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Abstract: A single blood vessel surrounded by the biological tissue with a tumor is considered. The 

influence of the heating technique (e.g. ultrasound, microwave, etc.) is described by setting a fixed 

temperature for the tumor which is higher than the blood and tissue temperature. The temperature 

distribution for the blood sub-domain is described by the energy equation written in the dual-phase 

lag convention, the temperature distribution in the biological tissue with a tumor is described also by 

the dual-phase lag equation. The boundary condition on the contact surface between blood vessel and 

biological tissue and the Neumann condition are also formulated using the extended Fourier law. So 

far in the literature, the temperature distribution in a blood vessel has been described by the classical 

energy equation. It is not clear whether the Fourier's law applies to highly heated tissues in which a 

significant thermal blood vessel is distinguished, therefore, taking into account the heterogeneous 

inner structure of the blood, the dual-phase lag equation is proposed for this sub-domain. The 

problem is solved by means of the implicit scheme of the finite difference method. The computations 

were performed for various values of delay times, which were taken from the available literature, and 

the influence of these values on the obtained temperature distributions was discussed. 

Keywords: bioheat transfer; thermal interaction between blood vessel and tissue; dual-phase lag 

model; finite difference method 

 

1. Introduction 

Modeling of the tissue heating process during thermal therapy is most often based on the 
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well-known Pennes equation [1]. It is the classical Fourier's equation in which the source functions 

describing the blood perfusion and the metabolic heat generation are introduced. The form of this 

equation results from the assumption of instantaneous propagation of the thermal wave in the domain 

considered. In recent years, this model is often replaced by the Cattaneo-Vernotte equation [2,3] or 

the dual-phase lag equation [4]. In the Cattaneo-Vernotte equation the phase lag called the relaxation 

time τq appears. This parameter takes into account the effect of the finite value of the thermal wave 

velocity and it is the lag time of the heat flux in relation to the temperature gradient. In the 

dual-phase lag equation the additional parameter called the thermalization time τT is introduced, 

which takes into account the delay time of the temperature gradient in relation to the heat flux. The 

thermalization time takes into account the small-scale response in space while the relaxation time 

takes into account the small-scale response in time [4]. 

The thermally significant blood vessels can affect the temperature distribution in the heated 

tissue during thermal therapy, e.g. [5–9]. On the other hand, the influence of a strongly heated tumor 

region on the temperature distribution of blood flowing through the vessel is also interesting. The 

mathematical models of this type of phenomena used so far are based on the Fourier-Kirchhoff 

equation for the blood sub-domain and one of the equations mentioned above for the tissue 

sub-domain. In this paper the energy equation for the blood sub-domain is assumed in the convention 

of the dual-phase lag model and the temperature distribution in the tissue domain is also described by 

the dual-phase lag equation. The model is supplemented by the appropriate boundary and initial 

conditions. These conditions are formulated here on the basis of the extended Fourier law in which 

the relaxation and thermalization times appear [10–12]. To the best of our knowledge, the extended 

energy equation with two lag times is presented here for the first time. The problem formulated is 

solved using the implicit scheme of the finite difference method. In the final part of the paper the 

results of computations are shown and the conclusions are presented. 

2. Methods 

2.1. Dual-phase lag equation 

Heat conduction for the macroscale problems is described by the Fourier law 

 ( , ) λ ( , )X t T X t  q  (1) 

where λ is the thermal conductivity of the material, ( , )T X t is the temperature gradient, q (X, t) is the 

heat flux, X, t are the geometrical co-ordinates and time. Introducing the formula (1) to the 

Fourier-Kirchhoff equation [13] 

 

( , )
ρ ( , ) ( , ) ( , )

T X t
c T X t X t Q X t

t

 
     

 
w q

 (2) 

one obtains equation in the form 

 

 
( , )

ρ ( , ) λ ( , ) ( , )
T X t

c T X t T X t Q X t
t

 
      

 
w

 (3) 

where c is the specific heat, ρ is the mass density, w is the velocity vector and Q (X, t) is the capacity of 
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internal heat sources. 

The generalization of the Fourier is presented by Tzou [4], in particular 

 
( , ) λ ( , )q TX t T X t      q

  (4) 

where τq and τT are the phase lags. 

Using the Taylor series expansions, the following first-order approximation of Eq (4) is obtained 

( , ) ( , )
( , ) τ λ ( , ) τq T

X t T X t
X t T X t

t t

  
     

  

q
q           (5) 

From Eq (5) it follows that 

( , ) ( , )
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X t T X t
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t t

  
     

  

q
q                 (6) 

Introducing this formula to the Eq (2) one has 
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Because (c.f. Eq (2)) 
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thus 
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For the constant thermophysical parameters the Eq (10) takes a form 



1576 

Mathematical Biosciences and Engineering  Volume 18, Issue 2, 1573–1589. 

 2

2

2

2
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w
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            (11) 

It should be noted that in the case of the dual-phase lag model the boundary conditions should 

be formulated in a different way than in the Fourier model [10–12]. For example, the Neumann 

boundary condition has the following form 

 ( , )( , )
( , ) τ λ ( , ) τb

b q T

T X tq X t
q X t T X t

t t

  
     

  

n
n                     (12) 

where n is the normal outward vector and qb (X, t) is the known boundary heat flux. 

Under the assumption that for t = 0: ( , ) 0T X t   and ( , ) 0X t q  (Eq (2)), the initial 

conditions are the following [14] 

0

( , ) ( ,0)
0 : ( , ) ,

ρ
p

t

T X t Q X
t T X t T

t c



  


                        (13) 

where Tp is the initial temperature. 

2.2. Formulation of the problem 

A single blood vessel and surrounding biological tissue with a tumor region, as shown in Figure 1, is 

considered (axisymmetric problem). As in the paper [8], it is assumed that the influence of the heating 

technique (e.g. ultrasound, microwave, etc.) is described by setting a fixed temperature for the tumor 

which is higher than the blood and tissue temperature. 

 

Figure 1. Domain considered. 

 

Blood temperature is described by the equation (c.f. Eq (11)) 
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where 
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and v is the blood flow velocity in the axial direction, Qmet b is the metabolic heat source (constant value 

of Qmet b is assumed here), while Tb = Tb (r, z, t). 

Temperature field in the tissue with a tumor is described by equation 

 22
2

2
ρ τ λ λτ τq T q

TT T Q
c T Q

t t t t

    
      

    
                      (16) 

where 

 b b a metQ w c T T Q  
                                         (17) 

while wb is the blood perfusion rate, Ta is the arterial blood temperature, Qmet is the metabolic heat source 

(constant value of Qmet is assumed here) and T = T (r, z, t). 

On the contact surface between blood vessel and biological tissue the continuity condition of 

temperature and heat flux is assumed 

( , ) :
b

c

b

T T
r z

q q


 

                                           (18) 

On the outer surface of the tissue the constant temperature (body core temperature) is accepted. For  

z = 0, z = Z and r = 0 the no-flux conditions are assumed. 

The initial conditions are also known (c.f. Eq (13)) 
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                    (19) 

It should be noted that in the condition (18) the dependence (12) must be taken into account. After 

mathematical manipulations one has [12] 
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2.3. Method of solution 

The problem formulated is solved using implicit scheme of the finite difference method. Let 

, ( , , )f

i j i jT T r z f t   where ∆t is the time step, ri = ih, zj = jk (Figure 2) and f = 0, 1,…, F. Taking into 

account the initial conditions (19) one has: 0

, ,i j pT T  for blood subdomain: 1

, / ( ρ )i j p metb b bT T Q t c   , 

for tissue sub-domain:    1

, / ρ τ .i j p b b a p met q b bT T w c T T Q t c w c      
 

 

 

Figure 2. Discretization. 

For transition t
 f

 → t 
f+1 

(f  1) the following approximate form of Eq (14) resulting from the 

introduction of adequate differential quotients is used 
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where 
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while p = f or p = f+1. 

After mathematical manipulations one has 
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where 
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Approximate form of Eq (16) is the following 
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and after mathematical manipulations one has 
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where 
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The second part of boundary condition (20) is approximated with respect to time in the following way 
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Let (s, j) is the node located on the contact surface. Taking into account the first part of boundary 

condition (20), one obtains 
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The no-flux boundary condition (c.f. Eq (12)) 

 ( , )
( , ) τ 0T

T X t
T X t

t

 
  



n
n

                        (35) 

is approximated with respect to time, namely 
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For the nodes with the coordinate z = 0 one has 
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and then 
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Similarly, for nodes with the coordinate z = Z one obtains 
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                                 (39) 

and then 

 1 1

, , 1 , , 1
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T

T T T T
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                                   (40) 

For each transition t
 f
 → t 

f+1 
(f   1) the system of Eqs (24), (28), (34), (38) and (40) is solved using 

the iterative method. 

3. Results 

3.1. Temperature distribution in the tissue with a tumor 

The thermally significant blood vessel of dimensions R = 0.001 m, Z = 20R = 0.02 m is considered. 
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The blood flow velocity is equal to v = 0.2 m/s [6,15]. The outer radius of the domain considered is R1 = 5R. 

The heating target volume (tumor) is specified as 1.5R ≤ r ≤ 2.5R, 1.5Z/4 ≤ z ≤ 3Z/4 (Figure 1). The 

following values of thermophysical parameters are assumed: thermal conductivities λb = 0.488 W/(m K), 

λ = 0.5 W/(m K), specific heats cb = 3770 J/(kgK), c = 4000 J/(kgK), mass densities ρb = 1060 kg/m
3
, 

ρ = 1000 kg/m
3
, metabolic heat sources Qmetb = 245 W/m

3
, Qmet = 245 W/m

3
, blood perfusion rate wb 

= 0.5 kg/(m
3 
s), arterial blood temperature Ta = 37 

o
C [16]. 

The values of phase lags reported in literature vary greatly from one to another. For example, in the 

papers [9,17] the relaxation and thermalization times are of the order of 10 s. On the other hand, in the 

paper [18] it is found that the phase lag times for heat flux and temperature gradient for the living tissues 

are very close to each other and are within the range [0.464 s, 6.825 s]. Due to the lack of precise data, in 

this work the extreme values of time delays, namely τqb = τq = τTb = τT = 0.464 s and τqb = τq = τTb = τT = 

6.825 s are considered and as suggested by Zhang [18], the same values of these delay times are accepted. 

The initial temperature of tissue and blood is equal to Tp=37
 o
C, on the outer surface of the tissue the 

boundary temperature equals 37 
o
C, while in the tumor region the constant temperature 45

 o
C is accepted.  

The computations have been done under the assumption that m = 50, n = 200, m1 = 15, m2 = 25, n1 = 

50, n2 = 150 (Figure 2) and Δt = 0.005 s. 

 

Figure 3. Temperature distribution after 5 seconds (τqb = τq = τTb = τT = 0.464 s). 

 

Figure 4. Temperature distribution after 5 seconds (τqb = τq = τTb = τT = 6.825 s). 

In Figures 3 and 4 the temperature distribution after 5 second is shown. Figures 5 and 6 illustrate the 

temperature history at the points A (0.0014 m, 0.01 m), B (0.003 m, 0.01 m) obtained using the DPL 

model and the classical ones. As one can see, for small values of time delays (Figure 5) the temperature 

values in the domain stabilize quite quickly and the system reaches the steady state conditions, while for 

large values of time delays (Figure 6), this process takes much longer. The differences between the 
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courses of thermal processes are great especially in the initial stage of heating. After reaching the steady 

state, the curves coincide, of course. As expected, the heating process is slower for the model with lag 

times and the longer delay times prolong the duration of the tissue heating process. 

 

Figure 5. Temperature history at the points A (0.0014 m, 0.01 m), B (0.003 m, 0.01 m), solid 

lines-DPL model (τqb = τq = τTb = τT = 0.464 s), dashed lines-classical model. 

 

Figure 6. Temperature history at the points A(0.0014 m, 0.01 m), B(0.003 m, 0.01 m), solid 

lines-DPL model (τqb = τq = τTb = τT = 6.825 s), dashed lines-classical model. 

3.2. Temperature distribution in the radial direction 

Figures 7–9 illustrate the temperature distribution in the radial direction for z = Z/2 = 0.01 m for 

DPLM and models based on the Fourier-Kirchhoff equations, respectively.  The curves correspond to 
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times of 1, 2, 3, 4 and 5 s. In the blood sub-domain (r ≤ 0.001 m), a slight increase in temperature is 

observed only near the blood vessel wall. The introduction of delay times slows down the changes of 

instantaneous and local temperatures in the sub-domains considered. 

 

Figure 7. Temperature distribution in the radial direction (z = Z/2)-DPL model (τqb = τq = τTb 

= τT = 0.464 s). 

 

 

Figure 8. Temperature distribution in the radial direction (z=Z/2)-DPL model (τqb = τq = τTb = 

τT =6.825 s). 
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Figure 9. Temperature distribution in the radial direction (z=Z/2)-Fourier-Kirchhoff model. 

3.3. Temperature of the blood vessel wall 

As can be seen in the previous Figures, the temperature in the blood vessel does not change much. 

Figures 10 and 11 show the changes in the temperature of the blood vessel wall along the z axis for times 

1, 2, 3, 4 and 5 s. The influence of the increased temperature in the tumor region on the changes in the 

wall temperature is clearly visible. Outside of this region, its temperature varies to a small extent. For low 

values of delay times (Figure 7), after about five seconds the system reaches steady state conditions, while 

for large values of delay times (Figure 8) it is just the beginning of the heating process. 

 

Figure 10. Temperature of blood vessel wall (τqb = τq = τTb = τT = 0.464 s) after 1, 2, 3, 4 and 5 s. 
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Figure 11. Temperature of blood vessel wall (τqb = τq = τTb = τT = 6.825 s) after 1, 2, 3, 4 and 5 s. 

It should be noted that the influence of the blood flow direction on the computations results is clearly 

visible. As it approaches the heated tumor, the blood warms up more and more, and it cools more slowly 

as it leaves the heated sub-domain. 

3.4. Comparison of DPL model with the classical model for the blood sub-domain 

 

Figure 12. Heating curves at the points A(0.0014 m, 0.01 m) and B(0.003 m, 0.01 m), solid 

lines-DPL model (τqb  = τq = 3 s,  τTb  = τT = 1 s), dashed lines - mixed model (τqb = τTb  = 0, 

τq = 3 s, τT  = 1 s). 

As mentioned before, in this paper the energy equation for the blood sub-domain is assumed in the 

convention of the dual-phase lag model. Therefore, it should be checked whether the introduction of delay 
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times to the equation describing the temperature field in the blood sub-domain significantly changes the 

computations results. For this purpose, calculations were made for τqb  = τq = 3 s, τTb  = τT = 1 s [19] (the 

same relaxation time and thermalization time for both sub-domains) and τqb = τTb  = 0, τq = 3 s, τT  = 1 s, 

respectively (mixed model). 

The results of the comparison are presented in the form of heating curves at the points A and B 

(Figure 12) and additionally at the point C (0.0009 m, 0.01 m) located in the blood sub-domain and at the 

point D (0.001m, 0.01 m) located on the blood vessel wall (Figure 13). 

 

Figure 13. Heating curves at the points C(0.0009 m, 0.01 m) and D(0.001 m, 0.01 m), solid 

lines - DPL model (τqb  = τq = 3 s,  τTb  = τT = 1 s), dashed lines - mixed model (τqb = τTb  = 0, 

τq = 3 s, τT  = 1 s). 

As can be seen, the differences are slight and do not exceed 0.5 
o
C on the blood vessel wall (point D) 

and are practically invisible in the blood vessel sub-domain (point C) as well as in the tissue sub-domain 

(points A and B). Summing up, the introducing the delay times into the equation describing the 

temperature distribution in the blood vessel has a relatively small impact on the results (for the assumed 

values of relaxation and thermalization times, of course). 

4. Discussion 

The single blood vessel surrounded by the biological tissue with a tumor has been considered. A 

constant temperature of 45 
o
C has been assumed in the heated tumor region. The temperature fields have 

been described by dual-phase lag equation both for the blood region as well as for the tissue with a tumor. 

For comparison, the classical models have been also considered. Additionally, computations were made 

for the ‘mixed’ model, in which the temperature field in the tissue sub-domain is described by the DPL 

equation, while the temperature field in the blood vessel by the classical model. For such formulated 

mathematical description, an algorithm based on FDM in an implicit form was presented. The numerous 

numerical computations concerning the different variants of the basic model have been made. It turned 

out (which could of course be expected) that the visible differences between the solutions can be observed. 
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The limit results of all variants for the steady state coincide, which confirms the correctness of the 

assumed numerical algorithm. 

It should be noted that for all variants of computations and assumed delay times, the temperature in 

the blood vessel did not rise much (about 1 
o
C), mostly near the blood vessel wall. Comparison of the 

calculation results obtained by the DPL model and mixed model in which the classical equation for the 

blood sub-domain has been assumed showed slight changes in temperature. 

Obviously, the results are closely related to the adopted relaxation and thermalization times, and 

there is a need for further experimental studies to more accurately estimate these delay times. 

Here, a constant temperature of the tumor region has been assumed. In future, the heating schemes 

should be taken into account, this means the external heating power density and heating duration [6,7]. 
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