak) =
w
d
. (2.3)

In order to incorporate the PLEC function with spatially-varied covariates in Italy, we assume that the
daily confirmed case, which is a count response, follows a Poisson distribution as,

Yi j ∼ Poisson(µi j),

where
µi j = ec j−d jTiT w j

i , (2.4)

is the PLEC function in an alternative form, and ec j corresponds to c in Eq (2.1). In (2.4), µi j, the mean
value of daily new cases, on the ith level-one unit (T ), representing 128 longitudinal daily observations
from February 24 to June 30, nested within jth level-two (regional level) unit, where j = 1,2,...,21,
representing 21 regions in Italy. The maximum value of infection and its turning point in jth region can
be derived as

µmax, j = ec j−w j

(
w j

d j

)w j

, Tmax, j =
w j

d j
. (2.5)

If we further apply log-transformation, Eq (2.4) can be expressed as

log(µi j) = c j + w j log(Ti) + (−d jTi). (2.6)

In (2.6), T , and its log form log(T ) are level-one (day) predictors, which take identical day serial values
across regions, with −d j and w j as coefficients, and c j can be treated as the intercept term.

2.2.2. Level-two model

In level-two model, we consider the regression coefficients c j, w j, and −d j from level-one models
as dependent variables incorporated with corresponding level-two covariates.

c j = α0 + xᵀj β0 + e0 j

w j = α1 + xᵀj β1 + e1 j

−d j = α2 + xᵀj β2 + e2 j

(2.7)

In our case, x j is the vector of spatially-varied covariates at regional level, incorporated with level-
one regression coefficients, and it may contain multiple covariates of interest. In addition, the x j

expression can be different for the three equations in (2.7). β0, β1 and β2 are coefficients of level-
two covariates and α0, α1, α2 are corresponding intercepts. The residual terms e0 j, e1 j, and e2 j are the
random effects of the jth level-two unit (region) on the level-one parameters c j, w j, and −d j respectively.
Following the derivation of Sullivan et al. [23], We assume that the error terms e j = (e0 j, e1 j, e2 j)ᵀ

follow a tri-variate normal with mean (0,0,0) and an unknown covariance matrix G.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2579–2598.



2584

2.2.3. Combined model

We can derive our combined model by substituting (2.7) into (2.6):

Yi j ∼ Poisson(µi j)
log(µi j) = (α0 + e0 j) + (α1 + e1 j) log(Ti) + (α2 + e2 j)Ti + xᵀj β0 + xᵀj β1 log(Ti) + xᵀj β2Ti

(2.8)

Now both level-one and level-two covariates (time and spatially-varied covariates), interaction terms,
and error terms are included in one model. It is then clear that the hierarchical formulation is equivalent
to the random-intercept-and-random-slope model.

2.3. Computational method

2.3.1. Matrix form of model formulation

We derive our computational method in matrix form. First, we rewrite Eq (2.6) into the following
expression,

log(µ j) = y j = D jγ j, (2.9)

where log(µ j) = (log(µ1 j), log(µ2 j), . . . , log(µ128, j))ᵀ, is the log form of mean response in 128 days in
jth region, and γ j = (c j,w j,−d j)ᵀ, is the parameter vector at level-one. D j is a known design matrix
with following form identical across regions,

D j =


1 log(1) 1
1 log(2) 2
. . .

. . .

1 log(128) 128


. (2.10)

The first column in D j is a designed column for intercept term c j, and third and second columns take
day serial values and their log forms. We further rewrite level-two equation in the following matrix
form

γ j = W jβ + e j, (2.11)

where β = (α0,β
ᵀ
0 , α1,β

ᵀ
1 , α2,β

ᵀ
2 )ᵀ is a vector of level-two coefficients, including both intercept and

slope terms, which need to be estimated in the regression, and e j = (e1 j, e2 j, e3 j)ᵀ is a residual vector
for random effects associated with three covariates from level-one model. As the known designed
matrix of β, W j takes the following form as

W j =


1 xᵀj 0 0ᵀ 0 0ᵀ

0 0ᵀ 1 xᵀj 0 0ᵀ

0 0ᵀ 0 0ᵀ 1 xᵀj

 , (2.12)

where β, x j and 0 have the same length, depending on the number of level-two covariates we select in
x j. For a combined model, it has the following matrix form,

log(µ j) = D jγ j = D j(W jβ + e j)
= D jW jβ + D je j,

(2.13)
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where

e j ∼ N(0,G), G =


τ00 τ01 τ02

τ01 τ11 τ12

τ02 τ12 τ22

 . (2.14)

2.3.2. Fixed effects estimation

We define A j = D jW j, and it has a matrix expression as following:

A j =


1 xᵀj log(1) log(1)xᵀj 1 1xᵀj
1 xᵀj log(2) log(2)xᵀj 2 2xᵀj
. . . . . .

. . . . . .

1 xᵀj log(128) log(128)xᵀj 128 128xᵀj


(2.15)

Then we can use least squares method to estimate β by applying following formula:

β̂ = (AᵀV̂−1A)−1AᵀV̂−1Y
V = var(Y) = DGDᵀ

(2.16)

A, D are design matrices across regions, and V̂ can be achieved with G’s maximum likelihood esti-
mates. Variances of β̂ can be estimated by:

v̂ar(β) = (AᵀV̂−1A)−1 (2.17)

As our data is balanced with identical day counts in each region, G can be estimated by using closed-
form maximum likelihood formulae. Random effects can be predicted by using best linear unbiased
prediction (BLUP) method.

3. Results

3.1. Model selection

In this section we present our analysis results. We first include all potential spatially-varied covari-
ates of interest into the level-two model, including regional average temperature, GDP per capita and
population density. By inserting these level-two covariates into (2.7) and (2.8), we have the expressions
of the first model as follows:

c j = α0 + β00AverageTemperature j + β01PopulationDensity j + β02GDPPerCapita j + e0 j

w j = α1 + β10AverageTemperature j + β11PopulationDensity j + β12GDPPerCapita j + e1 j

−d j = α2 + β20AverageTemperature j + β21PopulationDensity j + β22GDPPerCapita j + e2 j

(3.1)

Yi j ∼ Poisson(µi j)
log(µi j) = (α0 + e0 j) + (α1 + e1 j) log(Ti) + (α2 + e2 j)Ti+

β00AverageTemperature + β01PopulationDensity + β02GDPPerCapita+

β10AverageTemperature ∗ log(Ti) + β11PopulationDensity ∗ log(Ti) + β12GDPPerCap ∗ log(Ti)
+β20AverageTemperature ∗ Ti + β21PopulationDensity ∗ Ti + β22GDPPerCapita ∗ Ti

(3.2)
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We use R function “glmer” in “lme4” package [24] to estimate the coefficients and predict random
effects by specifying a nested structure at regional level on all three level-one covariates, which are
the intercept term, day and log(day). Before applying “glmer” function, all level-two covariates were
scaled so that the algorithm can converge more easily. We present the results of Model 1 in Table 1.

Table 1. Estimates fixed effects with standard errors in Model 1.

Coefficients Fixed effects Estimate Std.Error z value P-value
α0 Intercept -7.3347 0.5248 -13.977 < 2e − 16
α1 log(day) 4.6780 0.1918 24.395 < 2e − 16
α2 day -0.1330 0.0062 -21.486 < 2e − 16
β00 AverageTemperature 0.0885 0.7353 0.120 0.9042
β01 PopulationDensity 2.3096 0.5264 4.388 1.15e-05
β02 GDP per capita 1.8953 0.7234 2.620 0.0088
β10 log(day)*AverageTemperature -0.3293 0.2689 -1.225 0.2206
β11 log(day)*PopulationDensity -0.6027 0.1923 -3.134 0.0017
β12 log(day)*GDPPerCapita -0.6909 0.2644 -2.613 0.0090
β20 day*AverageTemperature 0.0160 0.0086 1.857 0.0633
β21 day*PopulationDensity 0.0185 0.0062 2.980 0.0029
β22 day*GDPPerCapita 0.0225 0.0086 2.628 0.0086

Based on the p-values, the three spatially-varied covariates or their interaction terms have significant
effects at 0.1 significance level. Our results indicate that population density and GDP Per capita related
terms have similar fixed effects on estimated mean value of daily cases, which is a sign that these two
regional covariates could be correlated, thus we might need to drop one of them in further analysis.
Moreover, we need to take the geographic factor into consideration when studying virus transmission,
and certain geographic transmission trend could produce confounding variables. When COVID-19
broke out in Italy, it was believed that the virus hit the north first, and then it started to spread to
the south. Therefore, if level-two covariates have a corresponding geographic trend, they could be
confounded.

Figure 3 helps visualize the confounding effects caused by the geographic pattern. The size of
the circles, with gradient color, represent number of cumulative cases, and the circles’ growth trend
can be observed by adding animation effects. Figure 3 implies that transmission associated with both
average temperature and GDP per capita also follows a certain geographic pattern from north to south.
To incorporate this potential confounding geographic effect, we introduce a new covariate “Distance”
into the level-two model. The coordinates are used to calculate the geographic distance between each
region and region “Lombardia”, where people believe the virus first started to spread. The level-two
covariate matrix in this ”full model” becomes:

β0 = (β00, β01, β02, β03)ᵀ

β1 = (β10, β11, β12, β13)ᵀ

β2 = (β20, β21, β22, β23)ᵀ

x j = (AverageTemperature j,PopulationDensity j,GDPPerCapita j,Distance j)ᵀ
(3.3)
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Figure 3. Cumulative case by Jun.30 with legend of (Left) average temperature and (Right)
GDP per capita.

Results from the full model are displayed in Table 2. After bringing “Distance” covariate into the
model, all GDP per capita related terms become insignificant at any conventional level of significance,
so the GDP per capita covariate could be confounded with distance, and thus should be dropped.

Table 2. Estimates fixed effects with standard errors in Full Model.

Coefficients Fixed effects Estimate Std.Error z value P-value
α0 Intercept -7.3336 0.5166 -14.197 < 2e − 16
α1 log(day) 4.6775 0.1897 24.659 < 2e − 16
α2 day -0.1330 0.0061 -21.862 < 2e − 16
β00 AverageTemperature 0.2644 0.7534 0.351 0.7256
β01 PopulationDensity 2.0910 0.5314 4.157 3.22e-05
β02 GDP per capita 1.1906 1.1067 1.0760 0.2820
β03 Distance -0.9478 1.1468 -0.827 0.4085
β10 log(day)*AverageTemperature -0.3821 0.2767 -1.381 0.1673
β11 log(day)*PopulationDensity -0.5721 0.1951 -2.932 0.0034
β12 log(day)*GDPPerCapita -0.4770 0.4071 -1.172 0.2413
β13 log(day)*Distance 0.2873 0.4213 0.682 0.4953
β20 day*AverageTemperature 0.0181 0.0088 2.055 0.0399
β21 day*PopulationDensity 0.0173 0.0063 2.761 0.0058
β22 day*GDPPerCapita 0.0134 0.0131 1.062 0.2881
β23 day*Distance -0.0115 0.0136 -0.848 0.3966

After dropping the level-two covariate of GDP per capita, and using backward stepwise method to
drop AverageTemp*log(T ) term that is not statistically significant (P-value = 0.257), we have our final
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level-two model:
c j = α0 + β00AverageTemperature j + β01PopulationDensity j + β02Distance j + e0 j

w j = α1 + β11PopulationDensity j + β12Distance j + e1 j

−d j = α2 + β20AverageTemperature j + β21PopulationDensity j + β22Distance j + e2 j

(3.4)

By substituting (3.4) into (2.8), we have the combined final model:

Yi j ∼ Poisson(µi j)
log(µi j) = (α0 + e0 j) + (α1 + e1 j) log(Ti) + (α2 + e2 j)Ti+

β00AverageTemperature + β01PopulationDensity + β02Distance+

β11PopulationDensity ∗ log(Ti) + β12Distance ∗ log(Ti)+
β20AverageTemperature ∗ Ti + β21PopulationDensity ∗ Ti + β22Distance ∗ Ti

(3.5)

The final model is also equivalent to a random-intercept-and-random-slope model.

3.2. Data analysis results

The values of estimated fixed effects using the above-mentioned final model are given in Table 3.
It turns out that all remaining terms are significantly associated with COVID-19 transmission at 0.1
significance level, including the one of our main interests, temperature. Comparing the full model, final
model and results in Table 1 from Model 1, we find that bringing the geographic covariate “Distance”
makes all GDP per capita related terms insignificant, and dropping GDP per capita related terms does
not change much on coefficients of population density related terms. As of our main interest, the
sign and magnitude of coefficients related to average temperature effect have changed, compared with
results in Table 1.

Table 3. Estimates fixed effect grouped by Level-one model parameters in Final Model.

L1 L2 Coefficients Fixed effects Estimate Std.Error z value P-value
c α0 (Intercept) -7.3458 0.5431 -13.526 < 2e − 16
c β00 AverageTemperature -0.7244 0.2132 -3.398 0.0007
c β01 PopulationDensity 2.2358 0.5509 4.0580 4.94e-05
c β02 Distance -1.3180 0.5741 -2.2960 0.0217

w α1 log(day) 4.6820 0.2010 23.3060 < 2e − 16
w β11 log(day)*PopulationDensity -0.5811 0.2036 -2.855 0.0043
w β12 log(day)*Distance 0.4453 0.2047 2.175 0.0296
-d α2 day -0.1331 0.0064 -20.862 < 2e − 16
-d β20 day*AverageTemperature 0.0070 0.0036 1.9310 0.0534
-d β21 day*PopulationDensity 0.0175 0.0065 2.7040 0.0069
-d β22 day*Distance -0.0161 0.0070 -2.2960 0.0217

We also present predicted random effects results from “lme4” package [24] using BLUP method
in Table 4. Random effects have a range of -3.98 to 4.22 on intercept, a range from -0.075 to 0.063
on ”day” covariate, and a range from -2 to 1.63 on ”logday” covariate. We can visualize the ranges
of random effects on each of the level-one covariates in Figure 4 , and further detect possible outliers
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Table 4. Predicted random effects for various regions in Italy.

Region Intercept (e0) logday (e1) day (e2)
Abruzzo -1.4778 0.3643 4.8068e-03
Basilicata -0.1659 0.0777 -5.8952e-03
Calabria 1.0968 -0.1965 -1.8788e-05
Campania -3.1115 0.7663 -2.2389e-02
Emilia-Romagna 3.3658 -1.0811 3.0806e-02
Friuli Venezia Giulia 0.6879 -0.4002 1.0400e-02
Lazio -0.4633 -0.1086 9.4084e-03
Liguria -1.1703 0.3127 -5.6459e-03
Lombardia 2.2558 -0.6270 7.4296e-03
Marche 3.7051 -1.1192 1.7932e-02
Molise 4.2204 -2.0073 6.2852e-02
P.A. Bolzano -2.1480 0.8520 -2.8011e-02
P.A. Trento 3.9894 -1.7144 5.7475e-02
Piemonte -1.9840 0.8564 6.7807e-04
Puglia -1.3040 0.4321 3.9145e-03
Sardegna -0.5926 0.4834 -2.1216e-02
Sicilia 0.5414 0.1143 -4.0148e-03
Toscana -0.3367 0.4356 -1.3019e-02
Umbria -3.9813 1.6267 -7.5136e-02
Valle d’Aosta -3.6609 0.9154 -2.3201e-02
Veneto 0.9086 -0.1221 -3.6045e-03

of Region Molise, P.A. Trento and Umbria, as indicated in the figure. To check whether our predicted
random effects satisfy the assumptions of the multivariate normal distribution, we draw normal prob-
ability plots and present results in Figure 5. Our graphs in Figure 5 show that the predicted random
effects satisfy the multivariate normality assumption, and possible outliers from normality plots are
consistent with the results in box plots.

3.3. Model performance

To check the performance of the proposed model we use first days of observations as the training
data to construct the model to predict the daily new cases in the rest of the days, and then check
the deviation. With the variance-covariance matrix of both fixed effects and random effects given in
”lme4” [24] results of our final model, We can further calculate a prediction interval for our proposed
model by using R package ”merTools” [25]. Figure 6 demonstrates the results using the first 60 days
of data to construct the model and then to predict the rest of the days in each region.

Once we sum the fitted and predicted values from every region, we can compare our proposed model
with models only using the PLEC function at national level. Based on the result from Figure 7, the
proposed approach has less deviation in expected prediction than only using the PLEC function.
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Figure 4. Boxplots of random effects.

Figure 5. Multivariate normal probability plots on random effects.
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Figure 6. Model performance at regional level using first 60 days as training data with 95%
prediction interval.
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Figure 7. Model performance comparison at national level using first 45 and 60 days as
training data.

4. Discussion

Results in Table 3 show that all three estimated effects associated with population density are sig-
nificant at 0.01 significance level, the effect of ”AverageTemperature” is significant at 0.01 significance
level, and that associated with the interaction term “day*AverageTemperature” is significant at 0.1 sig-
nificance level. So we have decided to keep “day*AverageTemperature” term in the model as it is an
interaction term of our main interest and its p-value is close to 0.05. In order to link results from com-
bined model to PLEC parameters, we group coefficients in Table 3 by their corresponding level-one
parameters. Thus, we can directly interpret these covariates’ fixed effects on parameters c, w and −d
respectively.

Our results indicates that average temperature is negatively associated with parameter c. Hold-
ing other variables constant, the increase of every one scaled unit average temperature will lead to a
0.7244 decrease on parameter c, which downsizes the scale of the gamma curve. Also, due to the
fact that average temperature is positively associated with parameter −d, the same increase on aver-
age temperature will cause −d to increase 0.0069. As a result, with time parameter T as a multiplier,
d ∗ T will counter off the shrinkage effect from parameter c. Thus, the effect from change of aver-
age temperature on mean value of daily case is also related to time predictor, and we can derive its
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pattern by following approach. Based on (2.4), we set µ0 = ec0−d0T T w0 and µ1 = ec1−d1T T w1 , where
µ1 is the new function by only increasing x scaled units average temperature (x > 0) while other
variables are all held constant, thus, c1 − c0 = −0.7244x, (−d1) − (−d0) = d0 − d1 = 0.00699x,
and w0 = w1. Further, we take µ1/µ0 = e(c1−c0)+T (d0−d1) = e−0.7244x+0.00699xT . It is clear that µ1 > µ0

when −0.7244 + 0.00699T > 0, and it is free from x, which means at day 104, the effect from
parameter −d will exceed that from parameter c, and before this, it is always true that µ1 < µ0.
This pattern is applicable to all regions. Similarly, we can also derive the effect of temperature
change on the maximum value of infection and its turning point based on the result in (2.5). We
set µmax,0 = ec0−w0(w0/d0)w0 , Tmax,0 = w0/d0, and µmax,1 = ec1−w1(w1/d1)w1 , Tmax,1 = w1/d1 . Thus,
Tmax,1/Tmax,0 = d0/d1 = d0/(d0 − 0.00699x) > 1, which means higher average temperature leads to a
delayed turning point, and µmax,1/µmax,0 = ec1−c0(Tmax,1/Tmax,0) = e−0.7244x(d0/(d0 − 0.00699x))w0 , sug-
gesting that whether or not the ratio is larger than 1 depends on the value of parameter −d and w in each
region. However, from the previous derived property, we know that as long as Tmax,0 occurs before the
104th day, µmax,1 < µmax,0, which means in every region in Italy, increase of average temperature will
reduce maximum infections and postpone the turning point. Similarly, we can derive the properties of
effects from population density change. From Table 3, we know that population density is positively
associated with parameter c and −d, and negatively associated with parameter w. Therefore, the final
effect from population density on mean response depends on a comprehensive results from all three
parameters. We assume an increase of x scaled units (x > 0) on population density while all other
variables are held constant. Thus c1 − c0 = 2.2358x, w1 − w0 = −0.5811x, and d0 − d1 = 0.0175x.
We then derive µ1/µ0 = e(c1−c0)+(d0−d1)T T w1−w0 = e2.2358x+0.0175xT T−0.5811x. If we set d(µ1/µ0)/dT = 0 and
solve for T , it can be shown that µ1/µ0 takes its minimal value when T = 33.206. Thus, (µ1/µ0)min =

e2.8169x33.2057−0.5811x. We can further derive (d(µ1/µ0)/dx)min = 0.7815e2.8169x33.2057−0.5811x > 0
(strictly increasing) at x’s domain, and (µ1/µ0)min = 1 when x = 0, so it’s proved that µ1 > µ0 when
x > 0, which suggests the number of mean infections will always become larger when population
density is increased.

Figure 8. Transmission curves in Lombardia with 0.5 scaled unit increase on (Left) average
temperature and (Right) population density.
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Figure 9. Transmission curves with 0.25 and 0.5 scaled unit increase on average temperature
in each region.

Figure 8 demonstrates the pattern illustrated above in Region Lombardia. The pattern is consistent
across regions in the country, as shown in Figures 9, 10 and 11.

One of the goals of Covid-19 modelling is to predict the turning point of the transmission curve
before it occurs. In fact, PLEC model starts to predict reasonable turning points after detecting a
“slowing down” trend due to its mathematical property, meanwhile, our proposed model may make
this detection earlier in some regions by borrowing strength from other regions, which is an advantage
of mixed-effects model.

5. Conclusions

In this study, we have examined the association between regional spreading patterns of COVID-19
development in Italy and regional factors in two steps. In the first step, we have symbolized the regional
spreading patterns of the daily confirmed cases of COVID-19 in Italy by a special patterned Poisson
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Figure 10. Transmission curves with 0.25 and 0.5 scaled unit increase on population density
in each region.

Figure 11. Transmission curves with 0.25 and 0.5 scaled unit increase on (Left) average
temperature and (Right) population density in Italy.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2579–2598.



2596

regression model for repeated daily counts. Our proposed regression model can capture the varying
growth and declining patterns as well as turning points among regions in Italy by regional regression
parameters. We then incorporate these regional regression parameters with regional factors as a second
step to effectively evaluate the affect of regional factors on regional spreading patterns of COVID-19
daily confirmed cases.

Our two level longitudinal model performs better on prediction than models only using the PLEC
function. This is because of the fact that two level model can incorporate regional covariates into the
modelling approach, increasing the goodness of fit and predictive power. It also gives some mathe-
matical properties linking to the level-one PLEC parameters, inferring that regional covariates average
temperature and population density are associated with COVID-19 infection. This methodology could
be useful in future epidemiological study when transmission pattern is potentially associated with so-
cial or environmental covariates. Neither our modelling approach nor PLEC function alone works well
if we use data before the turning point to construct the model, due to the fact that lockdowns policy
plays a crucial role affecting the curve. To incorporate this effect, we can use segmented models sug-
gested by Zhang et al. [1] and Wei and Zhang [22]. Our analysis results indicate that geographical
patterns perform an important role as it could confound other variables in epidemiological studies.
More complicated models specifying geographic correlation could be explored on similar topics. A
final point of caution is that this modelling procedure is not a designed experiment, which means that
it can only explore associations between potential covariates and response, but can not reveal causal
relationship, and there might be more confounding or lurking variables to be found.
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