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Abstract: Based on substrate sequences, we proposed a novel method for comparing sequence 

similarities among 68 proteases compiled from the MEROPS online database. The rank vector was 

defined based on the frequencies of amino acids at each site of the substrate, aiming to eliminate the 

different order variances of magnitude between proteases. Without any assumption on homology, a 

protease specificity tree is constructed with a striking clustering of proteases from different 

evolutionary origins and catalytic types. Compared with other methods, almost all the homologous 

proteases are clustered in small branches in our phylogenetic tree, and the proteases belonging to the 

same catalytic type are also clustered together, which may reflect the genetic relationship among the 

proteases. Meanwhile, certain proteases clustered together may play a similar role in key pathways 

categorized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Consequently, 

this method can provide new insights into the shared similarities among proteases. This may inspire 

the design and development of targeted drugs that can specifically regulate protease activity. 
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1. Introduction 

Proteases play important roles in “life and death” processes, acting as a biological switches to 

activate or deactivate hydrolysis reactions on the peptide bonds of their substrates [1,2], that in turn 

mediate important biological functions, including cell proliferation [3], migration [4–6], 
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differentiation [7], and apoptosis [8], among others. Protease activity is commonly associated with a 

myriad of standard, yet complex physiological functions, that when dysregulated can result in 

abnormal pathophysiology leading to a number of diseases [9–12]. A considerable number of known 

protease inhibitors have been evaluated as potential targets against disease, including 

dipeptidyl-peptidases, which have been studied in type 2 diabetes, rein, and angiotensin-converting 

enzyme [13,14] for regulating blood pressure, among others.  

Profiling the specificity of cleavage sites in substrates is an important step in characterizing the 

biochemical properties of proteases. Uncovering the substrate specificity of these proteases is central to 

understanding the important role of proteases in biological processes, including metabolic activity, as 

well as in determining actionable targets for the design of specific inhibitory agents. In particular, the 

specificity is determined by interactions between the substrate and its proteases. Peptide residues of 

substrates around the cleavage bond are indexed towards the N-terminus as P1, P2, P3, P4, …, Pn, and 

residues towards the C-terminus are indexed as P1’, P2’, P3’ P4’, …, Pn’. In addition, the binding pockets 

in the protease are named Sn–Sn’ according to indices of the residues occupying the substrates [15]. 

Notably, with the application of high-throughput techniques in proteomics, an increasing 

number of cleavage sites have been identified for protease substrates [16–19] and several curated 

datasets have been established for detailed annotation of proteases, substrates, and pathways, 

including the MEROPS online database for peptidases [20], as well as CutDB [21], PMAP [22], the 

Degradome database [23], and CASBAH [24] for caspases. Besides the experimental methods used, 

multiple studies have focused on the qualitative interpretations that are visualized using sequence 

logo [25], weblogo [26], icelogo [27], and heat maps [28]. Some methods of quantitative analysis 

have been designed to measure the specificity of several proteases [29–32]. Additionally, a number 

of methods have been developed for predicting substrate cleavage sites for several proteases [33,34]. 

In this study, we aimed to develop a method that could be used to compare the similarities 

among 68 proteases, in order to build a phylogenetic tree for protease specificity based on substrate 

sequences, which may better highlight the genetic relationships among proteases. 

2. Materials and methods 

2.1. Extraction and processing of protease-substrate data 

The protease dataset generated consisted of a total of 68 endopeptidases, covering four types of 

enzyme catalytic machinery that included metallo proteases, as well as aspartic, cysteine, and serine 

threonine proteases (Table S1 and Additional file 1). All the known substrate sequences were 

downloaded from the MEROPS online database (https://www.ebi.ac.uk/merops/; Wellcome Sanger 

Institute, Cambridgeshire, UK). The proteases were selected primarily by at least 100 annotated 

substrate sequences, with the signal peptidase complex removed from the dataset.  

2.2. Algorithm steps 

This method was improved from Fuchs et al. [30] as follows: 

Step 1: First, substrate sequences of less than two amino acids over the whole binding site were 

removed. Next, in order to avoid a false positive, we deleted sequences that had less than two amino 

acids. The remainder sequences with more than two amino acids were pair-wisely aligned and the 

https://www.ebi.ac.uk/merops/
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redundant sequences were removed by a greedy algorithm [35], displaying a similarity equal to or 

greater than 0.875.  

Step 2: For each protease, a matrix of substrate sequences spreading from S4–S4’ was generated, 

containing entries with the frequencies of the 20 natural amino acids. A vector with a 20 dimension at 

each position was extracted, where each element corresponded to the frequencies of the amino acids. 

Then, from the non-prime terminus to the prime terminus, eight vectors were obtained, respectively, 

and denoted as pi = (nAla, nArg, …, nVal), (i = 1, …, 8). 

Step 3: In order to compare whole binding regions, a vector p with a 160-dimension resulted by 

combining the vector pi at each position for each protease, that is p = (p1, p2, p3, p4, p5, p6, p7, p8). 

Step 4: Next, we sorted all the 160 elements in vector p by descending order. If there were 

multiple elements having the same frequencies, we ranked them by alphabetical order and then 

adjusted the ranks by averaging them with the same values. Therefore, a rank vector r was obtained 

for each protease. 

Step 5: The similarities between proteases were calculated using Eq 1 [36], where X and Y 

represent the different proteases and are respectively a 160-dimensional rank vector composed of 20 

components at 8 sites, xi and yi are respectively the component of the rank vector X and Y, in which 

the amino acid information at each site can be reflected. In addition, n is 160, which is the dimension 

of the rank vector. The symmetric similarity matrix, S, was generated by a complete comparison of 

all proteases in the dataset. 

 

                           (1) 

 

Step 6: A distance matrix D was generated by subtracting all the elements in similarity matrix S 

from Eq 1. The elements in the distance matrix were regarded as the differences of the pairwise 

proteases and the entry of matrix D was defined as follows: 

                                    (2) 

 

2.3. Phylogenetic tree and heatmap construction 

Molecular evolutionary genetics analysis (MEGA) 7.0.14 software (Institute of Molecular 

Evolutionary Genetics; University Park, PA) and the web-based tool Interactive Tree of Life 

(iTOL; http://itol.embl.de/) [37] were used to construct a phylogenetic tree. This phylogenetic 

tree enabled the visualization of the differences between proteases based on substrate sequences.  

Heml 1.0 (http://hemi.biocuckoo.org/down.php) was used to construct heatmaps and cluster 

heatmaps. 

3. Results 

3.1. Substrate amino acid frequency of eight binding sites 

The substrate amino acid frequencies of the proprotein convertase subtilisin/kexin type 9 (PCSK) 

family of serine proteases at eight binding sites are shown in Figure 1. Among these frequencies, it 
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can be observed that amino acid changes at each site of the proteases belonging to this family are 

very similar. Especially, the P4 and P1 site in all the proteases of the PCSK family show specificity for 

arginine (Arg), whereas the amino acids appearing at the P2 sire are mainly lysine (Lys) and arginine 

(Arg) [38]. Although, there are more amino acid species at each site of the prime terminal, the trend 

of amino acid changes is still consistent, indicating that this family of serine proteases shows very 

similar specificity in substrate recognition.  

Figure 1. Amino acid frequency maps of serine proteases over their substrate sites. 

Analysis of the amino acid frequency map of certain metalloproteases showed that four 

proteases in the metalloprotease family presented a large number of amino acids at each site 

(Figure 2). Although, we found that there was no preference on the specific amino acids needed 

at all of the eight sites, the trend underlying amino acid changes among these proteases appeared 

exactly similar. 

As observed in the amino acid frequency map of certain cysteine proteases (Figure 3), 

proteases in the caspase family exhibited specificity for aspartic acid (Asp) at P 1 site [39]. In 

particular, both caspase 3 and caspase 7, demonstrated a very high frequency of Asp at the P4 site [39], 

and both proteases appeared involved in several pathways depicted in the KEGG database, 

especially both proteases were found to play a significant role in signaling pathways mediating 

apoptosis. Importantly, these two proteases were found to be associated with debilitating diseases, 

such as Alzheimer’s disease, non-alcoholic fatty liver disease, pertussis (i.e., whooping cough), 

among others. It can also be observed in the amino acid frequency map that the proportion of 

polar-neutral amino acids at the P1’ site of caspase 1, caspase 3, and caspase 7, has a close 

proximity (Figure 3). 
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Figure 2. Amino acid frequency maps of metalloproteases over their substrate sites. 

 

Figure 3. Amino acid frequency maps of cysteine proteases over their substrate sites. 

In addition, as it can be seen in the amino acid frequencies of four aspartic proteases (Figure 4), 

there are no specially preferred amino acids at almost every site, and only cathepsin E and cathepsin D, 

present more leucine (Leu) and phenylalanine (Phe) residues at the P1 site [40]. Although, there is no 
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preference of specific amino acids at other sites, the changes in the amino acid trend among these 

proteases, is highly consistent. Meanwhile, both proteases can activate precursors of biologically 

active proteins in the prelysosomal compartment. 

 

Figure 4. Amino acid frequency maps of aspartic proteases over their substrate sites. 

3.2. The distance between proteases 

Using our quantitative method, the distance values obtained were according to the similarities 

between the different proteases in our dataset. Figure 5 is an example of the distance values found for 

the four proteases analyzed, which were calculated from the protease substrates found in the 

MEROPS database covering the eight sites flanking the cleavage bond. 

 

Figure 5. Exemplary distance values depicting four proteases. The dots in the graph 

represent proteases and the values above the edge, connecting the two dots, represent the 

distance value between the corresponding two proteases. 
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The distances between the proteases are shown in the Additional file 1. Regarding serine 

proteases, those belonging to the PCSK family of proteases (i.e., PCSK2, PCSK4, PCSK6, PCSK5, 

and PCSK7) behave very similarly when recognizing substrates at each binding site, and therefore 

the distance value between them is minimal, of not more than 0.05. Several proteases in the caspase 

family, also show very similar preference for substrates. Consequently, the distance values found 

between them were also minimal, especially for caspase 3 and caspase 7, as they are very similar in 

how they bind to amino acids at multiple sites, and therefore have the lowest distance value 0.078 in 

the caspase family. Moreover, analyses on the matrix metalloprotease (MMP) family showed some 

similarities among these proteases in recognizing broken substrates, therefore the distance value 

found between them was relatively low, and the minimum distance between MMP9 and MMP12 was 

0.114. Aspartic proteases have almost no specifically recognized amino acids at all the eight sites 

evaluated, therefore the distance value between the two proteases in the family was larger, when 

compared to those found between proteases in other catalytic types. 

3.3. The phylogenetic tree and heatmap of proteases 

The evolutionary relationships between these proteases are reflected in the phylogenetic tree 

generated using the distance matrix. The phylogenetic tree generated based on the substrate 

sequences P4–P4’ of the substrates analyzed. Figure 6 showed that almost all homologous proteases 

were clustered in small branches, with the proteases belonging to the same catalytic type also 

clustered together.  

 

Figure 6. Schematic depicting the phylogenetic tree of proteases over the P4–P4’ 

substrate sequences. Four colors distinguish the analyzed proteases according to their 

catalytic type: serine proteases are colored in orange, aspartic proteases in blue, cysteine 

proteases in purple, and metalloproteases in yellow. 



844 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 837–850. 

Among them, the serine proteases included in our dataset were mainly concentrated in a large 

branch of the phylogenetic tree, containing the PCSK and S08 subfamily of proteases, such as kexin 

and furin, among others. Although, signal peptidase 1 and signalase 21kDa were not clustered 

together with other serine proteases on the concentrated phylogenic tree branch, another two 

proteases were found clustered on a small branch, mainly because these two proteases are signal 

peptidases that cleave remnant signal peptides located on the plasma membrane. In addition, while 

lactocepin 1 and lactocepin 3 were not clustered in the major branches of the serine protease in the 

phylogenetic tree, the two homologous proteases were indeed found clustered on a small branch. 

Further protease analysis based on the KEGG pathway database, linked to the MEROPS database, 

showed that both cathepsin G and chymase proteases, clustered in the same branch, were involved in 

regulating the renin-angiotensin system. Both proteases are responsible for the initiation of the chain 

reaction in the system, turning it on in order to maintain cardiovascular development and blood 

pressure regulation. In addition, the serine proteases thrombin and plasmin were also found clustered 

together, and according to KEGG pathway database, both can activate complement proteins to 

produce the corresponding enzymatic activity in the complement immune system, triggering a 

cascade of proteolytic reactions. 

Analysis on MMPs showed that most of these proteases concentrate on a more concentrated 

branch. Among them, eight proteases belonging to the MMP family in the dataset were grouped in 

this branch. Interestingly, thimet oligopeptidase and neurolysin operate in a similar manner while 

processing the degradation of the substrate, mainly by cleaving the oligopeptide. Therefore, two 

proteases are clustered on a small branch. In addition, the peptidyl-Lys metallopeptidase showed a 

unique preference for Lys at the P1’ site. However, other MMPs analyzed in our dataset, did not have 

such specific preferences. Therefore, it was not clustered in the concentrated branch of MMPs. 

In the protease dataset, the cysteine proteases were scattered across several small branches. Among 

them, four proteases belonging to the caspase family, including caspase 1, caspase 3, caspase 6, and 

caspase 7, were found clustered together in a minor branch. It is obvious from the phylogenetic tree 

generated that the homologous cathepsin L1, cathepsin B, and cathepsin K clustered on a small 

branch. Meanwhile, calpain 1 and calpain 2 were also found clustered on a small branch, and 

importantly, both proteases were found to be key regulators of apoptotic signals and Alzheimer’s 

disease pathogenesis as depicted in the KEGG pathway database. 

Regarding aspartic proteases, only two of them, necepsin 1 and RC1339g.p., were found 

scattered in other branches. The remaining six aspartic proteases anlyzed in our dataset were all 

derived from the same branch and clustered together. Although, there are no assumptions on the 

amino acid sequence information of the proteases during the constructing process of the phylogenetic 

tree, these proteases were still clustered by substrate sequence specificities. 

To verify reliability of the results of the phylogenetic tree, we constructed a heatmap and 

performed clustering analysis (Figure 7). Most of the branches in the cluster were almost consistent 

with the results of the phylogenetic tree. For example, the clustering results of the 14 proteases in the 

largest branch of serine proteases completely coincided with the results observed in the phylogenetic 

tree, thereby proving the reliability of these results. 
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Figure 7. Heatmap and clustering analysis of proteases over the P4–P4’ substrate 

sequences. Color bar from red to green represents the order of similarity from high to 

low. 

In addition, in order to create a phylogenetic tree of proteases based on substrate sequences P4–P4’, 

we applied a similar approach to the single site P1, aimed at generating an evolutionary tree of the 

protease datasets at this site (Figure 8). For this phylogenetic tree, the protease dataset was roughly 

divided into three branches. The first major branch was mainly composed of serine proteases 

together with the PCSK family, kexin, and furin, among others. The amino acids found at the P1 site 

in the substrate sequences of these proteases analyzed were mainly Arg residues. The homologous 

protease cathepsin L1, cathepsin B, and cathepsin K were still found clustered on a small branch of 

the phylogenetic tree. The second branch was mainly composed of the MMP family of proteases and 

the caspase family of cysteine proteases. Among them, granzyme B and granzyme rodent, were 

found still clustered with the caspase family in the phylogenetic tree. Importantly, these proteases are 

known to degrade substrate sequences whose amino acid at the P1 site consists mainly of Asp 

residues. The homologous signal peptidase signal peptidase 1 and signalase 21kDa, were found 

clustered in a minor branch of the phylogenetic tree. The third branch was found dominated by 

aspartic proteases. Moreover, the homologous proteases, such as lactopepin 3 and lactopepin 1, were 
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also clustered in a minor branch of the phylogenetic tree. By studying the pathways generated from 

the KEGG database, both insulysin and neprilysin were found to be associated with Alzheimer’s 

disease pathogenesis. For instance, insulysin has been shown to reduce the levels of Alzheimer’s 

disease-associated proteins and reduce the occurrence of Alzheimer’s disease, while neprilysin is 

known to be of great significance in the treatment and prevention of Alzheimer’s disease [41]. 

 

 

Figure 8. Schematic depicting the phylogenetic tree of proteases over the P1 substrate 

sequences. Proteases are colored according to their catalytic type: serine proteases are 

colored in orange, aspartic proteases in blue, cysteine proteases in purple, and 

metalloproteases in yellow. 

4. Discussions 

In this work, we presented a new method to capture the similarities between specific proteases 

based on substrate sequence analysis. Our method does not rely on amino acid sequences or the 

enzymatic structure of proteases, and is not restricted to homologous proteases and catalytic types. 

Therefore, our proposed method is easier to operate and improves clustering accuracy when 

evaluating the evolutionary tree of proteases. In short, it can be utilized to analyze the similarities 

between more extensive protease data, which can provide new insights into the study of protease 

function similarities. 

First, the method used in this study is computationally easier to operate and reflect the 

evolutionary tree of proteases. By visualizing the amino acid frequencies of the substrates at eight 
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different binding sites, the similarities of each are directly probed. The calculation we used to 

determine protease similarities was based on substrate vectors containing amino acid frequencies at 

each sub pocket of their binding sites. Moreover, the distance matrix was constructed according to 

the similarity matrix. Consequently, evolutionary trees were constructed to form comparisons 

between the different proteases. When compared to the calculation used to determine cleavage 

entropy [29], our method is computationally easier to operate. In addition, when compared to the 

visualization method based on a single cleavage site [25], our method of calculating similarities 

between the proteases can better reflect their evolutionary relationship and conserved functions. 

Second, the phylogenetic tree we constructed was clustered in a more efficient manner. For 

instance, almost all of the four types of catalytic proteases in this tree were found clustered together 

according to their respective catalytic type. Among them, metalloproteases, as well as serine and 

aspartic proteases, were found to have formed a certain scale of the three kinds of proteases, while 

some homologous cysteine proteases were found clustered in a small branch, despite lack of 

concentrated branches in the phylogenetic tree. According to Fuchs et al. [30], all the serine proteases 

in their phylogenic tree, were found divided into several small branches, clustered together with 

other catalytic types of proteases. In contrast, most of the proteases belonging to the catalytic type of 

serine in Figure 6, were found concentrated on a larger branch. Although, some serine proteases did 

not seem to be concentrated on this branch, homologous proteases, such as lactocepin 3 and 

lactopepin 1, signal peptidase 1, and signalase 21kDa, were found clustered together in a small 

branch. 

Lastly, our method appears more effective in determining these similarities. Particularly, there 

are various proteases that show specificity at the P1 site. Similar analyses were performed and our 

phylogenetic tree of proteases was finally constructed based on the single binding site, S1 Figure 8, 

which clusters better than the phylogenic tree established by Fuchs et al. [30], Interestingly, both 

proteases belonging to metalloprotease and aspartic protease families, displayed few branches. As the 

proteases in the MMP family display several degrees of similarity at the P1 site Figure 2, the distance 

value determined between the MMP family was relatively low and most of the metalloprotease 

family of proteins were found clustered together Figure 8. Regarding aspartic proteases, HIV-1 

retropepsin and pepsin A, displayed more Leu and Phe residues at the P1 site, showing more 

similarities and observed clustered together in our phylogenic tree. Interestingly, the fact that some 

proteases clustered together were also found to play similar roles in a number of biological pathways 

curated in the KEGG database [42], as well as the similarities captured by the substrates, has an 

immense potential to guide the development of therapeutic agents that can be specifically designed to 

target key proteases. 

5. Conclusions 

In conclusion, we expect that the similarities found between substrate sequences and their 

respective protease, can promote the recognition of protease ligands, which are already widely used 

in polypharmacology predictions. 
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